Реферат по предмету "Математика"


Математика в средние века

Математика в средние века

Начиная с 3 века н.э., все крупные государства Античного мира вошли в эпоху кризисов. Многие из них — как Римская империя в Средиземноморье и китайская империя Хань на восточном краю Евразии — распались на мелкие княжества и вскоре стали добычей соседних варваров. Затем эпоха распада империй сменилась эпохой переселения народов. На просторах Евразии разноплеменные варвары вновь и вновь делили наследство древних государств. Большая часть античной культуры погибла в этом пожаре: города были разграблены и покинуты, библиотеки сгорели, университеты закрылись, а ученые вымерли, не оставив учеников. В новом мире невежества островки науки и просвещения сохранялись только в монастырях разных религий: христианских на западе, буддийских или индуистских на востоке и юге Евразии. Позднее (с 8 века н.э.) в новой империи — Арабском Халифате — возникли исламские монастыри.

Большинство богословов Средневековья не одобряло античную мудрость; об ученых-исследователях говорили, что они «ум свой ставят в Бога место». Но в монастырях сохранилось уважение к древним рукописям: монахи переписывали их дословно, не вникая в смысл того, что написано. Таким путем многие достижения ученых эллинов или римлян сохранились в течение веков и достигли новых мыслителей, пройдя сквозь множество невежд.

Любознательные представители каждого нового народа, включаясь в мировую культуру, были вынуждены осваивать древнюю мудрость самостоятельно — без помощи старших коллег. Эта работа занимала века и поглощала все силы новых ученых. Поэтому в большинстве стран нового мира дело не дошло до оригинальных открытий вроде тех, которые сделали эллины. В средневковом мире нехватало городов-республик, подобных полисам Эллады; пока они не появились, наука развивалась очень медленно.

Из всех ойкумен Земли Индия оказалась наименее затронута переселением народов. Не удивительно, что именно здесь в 6 веке н.э. расцвела самобытная математическая школа. Познакомившись с достижениями эллинов, индийцы были удивлены: какая совершенная у них геометрия, и какая неудобная арифметика! Хуже всего греческая система записи чисел: с помощью букв, без всякой связи с привычным счетом на пальцах. Надо связать обозначения чисел с процедурой счета! Индийские ученые сделали это, создав позиционную десятичную систему счисления.

Первый шаг к этой цели сделал около 500 года молодой математик Ариабхата из города Кусумапура. Он начал изображать каждый разряд в десятичной записи целого числа парой букв. Согласная обозначала цифру, а гласная — номер разряда, так что символ ВА означал В*10… Эти пары букв записывались по возрастанию степеней числа 10. Но различить такое слово-число в обычном тексте было не просто; поэтому вскоре начертания букв-цифр были изменены, и появились первые десятичные цифры. Нуля среди них еще не было — но вскоре пришлось его ввести, для удобства чтения десятичной записи. Через сто лет после Ариабхаты его соотечественник Брахмагупта уже свободно оперировал с отрицательными числами и нулем и решал целочисленные уравнения с таким же искусством, как Диофант.

Оставалось разнести эту полезную новинку по всему свету. Тут важнейшую роль сыграл современник Брахмагупты — пророк Мухаммед из Мекки. Он сам и многие его сподвижники были в равной мере воинами и купцами. Поэтому как только арабы покорили Иран и вторглись в Индию (в 660-е годы), они сразу оценили индийскую систему счета и переняли ее. Вскоре позиционная система счисления распространилась во всем арабском Халифате — от Индии до Андалузии (будущей Испании), от Египта до Поволжья. С тех пор во всем мире (кроме Индии) десятичные цифры называют «арабскими». Но, конечно, скорость усвоения этой новинки разными народами зависела от их экономического развития.

