Реферат по предмету "Маркетинг"


Регрессионный анализ в статистическом изучении взаимосвязи показателей

--PAGE_BREAK--
2.3. Проверка адекватности моделей, построенных на основе уравнений регрессии
Для практического использования моделей регрессии большое значение имеет их адекватность, т.е. соответствие фактическим статистическим данным.

Корреляционный и регрессионный анализ обычно (особенно в условиях так называемого малого и среднего бизнеса) проводится для ограниченной по объёму совокупности. Поэтому показатели регрессии и корреляции – параметры уравнения регрессии, коэффициенты корреляции и детерминации могут быть искажены действием случайных факторов. Чтобы проверить, насколько эти показатели характерны для всей генеральной совокупности, не являются ли они результатом стечения случайных обстоятельств, необходимо проверить адекватность построенных статистических моделей.

При численности объектов анализа до 30 единиц возникает необходимость проверки значимости (существенности) каждого коэффициента регрессии. При этом выясняют насколько вычисленные параметры, характерны для отображения комплекса условий: не являются ли полученные значения параметров результатами действия случайных причин. Значимость коэффициентов простой линейной регрессии (применительно к совокупностям, у которых n


для параметра a0:

для параметра a1:          


   где n — объём выборки;
— среднее квадратическое отклонение результативного признака от выравненных значений ŷ;

    или   

— среднее квадратическое отклонение факторного признака x от общей средней . [8]

Вычисленные по вышеприведенным формулам значения сравнивают с критическими t, которые определяют по таблице Стьюдента с учетом принятого уровня значимости  α  и числом степеней свободы вариации . В социально-экономических исследованиях уровень значимости α обычно принимают равным 0,05. Параметр признаётся значимым (существенным) при условии, если tрасч> tтабл. В таком случае практически невероятно, что найденные значения параметров обусловлены только случайными совпадениями.

Теперь я рассчитаю t-критерий Стьюдента для моей модели регрессии.


— это средние квадратические отклонения.




Расчетные значения t-критерия Стьюдента:

По таблице распределения Стьюдента я нахожу критическое значение t-критерия для  ν= 32-2 = 30. Вероятность α я принимаю 0,05. tтабл равно 2,042. Так как, оба значения ta0 и ta1 больше tтабл, то оба параметра а0 и а1 признаются значимыми и отклоняется гипотеза о том, что каждый из этих параметров в действительности равен 0, и лишь в силу случайных обстоятельств оказался равным проверяемой величине.

Проверка адекватности регрессионной модели  может быть дополнена корреляционным анализом. Для этого необходимо определить тесноту         корреляционной связи между переменными х и у. Теснота корреляционной связи, как и любой другой, может быть измерена эмпирическим корреляционным отношением ηэ, когда δ2 (межгрупповая дисперсия) характеризует отклонения групповых средних результативного признака от общей средней: . 

Говоря о корреляционном отношении как о показателе измерения тесноты зависимости, следует отличать от эмпирического корреляционного отношения – теоретическое.

Теоретическое корреляционное отношение η представляет собой относительную величину, получающуюся в результате сравнения среднего квадратического отклонения выравненных значений результативного признака  δ, то есть рассчитанных по уравнению регрессии, со средним квадратическим отношением эмпирических (фактических) значений результативности признака σ:

  ,

где ;       .

Тогда . [2]

Изменение значения η объясняется влиянием факторного признака.

В основе расчёта корреляционного отношения лежит правило сложения дисперсий, то есть , где    -   отражает вариацию у за счёт всех остальных факторов, кроме х, то есть являются остаточной дисперсией:

.

Тогда формула теоретического корреляционного отношения примет вид:

,

или        .

Подкоренное выражение корреляционного выражения представляет собой коэффициент детерминации (мера определенности, причинности).

