--PAGE_BREAK--4. Расчет коэффициента автокорреляции
Для расчета коэффициента автокорреляции между уровнями валового дохода воспользуемся формулой парной корреляции, которая имеет следующий вид:
.
Для вычисления коэффициента автокорреляции по этой формуле необходимые численные значения параметров SYi, SYi2, представленные в табл. 1 и 2 соответственно. Для определения численных значений параметров SYi-1, SYi-12, SYiYi-1 необходимо провести дополнительные промежуточные расчеты, результаты которых представлены в табл. 4.
Кроме того, для расчета коэффициента автокорреляции необходимо предварительно вычислить средние значения параметров и , а также квадраты средних значений этих же параметров, для чего воспользуемся формулами средней арифметической простой:
Таблица 4 Промежуточные расчеты показателей для расчета коэффициента автокорреляции
№
46
65,200
4251,040
47
65,200
65,200
4251,040
4251,040
4251,040
48
65,300
65,200
4264,090
4251,040
4257,560
49
65,400
65,300
4277,160
4264,090
4270,620
50
65,500
65,400
4290,250
4277,160
4283,700
51
65,600
65,500
4303,360
4290,250
4296,800
52
65,700
65,600
4316,490
4303,360
4309,920
53
65,700
65,700
4316,490
4316,490
4316,490
54
65,800
65,700
4329,640
4316,490
4323,060
55
65,900
65,800
4342,810
4329,640
4336,220
56
66,000
65,900
4356,000
4342,810
4349,400
57
66,100
66,000
4369,210
4356,000
4362,600
787,400
721,300
51667,580
47298,370
47357,410
;
.
Проанализируем полученный результат. Если численное значение коэффициента автокорреляции находится в диапазоне от –0,3 до + 0,3, то принято считать, что существует автокорреляция между уровнями результирующего показателя. В нашем случае коэффициент автокорреляции составляет r = 0,691, следовательно, автокорреляция между уровнями фондоотдачи отсутствует. Это свидетельствует о том, что факторы, от которых зависит фондоотдача и которые даны нам в качестве исходной информации, являются основными, а влияние случайных, нам не известных факторов незначительно. По этой причине считаем, что искажение результатов моделирования будет несущественным, поскольку в модель будут включены только существенные факторы, от которых действительно зависит результирующая переменная.
5. Построение модели в стандартизированном виде
По характеру изменения уровней фондоотдачи можно выдвинуть гипотезу о прямолинейном законе распределения этого показателя во времени. Уравнение множественной регрессии для прямолинейной связи имеет следующий вид:
.
Для решения этого уравнения регрессии воспользуемся методом исключения (методом Гаусса), для чего составим и запишем систему нормальных уравнений:
Решить систему нормальных уравнений – значит, найти численное значение коэффициентов регрессии , , . Все остальные параметры системы уравнений (коэффициенты парной корреляции) уже были вычислены на первом и втором этапах расчетов. Запишем эту же систему уравнений с численными значениями известных параметров:
Разделим каждый член каждого уравнения системы на соответствующие коэффициенты при .
В результате этой процедуры (деления) получим новую систему уравнений с тремя неизвестными, в которой коэффициенты при , равны единице:
Для исключения из системы уравнений неизвестного параметра вычтем из второго уравнения – первое, и из третьего уравнения – первое. В результате этой операции (вычитания) получим новую систему из двух уравнений, но уже только с двумя неизвестными:
Как и в предыдущем случае, разделим каждый член каждого уравнения этой системы на соответствующие коэффициенты при .
В результате этой процедуры (деления) получим новую систему, состоящую из двух уравнений с двумя неизвестными, в которой коэффициенты при равны единице:
Для исключения из этой системы уравнений неизвестного параметра вычтем из второго уравнения первое. В результате этой операции (вычитания) получим новое уравнение, но уже только с одним неизвестным:
.
Откуда
Для определения численного значения коэффициента регрессии подставим найденное значение коэффициента регрессии в первое уравнение системы из двух уравнений:
;
Откуда
Для определения численного значения коэффициента регрессии подставим найденные значения коэффициентов регрессии и в первое уравнение системы из трех уравнений:
;
;
Откуда
Все численные значения коэффициентов множественной регрессии найдены. Тогда уравнение связи в стандартизированном виде будет иметь следующий вид:
.
6. Построение модели в натуральных единицах измерения
Для объективного анализа показателей изучаемого социально-экономического явления необходимо перейти от абстрактной стандартизированной модели к математической модели в натуральных единицах измерения. Уравнение множественной регрессии для прямолинейной связи имеет следующий вид:
Для решения этого уравнения регрессии необходимо определить численные значения коэффициентов эластичности b1, b2, b3. Для этого воспользуемся следующей формулой:
,
где – среднеквадратическое отклонение результирующего признака, которое определяется по формуле
.
Для расчета среднеквадратического отклонения и коэффициентов эластичности необходимо провести некоторые промежуточные расчеты, результаты которых представлены в табл. 5.
Таблица 5 Промежуточные расчеты для вычисления cреднеквадратического отклонения
№
46
65,200
-0,417
0,1739
47
65,200
-0,417
0,1739
48
65,300
-0,317
0,1005
49
65,400
-0,217
0,0471
50
65,500
-0,117
0,0137
51
65,600
-0,017
0,0003
52
65,700
0,083
0,0069
53
65,700
0,083
0,0069
54
65,800
0,183
0,0335
55
65,900
0,283
0,0801
56
66,000
0,383
0,1467
57
66,100
0,483
0,2333
Итого:
787,400
1,0167
Тогда
; ; .
;
;
.
В связи с тем что в формулы расчета коэффициентов эластичности входят значения , , с тремя десятичными знаками, а также численные значения коэффициентов эластичности малы, их следует округлить до пятого десятичного знака, чтобы модель более точно отображала результаты моделирования и прогнозирования.
Тогда уравнение множественной регрессии для прямолинейной связи для изучения фондоотдачи будет иметь следующий вид:
В этом уравнении регрессии его свободный член является неизвестной величиной. Для определения численного значения необходимо в это уравнение подставить средние значения результирующей и факторных величин. Тогда уравнение примет вид:
или
.
Тогда экономико-математическая модель изучаемого явления в натуральных единицах измерения будет иметь следующий окончательный вид:
.
Это уравнение регрессии необходимо проверить по двум критериям: по сходству сумм расчетных и экспериментальных значений фондоотдачи и по коэффициенту множественной корреляции.
Вычислим расчетные значения фондоотдачи по всем периодам времени:
;
;
;
;
;
;
;
;
;
;
;
.
Сумма всех расчетных значений фондоотдачи равна 787,40368 и совпадает с суммой эмпирических значений этого показателя, т.е. выполняется условие:
SYэi = 787,4 »SYрi = 787,40368,
следовательно, по этому критерию можно сделать вывод о правильности построения экономико-математической модели хозяйственной деятельности предприятия.
Вычислим численное значение коэффициента множественной корреляции по формуле:
= 0,91.
Так как численное значение коэффициента множественной корреляции R превышает численное значение любого из парных коэффициентов корреляции , , , а также не превышает единицы, можно сделать вывод о правильности построения экономико-математической модели хозяйственной деятельности фермерского хозяйства и по этому критерию.
Таким образом, гипотеза о прямолинейной связи между показателями рассматриваемой системы верна, и полученное уравнение множественной регрессии может использоваться в качестве модели для анализа и прогнозирования хозяйственной деятельности предприятия.
продолжение
--PAGE_BREAK--