5
Министерство образования Российской Федерации
Пензенский Государственный Университет
Медицинский Институт
Кафедра Терапии
Зав. кафедрой д.м.н.
Реферат
на тему:
«РЕОЛОГИЧЕСКИЕ СВОЙСТВА КРОВИ И ИХ НАРУШЕНИЯ ПРИ ИНТЕНСИВНОЙ ТЕРАПИИ»
Выполнила: студентка V курса
Проверил: к.м.н., доцент
Пенза
2008
План
Введение
1. Физические основы гемореологии
2. Причина «неньютоновского поведения» крови
3. Основные детерминанты вязкости крови
4. Гемореологические нарушения и венозные тромбозы
5. Методы изучения реологических свойств крови
Литература
Введение
Гемореология изучает физико-химические свойства крови, которые определяют ее текучесть, т.е. способность к обратимой деформации под действием внешних сил. Общепринятой количественной мерой текучести крови является ее вязкость.
Ухудшение текучести крови типично для больных, находящихся в отделении интенсивной терапии. Повышенная вязкость крови создает дополнительное сопротивление кровотоку и поэтому сопряжена с избыточной постнагрузкой сердца, микроциркуляторными расстройствами, тканевой гипоксией. При гемодинамическом кризе вязкость крови возрастает и из-за снижения скорости кровотока. Возникает порочный круг, который поддерживает стаз и шунтирование крови в микроциркуляторном русле.
Расстройства в системе гемореологии представляют собой универсальный механизм патогенеза критических состояний, поэтому оптимизация реологических свойств крови является важнейшим инструментом интенсивной терапии. Уменьшение вязкости крови способствует ускорению кровотока, увеличению DO2 к тканям, облегчению работы сердца. С помощью реологически активных средств можно предотвратить развитие тромботических, ишемических и инфекционных осложнений основного заболевания.
В основу прикладной гемореологии положен ряд физических принципов текучести крови. Их понимание помогает выбрать оптимальный метод диагностики и лечения.
1. Физические основы гемореологии
В нормальных условиях почти во всех отделах кровеносной системы наблюдают ламинарный тип кровотока. Его можно представить в виде бесконечного множества слоев жидкости, которые движутся параллельно, не смешиваясь друг с другом. Некоторые из этих слоев соприкасаются с неподвижной поверхностью -- сосудистой стенкой и их движение, соответственно, замедляется. Соседние слои по-прежнему стремятся в продольном направлении, но более медленные пристеночные слои их задерживают. Внутри потока, между слоями возникает трение. Появляется параболический профиль распределения скоростей с максимумом в центре сосуда. Пристеночный слой жидкости можно считать неподвижным. Вязкость простой жидкости остается постоянной (8 с. Пуаз), а вязкость крови меняется в зависимости от условий кровотока (от 3 до 30 с Пуаз).
Свойство крови оказывать «внутреннее» сопротивление тем внешним силам, которые привели ее в движение, получило название вязкости ?. Вязкость обусловлена силами инерции и сцепления.
При показателе гематокрита, равном 0, вязкость крови приближается к вязкости плазмы.
Для корректного измерения и математического описания вязкости вводят такие понятия, как напряжение сдвига с и скорость сдвига у. Первый показатель представляет собой отношение силы трения между соседними слоями к их площади -- F/S. Он выражается в дин/см2 или паскалях*. Второй показатель является градиентом скорости слоев -- дельтаV/L. Его измеряют в с-1.
В соответствии с уравнением Ньютона напряжение сдвига прямо пропорционально скорости сдвига: ?= ???. Это означает, что чем больше разница скорости между слоями жидкости, тем сильнее их трение. И, наоборот, выравнивание скорости слоев жидкости уменьшает механическое напряжение по линии водораздела. Вязкость в данном случае выступает в качестве коэффициента пропорциональности.
Вязкость простых, или ньютоновских, жидкостей (например, воды) постоянна при любых условиях движения, т.е. между напряжением сдвига и скоростью сдвига для этих жидкостей существует прямолинейная зависимость.
В отличие от простых жидкостей кровь способна менять свою вязкость при изменении скоростного режима кровотока. Так, в аорте и магистральных артериях вязкость крови приближается к 4--5 относительным единицам (если принять вязкость воды при 20 °С в качестве эталонной меры). В венозном же отделе микроциркуляции, несмотря на малое напряжение сдвига, вязкость возрастает в 6--8 раз относительно своего уровня в артерии (т.е. до 30--40 относительных единиц). При крайне низких, нефизиологических скоростях сдвига вязкость крови может возрасти в 1000 раз (!).