Коэффициент детерминации показывает долю вариации результативного признака под влиянием вариации признака-фактора. Задача

Теоретическое корреляционное выражение применяется для измерения тесноты связи при линейной и криволинейной зависимостях между результативным и факторным признаком.

Как видно из вышеприведенных формул корреляционное отношение может находиться от 0 до 1. Чем ближе корреляционное отношение к 1, тем связь между признаками теснее.

Теоретическое корреляционное отношение применительно к  моему анализу я рассчитаю двумя способами:



[5]

Полученное значение теоретического корреляционного отношения свидетельствует о возможном наличии среднестатистической связи между рассматриваемыми признаками. Коэффициент детерминации равен 0,62. Отсюда я заключаю, что 62% общей вариации работающих активов изучаемых банков обусловлено вариацией фактора – капитала банков (а 38% общей вариации нельзя объяснить изменением размера капитала).

Кроме того, при линейной форме уравнения применяется другой показатель тесноты связи – линейный коэффициент корреляции:

,

где n – число наблюдений.

Для практических вычислений при малом числе наблюдений (n≤20÷30) линейный коэффициент корреляции удобнее исчислять по следующей формуле:

.

Значение линейного коэффициента корреляции важно для исследования социально-экономических явлений и процессов, распределение которых близко к нормальному. Он принимает значения в интервале:

-1≤ r ≤ 1.

Отрицательные значения указывают на обратную связь, положительные – на прямую. При r = 0 линейная связь отсутствует. Чем ближе коэффициент корреляции по абсолютной величине к единице, тем теснее связь между признаками. И, наконец, при r = ±1 – связь функциональная.

Используя данные Таблицы 1 (Приложение 1), я рассчитал линейный коэффициент корреляции r. Но чтобы использовать формулу для линейного коэффициента корреляции рассчитаем дисперсию результативного признака σy:





Квадрат линейного коэффициента корреляции r2 называется линейным коэффициентом детерминации. Из определения коэффициента детерминации очевидно, что его числовое значение всегда заключено в пределах от 0 до 1, то есть 0 ≤ r2 ≤ 1. Степень тесноты связи полностью соответствует теоретическому корреляционному отношению, которое является более универсальным показателем тесноты связи по сравнению с линейным коэффициентом корреляции.

Факт совпадений и несовпадений значений теоретического корреляционного отношения η и линейного коэффициента корреляции r используется для оценки формы связи. [4]

Выше отмечалось, что посредством теоретического корреляционного отношения измеряется теснота связи любой формы, а с помощью линейного коэффициента корреляции – только прямолинейной. Следовательно, значения η и r совпадают только при наличии прямолинейной связи. Несовпадение этих величин свидетельствует, что связь между изучаемыми признаками не прямолинейная, а криволинейная. Установлено, что если разность квадратов η и r не превышает 0,1, то гипотезу о прямолинейной форме связи можно считать подтвержденной. В моем случае наблюдается примерное совпадение линейного коэффициента детерминации и теоретического корреляционного отношения, что дает мне основание считать связь между капиталом банков и их работающими активами прямолинейной.

При линейной однофакторной связи t-критерий можно рассчитать по формуле:

,

где (n — 2) – число степеней свободы при заданном уровне значимости α и объеме выборки n.

Так, для коэффициента корреляции между капиталом и работающими активами получается:



Если сравнить полученное tрасч с критическим значением из таблицы Стьюдента, где ν=30, а α=0,01 (tтабл=2,750), то полученное значение t-критерия будет больше табличного, что свидетельствует о значимости коэффициента корреляции и существенной связи между капиталом и работающими активами.

Таким образом, построенная регрессионная модель ŷ=245,75+1,42x  в целом адекватна, и выводы, полученные по результатам малой выборки можно с достаточной вероятностью распространить на всю гипотетическую генеральную совокупность.
Экономическая интерпретация параметров регрессии
После проверки адекватности, установления точности и надежности построенной модели (уравнения регрессии), ее необходимо проанализировать. Прежде всего, нужно проверить, согласуются ли знаки параметров с теоретическими представлениями и соображениями о направлении  влияния признака-фактора на результативный признак (показатель).

