Реферат по предмету "Математика"


Описанные и вписанные окружности

МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕУЧРЕЖДЕНИЕСРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 106Вписанные и описанные окружности
                   
                                                                                    Реферат составил:
                                                                                                  учащийся 9акласса
                                                                                                   Онещюк Игорь
 
                                                                                     Учитель:
                                                                                      Голенко Наталья
                                                                                      Сергеевна         
— 2003 -
Содержание.
                                                                                       лист                                           
1.Основныетеоремы об описанной и вписанной окружности……….
2.Правильные многоугольники………………………………………..
  2.1. Теорема об окружности,описанной около правильного многоугольника.
  2.2. Теорема об окружности, вписанной вправильный многоугольник………
  2.3.   многоугольника, его         стороны и радиуса вписаннойокружности………………………………………
  2.4. Решениезадач с применением формул для вычисления площади   правильного  многоугольника, его стороны и радиуса вписанной  окружности…………………………………………………………………………
  2.5. Площади правильныхмногоугольников…………………………………...
3. Построение правильных многоугольников…………………………
  3.1. Способы построения правильныхмногоугольников………………………
  3.2. Насколько равных частей можно делить окружность с помощью циркуля илинейки?………………………………………………………………...
4. Изистории….…………………………………………………………
  4.1. 0вписанных углах. Гиппократ Хиосский…………………………………..
  4.2. 0правильных многоугольник……………………………………………….
5.Софизмы……………………………………………………………….
6. Решение задач………………………………………………………...
                                                                                                      ЛИТЕРАТУРА
1.Геометрия. Учебник для 7 –9 кл. ср.школы. / Л.С. Атанасян и др.,                  М.: Просвещение, 1990.
2. М.В. Ткачева  «Домашняя математика », М.: Просвещение, 1994.
3. Г.И. Глейзер «История математики в школе, 7 – 8классы»,
    М.: Просвещение, 1982.
     
4.А.П. Киселев, Н.А. Рыбкин. «Геометрия. Планиметрия. 7 – 9 классы»,
   М.: Дрофа, 1995.
5.И.Ф. Шарыгин, Л.Н. Ерганжиева. «Наглядная геометрия»,
    М.: МИРОС, КПЦ «Марта», 1992.
6.Сборник конкурсных задач по математике для поступающих во втузы.
    Под ред. М.И. Сканави. Учебное пособие,1994.                                                                                                                      
                                                                                                     
                                                                                                
    
                                                                                                    
                                                                                                                                                                                                                                          
1.   Основные теоремы обописанной и вписанной окружности.
Окружностьназывается описанной около многоугольника, если всевершины
многоугольникалежат на этой окружности, а многоугольник
                           называется вписаннымв эту окружность.    
Окружность называетсявписанной в многоугольник, если все стороны многоугольника                                              касаются этой окружности, а многоугольник называется
                                    описаннымоколо этой окружности.
ТЕОРЕМА: В любой треугольник можно вписать окружность.
                                         
                                           
                                           Доказательство.
Рассмотрим произвольныйтреугольник АВС и обозначим буквой О точку пересечения его биссектрис. Проведемиз точки О перпендикуляры ОК, ОL, и ОМсоответственно к сторонам АВ, ВС и СА. Так как точка О равноудалена от сторонтреугольника АВС, то ОК = ОL= ОМ. Поэтому окружность сцентром О радиуса ОК проходит через точки К, Lи М. Стороны треугольникаАВС касаются этой окружности в точках К, Lи М, так как ониперпендикулярны к радиусам ОК, ОLи ОМ. Значит, окружность сцентром О радиуса ОК является вписанной в треугольник АВС. Теорема доказана.
Замечание. 1)Отметим, что в треугольник можно вписать только одну окружность.В самом деле, допустим, что в треугольник можно вписать две окружности. Тогдацентр каждой окружности равноудален от сторон треугольника и, значит, совпадаетс точкой О пересечения биссектрис треугольника, а радиус равен расстоянию отточки О до сторон треугольника. Следовательно, эти окружности совпадают.
2) В отличие от треугольника нево всякий четырехугольник можно вписать окружность. Рассмотрим, например,прямоугольник, у которого смежные стороны не равны, т. е. прямоугольник, неявляющийся квадратом. Ясно, что в такой прямоугольник можно “поместить”окружность, касающуюся трех его сторон, но нельзя “поместить”  окружность так, чтобы она касалась всех четырехего сторон, т. е. нельзя вписать окружность.


Если же в четырехугольник можно вписать окружность, то его стороныобладают следующим замечательным свойством:
          В любомописанном четырехугольнике суммы противоположных сторон равны.
                                                                              
                                                                                         AB+ CD= BC+ AD.
                  