Таким образом, зависимость между напряжением сдвига и скоростью сдвига для цельной крови носит нелинейный, экспоненциальный характер. Подобное «реологическое поведение крови»* называют «неньютоновским».
2. Причина «неньютоновского поведения» крови
«Неньютоновское поведение» крови обусловлено ее грубо дисперсным характером. С физико-химической точки зрения кровь может быть представлена как жидкая среда (вода), в которой взвешена твердая, нерастворимая фаза (форменные элементы крови и высокомолекулярные вещества). Частицы дисперсной фазы достаточно крупны, чтобы противостоять броуновскому движению. Поэтому общим свойством таких систем является их неравновесность. Компоненты дисперсной фазы постоянно стремятся к выделению и осаждению из дисперсной среды клеточных агрегатов.
Основной и реологически наиболее значимый вид клеточных агрегатов крови -- эритроцитарный. Он представляет собой многомерный клеточный комплекс с типичной формой «монетного столбика». Характерные его черты -- обратимость связи и отсутствие функциональной активизации клеток. Структура эритроцитарного агрегата поддерживается преимущественно глобулинами. Известно, что эритроциты больного с исходно повышенной скоростью оседания после их добавления к одногруппной плазме здорового человека начинают оседать с нормальной скоростью. И наоборот, если эритроциты здорового человека с нормальной скоростью оседания поместить в плазму больного, то выпадение их в осадок значительно ускорится.
К естественным индукторам агрегации относят в первую очередь фибриноген. Длина его молекулы в 17 раз превышает ширину. Благодаря такой асимметрии фибриноген способен перекидываться в виде «мостика» с одной клеточной мембраны на другую. Образующаяся при этом связь непрочна и разрывается под действием минимального механического усилия. Подобным же образом действуют а2- и бета-макроглобулины, продукты деградации фибриногена, иммуноглобулины. Более тесному сближению эритроцитов и их необратимому связыванию между собой препятствует отрицательный мембранный потенциал.
Следует подчеркнуть, что агрегация эритроцитов -- процесс скорее нормальный, чем патологический. Положительная его сторона заключается в облегчении пассажа крови через систему микроциркуляции. При образовании агрегатов снижается отношение поверхности к объему. Как следствие, сопротивление агрегата трению оказывается значительно меньше, чем сопротивление отдельных его составляющих.
3. Основные детерминанты вязкости крови
Вязкость крови подвержена влиянию многих факторов. Все они реализуют свое действие, меняя вязкость плазмы или реологические свойства форменных элементов крови.
Содержание эритроцитов. Эритроцит -- основная клеточная популяция крови, активно участвующая в процессах физиологической агрегации. По этой причине изменения гематокрита (Ht) существенно отражаются на вязкости крови. Так, при возрастании Ht с 30 до 60 % относительная вязкость крови увеличивается вдвое, а при возрастании Ht с 30 до 70 % -- втрое. Гемодилюция, напротив, снижает вязкость крови.
Термин «реологическое поведение крови» (rheological behavior) является общепринятым, подчеркивает «неньютоновский» характер текучести крови.
Деформационная способность эритроцитов. Диаметр эритроцита приблизительно в 2 раза превышает просвет капилляра. В силу этого пассаж эритроцита через микроциркуляторное русло возможен только при изменении его объемной конфигурации. Расчеты показывают, что если бы эритроцит не был способен к деформации, то кровь с Ht 65 % превратилась бы в плотное гомогенное образование и в периферических отделах кровеносной системы наступила бы полная остановка кровотока. Однако благодаря способности эритроцитов менять свою форму и приспосабливаться к условиям внешней среды циркуляция крови не прекращается даже при Ht 95--100 %.
Стройной теории деформационного механизма эритроцитов нет. Видимо, этот механизм основан на общих принципах перехода золя в гель. Предполагают, что деформация эритроцитов -- энергетически зависимый процесс. Возможно, гемоглобин А принимает в нем активное участие. Известно, что содержание гемоглобина А в эритроците снижается при некоторых наследственных болезнях крови (серповидно-клеточной анемии), после операций в условиях искусственного кровообращения. При этом меняются форма эритроцитов и их пластичность. Наблюдают повышенную вязкость крови, которая не соответствует низкому Ht.