В рассмотренном уравнении ŷ=245,75+1,42х, характеризующем зависимость размера работающих активов (у) от капиталов банков (х), параметр а1>0. Следовательно, с возрастанием размера капитала банка размер работающих активов увеличивается.

Из уравнения следует, что возрастание капитала банка на 1 млн рублей приводит к увеличению работающих активов в среднем на 1,4 млн рублей (величину параметра а1). 

Для удобства интерпретации параметра a
1используют коэффициент эластичности. Он показывает средние изменения результативного признака при изменении факторного признака на 1% и вычисляется по формуле, %:

.

В представленном анализе деятельности банков эта величина равна:



Это означает, что с увеличением размера капитала на 1% следует ожидать повышения размера работающих активов банков в среднем на 0,78%.

Этот вывод справедлив только для данной совокупности банков при конкретных условиях их деятельности.

Если же эти банки и условия считать типичными, то коэффициент регрессии может быть применен для расчета размера работающих активов по их капиталу и для других банков.

Имеет смысл вычислить остатки εi

=
y
– ŷ, характеризующие отклонение i-х наблюдений от значений, которые следует ожидать в среднем.

Анализируя остатки, можно сделать ряд выводов о деятельности банков. Значения остатков (Таблица 1, графа 8, Приложение 1) имеют как положительные, так и отрицательные отклонения от ожидаемого. Таким образом, выявляются банки, которые вкладывают больше денежных средств в оборот (положительные значения), и банки, предпочитающие пускать в оборот небольшую часть своих денежных средств (отрицательные значения остатков).

В итоге положительные отклонения размеров работающих  активов уравновешиваются отрицательными значениями, то есть получается ∑εi
=0.

Таким образом, в данной работе я установил корреляционную зависимость  показателей 32 российских банков, провел регрессионный анализ и нашёл регрессионную модель данной взаимосвязи показателей.

Полученное уравнение ŷ=245,75+1,42х позволяет проиллюстрировать зависимость размера работающих активов банков от размера их капитала.

А также я проверил мою модель на адекватность по критерию Стьюдента, результат оказался положительным (модель адекватна, т.е. ее можно применять), а затем дал экономическую оценку этой модели.

И так, с помощью корреляционно-регрессионного анализа, я исследовал показатели банков.


3.Применение регрессионного анализа для изучения объекта исследования
На основе ранжированных данных о производительности труда и стаже работы двадцати рабочих бригады ЗАО «Роспан Интернешнл» (Таблица 2, Приложение 3) необходимо:

1.Установить результативный и факторный признаки.

2.Определить наличие и форму корреляционной связи между производительностью труда рабочих бригады и стажем работы.

3.Построить на графике поле корреляции и эмпирическую линию корреляционной связи.

4.Построить регрессионную модель парной корреляционной зависимости и определить её параметры.

5.Построить на графике теоретическую кривую корреляционной зависимости.

6.Рассчитать показатели тесноты связи между выработкой рабочего и стажем работы. Дать качественную оценку степени тесноты связи.

7.Оценить существенность параметров регрессивной модели и показателей тесноты связи. Дать оценку надёжности уравнения регрессии.

8.Дать экспериментальную интерпретацию параметров построенной регрессионной модели.

9.На основании регрессионной модели парной зависимости указать доверительные границы, в которых будет находиться прогнозное значение уровня производительности труда рабочего бригады, если стаж его работы составит 10,5 лет при уровне доверительной вероятности 95%.

Решение:

Установим результативный и факторный признаки: результативный признак (y) — выработка, факторный (x) — стаж работы, лет.