В конце 8 века мировое научное первенство перешло из Индийского мира в Исламский мир, центром которого стал Багдад, расположенный на Тигре — вблизи развалин Вавилона. Основатель Багдада — халиф Мансур (707-775) — хотел, чтобы его столица превзошла великолепием и ученостью Александрию и Константинополь. Но ученых арабов в ту пору было еще мало; ведущую роль в новом «Доме Мудрости» в Багдаде играли сирийцы и персы, согдийцы и греки, принявшие ислам.

Наибольших успехов в математике достиг согдиец Мухаммед ибн Муса аль-Хорезми (то есть, родом из Хорезма — с берегов Сыр-Дарьи). Он работал в первой половине 9 века и был любимцем ученейшего из халифов — Маамуна (сына знаменитого Гаруна ар-Рашида). Главная книга Хорезми названа скромно: «Учение о переносах и сокращениях», то есть техника решения алгебраических уравнений. По арабски это звучит «Ильм аль-джебр ва»ль-мукабала"; отсюда произошло наше слово «алгебра». Другое известное слово — «алгоритм», то есть четкое правило решения задач определенного типа — произошло от прозвания «аль-Хорезми». Третий известный термин, введенный в математику знаменитым согдийцем — это «синус», хотя в этом деле не обошлось без курьеза.

Геометрический смысл синуса — это половина длины хорды, стягивающей данную дугу. Хорезми назвал эту вещь красиво и точно: «тетива лука»; по арабски это звучит «джейяб». Но в арабском алфавите есть только согласные буквы; гласные изображаются «огласовками» — черточками, вроде наших кавычек и запятых. Мало сведущий человек, читая арабский текст, нередко путает огласовки; так случилось с переводчиком книги Хорезми на латынь. Вместо «джейяб» — «тетива» — он прочел «джиба» — «бухта»; по латыни это пишется «sinus». С тех пор европейские математики используют это слово, не заботясь о его изначальном смысле.

В последующие века ученые Ближнего и Среднего Востока продолжали развивать наследие Эллады, стараясь объединить его с новым алгебраическим учением. При этом индийские математики больше уклонялись в арифметику, следуя по стопам Диофанта. Напротив, арабские ученые следовали по пути Архимеда. Они пытались разобраться в новом мире кубических уравнений: классифицировали их, выделяя те, которые решаются так же просто, как квадратные уравнения.

Наивысших успехов в этой области достиг ученый поэт Омар Хайям из Нишапура (1048-1131). Стихи он писал по персидски, научные трактаты по арабски, а в служебных делах пользовался тюркским языком. В 11 веке тюрки-сельджуки захватили большую часть Ирана и византийсих владений в Малой Азии. На этих землях новые народы осваивали и развивали наследие всех предшественников — от вавилонян до арабов.

Потерпев неудачу в прямом поиске корней произвольного кубического уравнения, Омар Хайям открыл несколько способов приближенного вычисления этих корней. Это была блестящая идея: добраться до неведомых чисел, используя хорошо знакомые кривые! Как только (в 17 веке) Рене Декарт добавил к ней вторую идею — описать любую кривую с помощью чисел — родилась аналитическая геометрия, в которой решение алгебраических уравнений слито воедино с теорией чисел и с наглядной геометрией. Предчувствуя эту связь, Омар Хайям поставил много интересных вычислительных опытов. Он нашел приближенные способы деления окружности на 7 или 9 равных частей; составил подробные таблицы синусов и с большой точностью вычислил Пи.

Хайям догадался, что это число и ррациональное, и даже не квадратичное — но доказать эту гипотезу не смог. Не удались Хайяму и попытки доказать пятый постулат Евклида о параллельных прямых. Не удивительно, что на отдыхе от таких трудов Омар Хайям писал довольно грустные стихи…

Тем временем на дальнем востоке Евразии другие математики и астрономы пытались постичь те же тайны природы на своем научном языке. В Элладе этот язык состоял, в основном, из чертежей — а в Китае из иероглифов. В сущности, иероглиф — это тоже чертеж особого рода, составленный из простых значков: каждый значок изображает одно простое понятие. Например, знак Шу означает «число», а знак Сюэ — «учение». Однако их сочетание — Шу Сюэ — обозначает не только учение о числах (то есть, арифметику), но и всю математическую науку. Как в таком случае назвать геометрию" Очень просто: Цзи Хэ Сюэ — «учение о том, сколько чего». То есть, геометрию китайцы воспринимали как науку, рассчитывающую свойства фигур — и только!