 
ТЕОРЕМА:Около любого треугольника можно описать окружность.   
                                        
Доказательство.
Рассмотрим произвольный треугольник АВС.Обозначим буквой О точку пересечения серединных перпендикуляров к его сторонами проведем отрезки ОА, ОВ и ОС. Так как точка О равноудалена от вершинтреугольника ABC, то OA= OB= OC. Следовательно, окружностьс центром О радиуса ОА проходит через все три вершины треугольника и, значит,является описанной около треугольника АВС. Теорема доказана.
Замечание. 1) Отметим,что около треугольника можно описать только одну окружность. В самом деле,допустим, что около треугольника можно описать две окружности. Тогда центркаждой из них равноудален от его вершин и поэтому совпадает с точкой Опересечения серединных перпендикуляров к сторонам треугольника, а радиус равенрасстоянию от точки О до вершин треугольника. Следовательно, эти окружностисовпадают.
2) В отличие оттреугольника около четырехугольника не всегда можно описать окружность.Например, нельзя описать окружность около ромба, не являющегося квадратом.
Если же околочетырехугольника можно описать окружность, то его углы обладают следующимзамечательным свойством:
В любом вписанномчетырехугольнике сумма противоположных углов равна 1800.
     
                                                                               ÐA+ ÐC= ÐB+ ÐD
Верно обратное утверждение: Еслисумма противоположных углов четырехугольника  
равна 1800, то около него можно описатьокружность.
2.Правильные многоугольники.
  
    Выпуклыймногоугольник называется правильным многоугольником, если равнывсе его углы и все его стороны.
2.1. Теорема об окружности, описанной около правильного многоугольника.
ТЕОРЕМА:Около любого правильногомногоугольника можно описать                окружность, и притом только одну.


                                               Доказательство.
          Пусть   А1А2А3…Аn–правильный многоугольник, О – точка пересечения биссектрис углов  А1 и А2.
Соединим точку О отрезками состальными вершинами многоугольника и докажем, что ОА1=ОА2=…=ОАn.Так как ÐА1=ÐА2, то Ð1=Ð3, поэтому треугольник А1А2Оравнобедренный, и, следовательно, ОА1=ОА2. Треугольники А1А2О и А3А2О равны по двум сторонам и углумежду ними (А1А2=А3А2, А2О– общая сторона и Ð3=Ð4), ÞОА3=ОА1.
Аналогично можно доказать,что ОА4=ОА2, ОА5=ОА3 и т.д.
Итак, ОА1=ОА2=…=ОАn,т.е. точка О равноудалена от всех вершин многоугольника. Поэтому окружность сцентром  О и радиусом ОА1является описанной около многоугольника.                                      
                 Докажемтеперь, что описанная окружность только одна. Рассмотрим какие-нибудь тривершины многоугольника, например А1, А2, А3.Так как через эти точки проходит только одна окружность, то околомногоугольника А1А2…Аnможно описать только однуокружность. Теорема доказана.
2.2. Теорема об окружности, вписанной в правильныймногоугольник.
           ТЕОРЕМА: В любой правильный многоугольник можно вписатьокружность, и притом только одну.                                                                                        
                                          
                                      Доказательство.
 Пусть А1А2…Аn– правильный многоугольник, О – центр описанной окружности. В ходедоказательства предыдущей теоремы мы установили, что rОА1А2 =… = rОАnА1,поэтому высоты этих треугольников, проведенные из вершины О, также равны: ОН1= ОН2 = … = ОНn. Отсюда следует, чтоокружность с центром О и радиусом ОН1 проходит через точки Н1, Н2,…, Нnи касается сторон многоугольника в этих точках, т. е.эта окружность вписанная в данный правильный многоугольник.                                                                                                                                                                                  
    Докажем теперь, что вписанная окружностьтолько одна.  
    Предположим, что наряду с окружностью сцентром О и радиусом ОН1 есть и другая окружность, вписанная вмногоугольник А1А2…Аn. Тогда ее центр О1равноудален от сторон многоугольника, т. е. точка О1 лежит на каждойиз биссектрис углов многоугольника и, следовательно, совпадает с точкой Опересечения этих биссектрис. Радиус этой окружности равен расстоянию от точки Одо сторон многоугольника, т. е. равен ОН1. Таким образом, втораяокружность совпадает с первой. Теорема доказана.
 
    Следствие 1. Окружность, вписанная вправильный многоугольник, касается сторон многоугольника в их серединах.
    Следствие 2. Центр окружности, описаннойоколо правильного многоугольника, совпадает с центром окружности, вписанной втот же многоугольник.
Эту точку называют центромправильного многоугольника.
 