Определим наличие и форму корреляционной связи между производительностью труда рабочих бригады и стажем работы. Так как увеличение значений признака-фактора влечёт за собой увеличение величины результативного признака. То можно предположить наличие прямой корреляционной связи между выработкой и стажем работы. Проведём группировку работников бригады по признаку-фактору — стажу работы. Результаты оформим в Таблицу 2 (Приложение 3). Сравнив средние значения результативного признака по группам, можно сделать вывод о наличии связи между выработкой и стажем работы. Причём она будет являться прямой, так как рост значений признака фактора влечёт рост средних значений признака результата.

Построим поле корреляции.


Рисунок 1. Поле корреляции
Построим регрессионную модель парной корреляционной зависимости и определим её параметры:   — уравнение парной линейной корреляционной зависимости (регрессионная модель).
→,


Найдём среднее произведение факторного и результативного признака по формуле:
; .
Рассчитаем средние значение факторного и результативного признака:

факторного по формуле:

; .

результативного, по формуле:

; .

Подставим значения результативного и факторного признака в уравнение парной линейной корреляционной зависимости получим регрессионную модель парной корреляционной зависимости: — регрессионная модель зависимости выработки от стажа работы.


; .


5. Построим на графике теоретическую кривую корреляционной зависимости.

6. Рассчитаем показатели тесноты связи между выработкой рабочего и стажем работы. Для прямолинейных зависимостей измерителем тесноты связи между признаками является коэффициент парной корреляции, который рассчитывается по формуле: .

Для расчёта коэффициента парной корреляции рассчитаем среднее квадратическое отклонение факторного и результативного признака:

результативного признака, по формуле:
;  (штук)
факторного признака, по формуле:
;  (лет)
Подставим полученные значения в формулу: , рассчитаем показатель тесноты связи:

Дадим качественную оценку степени тесноты связи. Для этого рассчитаем коэффициент детерминации, который показывает какая часть общей вариации результативного признака (y) объясняется влиянием изучаемого фактора (x).
; .
На основе шкалы Чеддока можно сделать вывод о том, что между выработкой т стажем работы существует прямая высокая связь.64% изменения выработки обусловлено изменением стажа работы рабочих.

7. Оценим существенность параметров регрессионной модели и показателей тесноты связи и дадим оценку надёжности уравнения регрессии.

Значимость параметров простой линейной регрессии осуществляется с помощью t-критерия Стьюдента. Рассчитаем значения t-критерия Стьюдента для параметра aи a1: для параметра а0, по формуле: . Для этого рассчитаем средне квадратическое отклонение результативного признака у от выровненных значений уxпо формуле:
, ,
для параметра a1по формуле:
,

Для оценки значимости линейного коэффициента корреляции rприменяется t-критерий Стьюдента. При этом определяется фактическое (расчетное) значение критерия (trф). Рассчитаем это значение по формуле:
,
Для всей совокупности наблюдаемых значений рассчитаем среднюю квадратическую ошибку уравнения регрессии по формуле:
,  (штук).
Так как , то уравнение регрессии целесообразно и может быть использовано в дальнейшем статистическом анализе.
81,98
Так как  (фактическое) >  (критическое), то значение параметра  признаётся существенным, то есть оно не является результатом стечения случайных обстоятельств.

Так как > , то  также признаётся существенным.

Так как > , то связь между произвольностью труда и стажем работы признаётся существенной.

8. Дадим экспериментальную интерпретацию параметров построенной регрессионной модели. Так как коэффициент регрессии  > 0, то это подтверждает теоретические представления о прямой зависимости между выработкой и стажем работы. Значение = 83,84 шт. можно интерпретировать так: при увеличении стажа на 1 год выработка увеличивается на 83,84 шт.

Рассчитаем коэффициент эластичности, который показывает среднее изменение результативного признака при изменении факторного признака на 1%:
, %.
То есть при увеличении стажа на 1% их выработка увеличивается на 0,88%.