Вязкость плазмы. Плазма в целом может быть отнесена к разряду «ньютоновских» жидкостей. Ее вязкость относительно стабильна в различных отделах кровеносной системы и в основном определяется концентрацией глобулинов. Среди последних основное значение имеет фибриноген. Известно, что удаление фибриногена снижает вязкость плазмы на 20 %, поэтому вязкость образующейся сыворотки приближается к вязкости воды.
В норме вязкость плазмы составляет около 2 отн. ед. Это приблизительно 1/15 часть того внутреннего сопротивления, которое развивается цельной кровью в венозном отделе микроциркуляции. Тем не менее плазма оказывает весьма существенное влияние на периферический кровоток. В капиллярах вязкость крови снижается вдвое по сравнению с проксимальными и дистальными сосудами большего диаметра (феномен §). Такой «пролапс» вязкости связан с осевой ориентацией эритроцитов в узком капилляре. Плазма при этом оттесняется на периферию, к стенке сосуда. Она служит «смазкой», которая обеспечивает скольжение цепочки форменных элементов крови с минимальным трением.
Этот механизм функционирует только при нормальном белковом составе плазмы. Повышение уровня фибриногена или любого другого глобулина приводит к затруднению капиллярного кровотока, порой критического характера. Так, миеломная болезнь, макроглобулинемия Вальденстрема и некоторые коллагенозы сопровождаются избыточной продукцией иммуноглобулинов. Вязкость плазмы при этом повышается относительно нормального уровня в 2--3 раза. В клинической картине начинают преобладать симптомы тяжелых расстройств микроциркуляции: снижение зрения и слуха, сонливость, адинамия, головная боль, парестезии, кровоточивость слизистых оболочек.
Патогенез гемореологических расстройств. В практике интенсивной терапии гемореологические расстройства возникают под влиянием комплекса факторов. Действие последних в критической ситуации носит универсальный характер.
Биохимический фактор. В первые сутки после операции или травмы уровень фибриногена увеличивается, как правило, вдвое. Пик этого повышения приходится на 3--5-е сутки, а нормализация содержания фибриногена наступает лишь к концу 2-й послеоперационной недели. Кроме того, в кровотоке в избыточном количестве появляются продукты деградации фибриногена, активированные тромбоцитарные прокоагулянты, катехоламины, простагландины, продукты ПОЛ. Все они действуют как индукторы агрегации красных клеток крови. Формируется своеобразная биохимическая ситуация -- «реотоксемия».
Гематологический фактор. Хирургическое вмешательство или травма сопровождаются также определенными изменениями клеточного состава крови, которые получили название гематологического стресс-синдрома. В кровоток поступают юные гранулоциты, моноциты и тромбоциты повышенной активности.
Гемодинамический фактор. Возросшая агрегационная наклонность клеток крови при стрессе накладывается на локальные гемодинамические нарушения. Показано, что при неосложненных брюшно-полостных вмешательствах объемная скорость кровотока через подколенные и подвздошные вены падает на 50 %. Это связано с тем, что иммобилизация больного и миорелаксанты блокируют во время операции физиологический механизм «мышечной помпы». Кроме того, под влиянием ИВЛ, анестетиков или кровопотери снижается системное давление. В подобной ситуации кинетической энергии систолы может оказаться недостаточно, чтобы преодолеть сцепление форменных элементов крови друг с другом и с эндотелием сосудов. Нарушается естественный механизм гидродинамической дезагрегации клеток крови, возникает микроциркуляторный стаз.
4. Гемореологические нарушения и венозные тромбозы
Замедление скорости движения в венозном отделе кровообращения провоцирует агрегацию эритроцитов. Однако инерция движения может оказаться достаточно большой и форменные элементы крови будут испытывать повышенную деформационную нагрузку. Под ее влиянием из эритроцитов высвобождается АТФ -- мощный индуктор тромбоцитарной агрегации. Низкая скорость сдвига стимулирует также адгезию молодых гранулоцитов к стенке венул (феномен Farheus--Vejiens). Образуются необратимые агрегаты, которые могут составить клеточное ядро венозного тромба.