2.3.   многоугольника, его стороны и радиусавписанной окружности.
Пусть S– площадь правильного n–угольника, аn– его сторона, Р – периметр,а, r и R– радиусы соответственно вписанной и описанной окружностей. Докажемсначала, что
                                                   S= ½Pr.                                                                (1)
В самом деле, соединим центр данногомногоугольника с его вершинами. Тогда многоугольник разобьется на nравныхтреугольников, площадь каждого из которых равна ½аnr( см.рис.п.2.2)
Следовательно,
                                     S= n½anr= ½(nan) r= ½Pr.
Выведем далее следующие формулы:
                                               an = 2R sin  ,                                             (2)          
                                    r= R .                                                       (3)
       
Для вывода этих формул воспользуемся рисунком. В прямоугольномтреугольнике А1Н1О
ÐА1 = 0= 900 — Следовательно,аn = 2А1Н1= 2Rcos ( 900 —  ) = 2Rsin   , а r = OH1 = Rsin ( 900 —  ) = Rcos .
Полагая в формуле (2) n= 3, 4и 6, получим выражения для сторон правильного треугольника, квадрата иправильного шестиугольника:
          а3= 2R sin  = 2R sin 600= 2R ۰ = R                      (4)
        а4= 2R sin  = 2R sin 450= 2R ۰  = R                          (5)
           а6= 2Rsin  = 2R sin 300= 2R ۰  = R;                            (6)                                                     
2.4. Решение задач сприменением формул для вычисления площади правильного   многоугольника, его стороны и радиусавписанной окружности.
 
  Дляиллюстрации применения данных формул (1) – (6), (п. 2.3.) можно решить задачи.
Задача № 1. Для квадрата со стороной а,вписанного в окружность радиуса R, заполнить таблицу(известные данные в каждой строке выделены жирным шрифтом).
N
R
r
a4
P
S
1

3
6
24
36
2

2
4
16
16
3
4


16
32
4

3,5
7
28
49
5

8
4
16
16
                   
                                                                                                                                       
Решение.
     a4= 2R sin  = 2R sin 450= 2R ۰  = R
      r = R cos  = R cos 450= R
     P =4a; S = a2 .
1)  a4= R  R =   R =  =
 r = ۰ = 3.
 P = 4a = 4۰6 =24, S = a2 = 36.
2)    R =  ,  R = 2
a4 =  = 4,
P = 4۰4= 16,  S = 16.
3)   r = 4۰ =
a4 = 4۰ =
P = 4۰ =   S = 32.
4)   a4 = 28: 4 =7,
R =  = 3,5۰,
r = 3,5۰ = 3,5,  
S = 49.
5)    a4 = 4, P = 16,
R=  = ,
r= =8.
 
                                                                                            
Задача № 2. Для правильного треугольника состороной а, вписанной в окружность радиуса R, заполнить таблицу(известные данные в каждой строке выделены жирным шрифтом).
N
R
r
a3
P
S
1
3
1,5
3
9

2




10
3
4
2
4
12
12
4


5
15

5


2
6

Решение.
а3 = 2Rsin  = 2R sin600= 2R۰  = R
r = R cos 0= R۰ =
P = a + b + c = 3a,( т.к. а= b= c), S =
      1) r =  = 1,5,   a3 =
P = 3۰ =
       2) a3 =  =  =
          R =  = 2۰ = 2۰ =
           = ۰ =
         P =
      3) r = 2۰2 = 4, a3 =
          P = 3۰ =  =
      4) R =  =
          r =  :  =  =
          P = 3۰5 = 15, S =
       5) a3 = 6: 3 = 2, S =  =
  R =  =
  r= :  =   =  .
 Используя решенные задачи, можно составить таблицузависимости стороны, радиуса описанной окружности, радиуса вписанной окружностидля всех наиболее часто встречающихся правильных многоугольников.
Количество сторон
n
а
r
S
3



4


2R2
6
R


2.5 Площади правильныхмногоугольников.
 В таблице приведены названия и формулы для площадей некоторых правильных многоугольников (a означает длину стороны), вычисленные по формуле (1)пункта 2.3.
      НАЗВАНИЯ И ПЛОЩАДИ МНОГОУГОЛЬНИКОВ
Число сторон
Название многоугольника
Площадь


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Налоговый учет расчетов по оплате труда
Реферат Международные стандарты бухгалтерского учета 3
Реферат Нормативный метод учета затрат и калькулирование
Реферат Договори про передання результатів інтелектуальної діяльності
Реферат Мышь, устройство и характеристики, разновидности современных манипуляторов
Реферат ВАТ "Вібросепаратор" - лідер ринку сільськогосподарської техніки з обробки зернових
Реферат Оборудование предприятий общественного питания
Реферат 1. Когда возникли первые водоросли?
Реферат Нормирование и оплата труда на предприятии Услуга
Реферат Джон Мильтон. Самсон-борец
Реферат Назначение, состав и содержание отчета об изменении капитала
Реферат Hamlet Scene By Scene Essay Research Paper
Реферат Опыт уточнения несущей способности буровых свай
Реферат Назначение бухгалтерской отчетности и ее основные принципы
Реферат Нематериальные активы 7