С этой точкой зрения наверняка согласился бы ученый из древнего Вавилона; но Пифагор или Платон ни за что не признали бы правоту китайцев. Если геометры займутся одними только расчетами — кто будет выяснять сущность природных тел или научных понятий" Ученый китаец отвечал на такой вопрос кратко и просто: ничего не нужно выяснять! Вся суть природы и науки уже выражена в иероглифах. Небо даровало их нашим предкам 20 веков назад — и ничего тут ни убавить, ни прибавить. Можно комбинировать известные иероглифы в новом порядке; но изменять их смысл нельзя — это противоречит законам природы и воле Неба!

Сравнивая этот консерватизм китайцев с новаторством эллинов или индийцев, невольно изумляешься: как многое зависит от удачной системы обозначений! Переход от смысловых иероглифов к звуковому алфавиту избавил Элладу от груза мертвых традиций Египта или Двуречья. Эллинам пришлось многому учиться заново — зато они смогли усвоить древнюю мудрость без множества сопутствующих заблуждений. Китайцам не выпало это трудное счастье. Их иероглифическая культура устояла даже под натиском переселения варварских народов — после крушения империи Хань. В итоге мудрецы средневекового Китая остались в плену древнейшей натурфилософии из всех, сохранившихся на Земле. Поэтому заочное соперничество между математиками Запада и Китая напоминает состязание двух бегунов — одного в легком платье, а другого — в кольчуге. Исход соревнования ясен: в античную эпоху эллины вырвались далеко вперед. В Средние века разрыв между китайцами и арабами заметно сократился, но в Новое время западные европейцы решительно опередили своих ближневосточных (и тем более — дальневосточных) коллег.

В течение всего Средневековья медленно развивавшаяся наука Исламского мира служила как бы «холодильником открытий». Здесь высшие достижения Эллады дожидались дерзких и умелых пользователей и продолжателей. Напротив, застывшая ученость имперского Китая стала в ту пору «холодильником интеллигенции». Только в 18 веке, когда новые дерзкие европейцы прорвались в Китай, они вызвали там пробуждение великих природных сил. К 20 веку китайские ученые вновь вошли в число передовых умов человечества: это выразилось и в нобелевских премиях, и в математических открытиях.

Вернемся в Европу, где после распада Римской империи наступили «Темные века». Нельзя сказать, что в эту пору исчезла государственность или прекратилась торговля. Напротив, они процветали в Восточной Римской державе, созданной новыми грекоязычными христианами — ромеями. Их часто называют и византийцыми — в честь древнего города Византия на Босфоре, который был тогда переименован в Константинополь и прозван «Вторым Римом». Умением плавать по морю и строить города ромеи не уступали своим предкам-эллинам; в государственных делах они подражали своим предшественникам — римлянам.

Но любви к натурфилософии или к точным наукам ромеи от эллинов не унаследовали; для них главным видом интеллектуального спорта сделалось богословие. Монахи и императоры косо смотрели на «языческую премудрость» эллинов. Не случайно самый прославленный император Византии — Юстиниан 1 (483-565) начал свое правление с того, что закрыл в 529 году Академию в Афинах. Прекратилась научная работа и в Александрийском Музее. В последующие века христианские и исламские богословы яростно спорили между собой, но сходились во мнении, что «из увлекшихся математикой лишь немногие не сделались вероотступниками и не сбросили с голов своих узду благочестия». Казалось, что золотой век греческой науки никогда не повторится в Европе.