9. Укажем доверительные границы, в которых будет находиться прогнозное значение уровня производительности труда рабочего бригады, если стаж его работы составит 10,5 лет при уровне доверительной вероятности 95% по формуле:
    продолжение
--PAGE_BREAK--



 штук




Таким образом, с вероятностью 95% можно ожидать, что при стаже работы работника 10,5 лет составит не менее 956 штук и не более 1040 штук.


ЗАКЛЮЧЕНИЕ
В ходе написания курсовой работы мной были раскрыты  поставленные задачи.

В теоретической части работы были изучены статистические взаимосвязи социально-экономических явлений и процессов. Описаны характеристики регрессионного анализа, выполнена оценка  взаимосвязи между факторным и результативным признаком на основе регрессионного анализа, отмечены факторные признаки для построения множественной регрессионной модели, произведена проверка адекватности модели, построенной на основе уравнений регрессии.

В расчетной части было продемонстрировано применение регрессионного анализа на конкретном примере.

 




СПИСОК ЛИТЕРАТУРЫ
1.     Аверкин А.Н., Батыршин И.З., Блишун А.Ф. и др. Нечеткие множества в моделях управления и искусственного интеллекта // Под ред. Д.А. Поспелова. – М.: Наука, 1986. – 312 с.

2.     Аветисян Д.О. Проблемы информационного поиска: (Эффективность, автоматическое кодирование, поисковые стратегии) — М.: Финансы и статистика, 1981. — 207 с.

3.     Айвазян С.А., Бежаева З.И., Староверов О.В. Классификация многомерных наблюдений. – М.: Статистика, 1974. – 240 с.

4.     Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика. Основы моделирования и первичная обработка данных. Справочное издание. – М.: Финансы и статистика, 1983. – 472 с.

5.     Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика: Исследование зависимостей: Справочник. – М.: Финансы и статистика, 1985. – 182с.

6.     Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики. – М. Юнити, 1998. – 1024 с.

7.     Ван дер Варден Б.Л. Математическая статистика. – М.: Изд-во иностр. лит., 1960. – 302 с.

8.     Гайдышев И.П. Анализ и обработка данных: специальный справочник. — СПб.: Питер, 2001. — 752 с.

9.     Гмурман В.С. Теория вероятностей и математическая статистика. – М.: Высш. шк., 1972. – 368 с.

10. Калинина В.Н., Панкин В.Ф. Математическая статистика. – М.: Высш. шк., 2001. – 336 с.

11. Кендалл М., Стьюарт А. Теория распределений. – М.: Наука, 1966. – 566 с.

12. Кендалл М., Стьюарт А. Статистические выводы и связи. – М .: Наука, 1973. – 899 с.

--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Водяна оболонка Землі
Реферат Правовая нормативная база социально-медицинской работы с лицами, страдающими психическими заболеваниями
Реферат Государственное стимулирование инвестиционного процесса
Реферат Рождаемость в России
Реферат Тема дуэли в русской литературе
Реферат Химия окружающей среды
Реферат Фирменные горячие блюда из рыбы ресторанов города Омска ассортимент, технология приготовления и
Реферат А. А. Чувакин (редактор), И. В. Огарь (зам. Редактора), Т. В. Чернышова (отв за выпуск), Ю. Н. Земская, И. Ю. Качесова, В. В. Копочева, Л. А. Музюкина, Т. Д. Сергеева, Н. В. Халина
Реферат Внешнеторговый контракт купли-продажи язык контракта, вступление в силу, изменение и дополнение контракта
Реферат Сущность политических конфликтов. Конфликты в России
Реферат Исследование ценностей ориентаций у учащихся старших классов
Реферат Технология производства нитробензола
Реферат Проблемы регулирования импорта экспорта услуг при осуществлении валютных операций
Реферат Информационные технологии при проектировании высокомоментного линейного привода с цифровым программным Разработка блока
Реферат Авианосцы типа Эссекс