Однако всему приходит конец — даже темным векам. Через 6 столетий после победы христианства — в 10 веке — в Западной Европе началась очередная культурная революция. Как прежде в Элладе, она охватила молодые народы: французов и немцев, бургундцев и чехов, которым от роду было не более ста лет. Вновь опорой культурного взлета стал новый образ жизни — но в этот раз не городской, а феодальный. Вместо былых республик-полисов в Европе размножались республики-монастыри и рыцарские замки. В тех и других господствовали строгий устав и трудовая дисциплина; но во всех вопросах, не охваченных Священным Писанием, допускалась немалая свобода мысли. «Мы наш, мы новый мир построим» — таков стал настрой мысли диковатых западных европейцев, не стесненных ни королевской, ни папской властью.

Рыцари стремились в крестовые походы, чтобы помериться силой с язычниками или мусульманами и разбогатеть. Многие монахи стремились крестить иноверцев, превратить их в свое подобие. Но другие мечтали о богатствах иного рода — тех, которые питают любознательный ум. Вот, лежит за Пиренеями загадочный Исламский мир, обильный ремеслами и ученостью. Как хорошо, что Карл Великий отвоевал у мусульман пограничную Барселону! Теперь в этом городе рядом с католиками живет немало ученых мусульман и иудеев. Любознательный христианин может многому у них научиться.

Так рассуждал французский монах Герберт из Орильяка — первый профессиональный ученый католической Европы. В 970-е годы он поселился в Барселоне, выучил арабский язык и начал беседовать с учеными иноверцами обо всем на свете. Астрономия и арифметика, изготовление бумаги и музыкальных инструментов — во всем этом жители Андалузии превосходили лучших мастеров Франции или Италии, и все это Герберт старался перенять. Через пять лет он сделал очередной шаг: направился в центр Андалузии — Кордову — и три года учился у местных мудрецов. Ему не раз предлагали принять ислам и стать цивилизованным человеком. Но Герберта интересовало только второе из этих предложений. Соединить арабскую мудрость, ученость древних греков и римлян с христианским богословием; сделать этот сплав достоянием всех католиков — такую цель поставил перед собою отважный и упорный Герберт из Орильяка.

Вернувшись во Францию, Герберт устроил в городе Реймсе училище по своему вкусу. В нем юношей обучали латыни и греческому, а желающих — также арабскому и древнееврейскому языкам. Кроме этого, преподавались астрономия и музыка, арифметика на основе арабских цифр. Все необходимые приборы строил сам Герберт с помощью учеников. А какую библиотеку он привез из-за Пиренеев! В ней были Платон и Аристотель, Евклид и Птолемей, множество арабских рукописей…

Многие европейские правители стремились отдать своих сыновей в учение к Герберту. В 996 году один из его питомцев сделался королем Франции Робертом 2; тогда Герберт был назначен епископом Реймса, и этот город на века стал церковным центром Франции. В 999 году другой ученик Герберта — Оттон 3 — стал правителем Римско-Германской империи. Тут уж Герберту пришлось стать римским папой — Сильвестром 2.

В Риме нового папу многие восприняли, как чернокнижника. Ведь он удивительно быстро считает с помощью арабской доски — абака — не пользуясь римскими цифрами! Да еще умеет предсказать исход бросания костей в игре! Он сам следит за движением звезд, строит благозвучные органы — хотя богословских споров избегает. Вдобавок, папа вместе с юным императором раздает королевские короны новокрещеным варварам Европы — норвежцам, мадьярам. Небывалый человек на престоле святого Петра!

Впрочем, политика Сильвестра 2 была успешна, и римляне начали понемногу привыкать к ученому папе. Но после смерти о нем пустили анекдот: будто в полночь на папском надгробии сами собой подпрыгивают игральные кости! Пятнадцатью веками раньше эллины сочинили немало сходных историй о Фалесе из Милета…

В отличие от Фалеса, пример Герберта не сразу сделался для европейцев предметом подражания. Нехватало широких контактов между Католическим и Исламским мирами. Они начались только в эпоху Крестовых походов — в конце 11 века, когда кастильские рыцари захватили половину Пиренейского полуострова и его древнюю столицу — Толедо. Вскоре туда потянулись многие последователи Герберта из Орильяка: Аделяр из Бата в Англии, Герардо из Кремоны в Италии. Все они стремились перевести на общедоступную латынь с арабского или с греческого языка труды древних ученых Эллады и Рима. Аделяр перевел «Начала» Евклида и ряд книг Хорезми; Герардо открыл для католиков Аристотеля и Птолемея.

Длинное название книги Птолемея («Мегале Математике Синтаксис») арабы сократили до первого слова: получилось «Величие» — Аль-Магест. Новым европейцам понравилось второе слово — «Учение» (Математика). И вот с 12 века все европейцы называют так науку о числах и фигурах.

Первое столетие крестовых походов расширило кругозор очень многих европейцев. Особенно отличились жители приморских городов Италии: Венеции, Генуи, Пизы. Здешние мореходы переправляли крестоносцев и паломников в Святую землю, а купцы наживались, продавая добычу крестоносцев и иные «восточные» товары по всей Европе. Постепенно многие города католической Италии превратились в торговые республики, похожие на полисы античной Эллады. С начала 13 века в этих республиках заметна научная самодеятельность не только церковников, но и мирян — прежде всего, купцов.

В 1202 году появился первый «самодельный» учебник арифметики для широкого читателя — «Книга Абака». Его составил Леонардо Фибоначчи из Пизы (1180-1240), с детства причастный к торговым делам своего отца. Арифметике он научился в Алжире у местных мусульман, а теперь сам обучал единоверцев новому десятичному счету. Позднее Фибоначчи написал учебник «Практическая геометрия» и «Книгу квадратов». В них впервые были изложены (на латыни) правила действий с нулем и отрицательными числами, а также появились знаменитые числа Фибоначчи.

Тем временем на папский престол взошел второй ученый человек: Лотарио ди Конти ди Сеньи (1160-1216), выпускник Парижского университета. Потомки запомнили его под грозным именем Иннокентия 3 — «Раба рабов Божьих», помыкавшего королями и свергавшего герцогов или князей по всей Европе. Только король Франции Филипп 2 Август порою осмеливался противоречить грозному папе — в тех случаях, когда он мог опереться на авторитет Парижского университета. Так первые католические университеты заявили о своей независимости от любой духовной или светской власти. Наряду с городами-республиками Италии, они сделались рассадником независимой учености в Европе. Процветающий Католический Интернационал начал походить на созвездие полисов Эллады.

Английские университеты заявили о себе в середине 13 века. Тогда англичане, опираясь на свою первую конституцию (Великую Хартию Вольностей), попытались взять под контроль легкомысленного короля Генри 3 и его алчных фаворитов. Духовным лидером этого движения стал ученейший богослов — Роберт Гросетест («Головастый»), епископ Линкольна (1175-1253). Он увлекся оптикой и пришел к мысли, что весь мир возник из света — самой совершенной формы материи. Более грубые тела получились при застывании света. Таким образом, Гросетест представил мир как результат игры двух начал — света и порядка, или (в понятиях 20 века) энергии и симметрии. Ни один современный физик или математик не станет с этим спорить!

Подобно античным натурфилософам, Гросетест не мог рассчитать свою физическую модель. Зато другая таинственная вещь — бесконечность — поддавалась расчету, и Гросетест увлекся этим делом. Он начал суммировать бесконечные ряды чисел, и вскоре научился отличать сходящийся ряд от расходящегося. Но и расходиться ряд может с разной скоростью. Гросетест заметил, что сумма натуральных чисел растет гораздо медленнее, чем сумма их квадратов, а сумма квадратов — медленнее, чем сумма последовательных степеней двойки. Так первый из христиан проник в область бесконечно больших и бесконечно малых величин — вслед за Архимедом и на 4 столетия опережая Ньютона. Хорошая компания для богослова!

Подобно Платону и Аристотелю, Гросетест очень заботился о воспроизводстве ученого сословия в Англии. Он считал, что античных классиков (особенно Аристотеля) нужно изучать в подлиннике, а не по дурным переводам на латынь, сделанным с арабских переводов оригинала. Для этого Гросетест пригласил в Англию ученых греков — беглецов из Константинополя, разоренного крестоносцами в 1204 году. Так в Оксфорде и Кембридже появились первые греческие профессора. Этот посев принес замечательные плоды. Среди учеников Гросетеста оказались выдающийся алхимик Роджер Бэкон (один из изобретателей пороха) и граф Симон де Монфор — организатор первого выборного парламента в Англии. Платон и Аристотель гордились бы такими учениками!

Коллегой и соперником Роберта Гросетеста на европейском континенте стал другой богослов — Фома Аквинский (1225-1274). Этот мрачноватый итальянец шел по стопам Аристотеля и Евклида, пытаясь изложить всю христианскую ученость в виде цепи определений, аксиом и теорем.

В отличие от Гросетеста, Фома не признавал рассуждений о бесконечности. Он был уверен, что у всякой вещи в природе есть исток, в котором она достигает наивысшего совершенства. Первоисток всех вещей — то есть, наиболее совершенную вещь в природе — Фома отождествил с Богом. А можно ли измерить степени совершенства разных природных объектов и самого Бога" Такая мысль не казалась Фоме ересью — но ответить на этот вопрос он не смог. Было ясно, что известных чисел нехватает для такого измерения. Только в 19 веке европейские математики Эварист Галуа и Феликс Кляйн научились измерять совершенство (то есть, симметрию) природных тел с помощью особой ветви математики — теории групп.

Итак, в 13 веке католические богословы научились задавать природе такие вопросы, которые потребовали создания новых разделов математики. Этот уровень знаний можно сравнить с уровнем пифагорейцев. Вскоре те же богословы достигли уровня сомнений Зенона из Элеи. Рядом с древними парадоксами об Ахиллесе и черепахе и о делении отрезка пополам появились парадоксы о Буридановом осле и о неподъемном камне.

Жан Буридан (1300-1358) был профессором Парижского университета (Сорбонны) в тяжкие годы Столетней войны между Англией и Францией и раскола в католической церкви. Король Франции попал в плен к англичанам; в Риме и в Авиньоне правили двое пап, не признающих и проклинающих один другого. В этих условиях «Святая Сорбонна» сделалась высшим авторитетом католической мысли: ее ученый совет не раз выносил приговоры в спорах между графами или кардиналами.

Например, Буриданов осел стоит между двух одинаковых кормушек с сеном. Какую из них он выберет, не зная понятий «правое» и «левое»" Или всемогущий Бог: может ли он создать такой камень, который он сам не сможет поднять" Вероятно, эти вопросы родились из студенческих шуток — но отвечать пришлось профессорам, и это было совсем не просто. Ведь спор шел не в тишине монашеской кельи, а в пылу ученого диспута — в присутствии сотен смышленых болельщиков. Согласно преданиям, Буридан был непобедим в подобных спорах; за это его выбрали ректором Сорбонны. Но окончательное решение таких парадоксов математики нашли лишь в начале 20 века — в рамках созданной Георгом Кантором теории множеств, которую один из ее противников назвал «не ветвью математики, а разделом богословия». Трудно привыкнуть к неожиданным новинкам в той области, где ты издавна чувствуешь себя знатоком и мастером!

Современники больше всего уважали Буридана за то, что он переспорил папу Иоанна 22 в споре о Страшном Суде: когда человек попадает в рай или в ад — сразу после смерти, или только в конце света" Для ученых 20 века важнее то, что Буридан переспорил Аристотеля: он первый открыл принцип инерции в прямолинейном или вращательном движении. Позднее этот постулат Буридана называли либо первым законом Ньютона, либо законом сохранения импульса, либо описанием наименьшей группы симметрий в классической механике. Слова могут быть разными, но суть одна: был сделан первый шаг дальше того рубежа, на котором остановились или споткнулись античные мыслители.

Другой шаг в ту же сторону сделал еще один профессор Сорбонны: Раймонд Луллий с острова Мальорка (1235-1315). Он не собирался спорить с Аристотелем или Евклидом — но он прочел их книги («Органон» и «Начала») глазами инженера и подумал: можно построить машину, которая будет автоматически выполнять все арифметические действия с числами и логические операции над любыми утверждениями! Так в начале 14 века в Европе родился первый проект механического компьютера. Построить его Луллию не удалось: слишком низок был тогда уровень механического ремесла во всем мире. Но из книги Луллия «Великое искусство» видно, что автор сознавал возможные последствия компьютерной революции.

Раймонд Луллий вырос в Каталонии — отвоеванной у мусульман приморской части Андалузии. Он был разочарован прекращением крестовых походов: ведь юг Пиренейского полуострова все еще находится во власти мусульман, и Святая Земля вырвана ими из рук католиков. Но если мы не сумели одолеть иноверцев мечом — надо одолеть их умом! Аристотель и Евклид изложили все правила и методы верных умозаключений. Если нам удастся воплотить эти правила в механическом устройстве, то христианская наука быстро превзойдет все достижения мусульман, и на земле наступит царство Христа!

Эти мечты католического мыслителя до странности напоминают мечты Аристотеля: стоит эллинам покорить всех варваров, как на Земле наступят общий мир и благодать. Однако Аристотель видел лишь один путь к этому счастью — политический, через всемирную монархию Александра Македонского или иного просвещенного завоевателя. Воображению Луллия открылся другой путь — через научно-техническую революцию. Ее зарю возвестил гром пушек: они появились в Европе еще при жизни Луллия.

Однако решающий прорыв из Средневековья в Новое время европейцы совершили, когда изобрели печатный станок с подвижным металлическим шрифтом. В 1454 году Иоганн Гутенберг напечатал в Майнце первые 300 экземляров Библии и положил начало информационной революции — столь же важной, как появление алфавита в Элладе в 8 веке до н.э., или появление электронных компьютеров в середине 20 века. В 1482 году в Венеции была впрервые напечатана (по латыни) книга Евклида «НГачала». С этого момента для математиков кончилось Средневековье и началось Новое время.

--PAGE_BREAK--Список литературы

Для подготовки данной работы были использованы материалы с сайта www.sch57.msk.ru/


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Конструкция склада минеральных удобрений
Реферат Переклад тексту у редакторі Word
Реферат Образ Петербурга цикле стихотворений Н.А. Некрасова «О погоде»
Реферат Азимов лаки старр и пираты астероидов
Реферат Основы оптоэлектроники. Классификация оптоэлектронных устройств
Реферат Аналогія 2
Реферат Реформа системы государственного управления в XVIII веке при Петре I
Реферат Снижение загрязнения окружающей среды при работе пассажирского вагонного депо Ростов с разработкой сбора и утилизации опасных отходов
Реферат Астрономія в стародавності 2
Реферат Определение портрета потребителя пива ООО Булгарпиво
Реферат Автоматизация участка по изготовлению детали Герб Татарстана
Реферат Астрономия как наука
Реферат Дисциплинарная ответственность сотрудников ОВД. Расторжение трудового договора
Реферат I. Введение
Реферат Cакура - Prunus serrulata Вишня японская