Дальнейшее развитие ситуации будет зависеть от активности фибринолиза. Как правило, между процессами образования и рассасывания тромба возникает неустойчивое равновесие. По этой причине большинство случаев тромбоза глубоких вен нижних конечностей в госпитальной практике протекает скрыто и разрешается спонтанно, без последствий. Применение дезагрегантов и антикоагулянтов оказывается высокоэффективным способом профилактики венозных тромбозов.
5. Методы изучения реологических свойств крови
«Неньютоновский» характер крови и связанный с ним фактор скорости сдвига обязательно должны учитываться при измерении вязкости в клинической лабораторной практике. Капиллярная вискозиметрия основана на токе крови через градуированный сосуд под действием силы тяжести, поэтому физиологически некорректна. Реальные же условия кровотока моделируются на ротационном вискозиметре.
К принципиальным элементам такого прибора относят статор и конгруентный ему ротор. Зазор между ними служит рабочей камерой и заполняется пробой крови. Движение жидкости инициируется вращением ротора. Оно в свою очередь произвольно задается в виде некоей скорости сдвига. Измеряемой величиной оказывается напряжение сдвига, возникающего как механический или электрический момент, необходимый для поддержания выбранной скорости. Вязкость крови затем рассчитывают по формуле Ньютона. Единицей измерения вязкости крови в системе СГС является Пуаз (1 Пуаз = 10 дин x с/см2 = 0,1 Па x с = 100 отн. ед.).
Обязательным считают измерение вязкости крови в диапазоне низких (<10 с-1) и высоких (>100 с-1) скоростей сдвига. Низкий диапазон скоростей сдвига воспроизводит условия кровотока в венозном отделе микроциркуляции. Определяемая вязкость носит название структурной. Она в основном отражает наклонность эритроцитов к агрегации. Высокие же скорости сдвига (200--400 с-1) достигаются in vivo в аорте, магистральных сосудах и капиллярах. При этом, как показывают реоскопические наблюдения, эритроциты занимают преимущественно осевое положение. Они вытягиваются в направлении движения, их мембрана начинает вращаться относительно клеточного содержимого. За счет гидродинамических сил достигается почти полная дезагрегация клеток крови. Вязкость, определенная при высоких скоростях сдвига, зависит преимущественно от пластичности эритроцитов и формы клеток. Ее называют динамической.
В качестве стандарта исследования на ротационном вискозиметре и соответствующей нормы можно использовать показатели по методике Н.П. Александровой и др.
Для более детального представления реологических свойств крови проводят еще несколько специфических тестов. Деформационную способность эритроцитов оценивают по скорости пассажа разведенной крови через микропористую полимерную мембрану (d=2--8 мкм). Агрегационную активность красных клеток крови изучают с помощью нефелометрии по изменению оптической плотности среды после добавления в нее индукторов агрегации (АДФ, серотонина, тромбина или адреналина).
Диагностика гемореологических нарушений. Расстройства в системе гемореологии, как правило, протекают латентно. Их клинические проявления неспецифичны и малозаметны. Поэтому определяют диагноз по большей части лабораторные данные. Ведущим его критерием выступает величина вязкости крови.
Основное направление сдвигов в системе гемореологии у больных, находящихся в критическом состоянии, -- переход от повышенной вязкости крови к пониженной. Этой динамике, однако, сопутствует парадоксальное ухудшение текучести крови.
Синдром повышенной вязкости крови. Он носит неспецифический характер и широко распространен в клинике внутренних болезней: при атеросклерозе, стенокардии, хроническом обструктивном бронхите, язвенной болезни желудка, ожирении, сахарном диабете, облитерирующем эндартериите и др. При этом отмечают умеренное повышение вязкости крови до 35 сПуаз при у=0,6 с-1 и 4,5 сПуаз при у==150 с-1. Микроциркуляторные нарушения, как правило, маловыражены. Они прогрессируют только по мере развития основного заболевания. Синдром повышенной вязкости крови у больных, поступающих в отделение интенсивной терапии, следует рассматривать в качестве фонового состояния.
Синдром низкой вязкости крови. По мере развертывания критического состояния вязкость крови вследствие гемодилюции снижается. Показатели вискозиметрии составляют 20--25 сПуаз при у=0,6 с-1 и 3--3,5 сПуаз при y=150 с-1. Подобные величины можно прогнозировать по Ht, который обычно не превышает 30--35 %. В терминальном состоянии снижение вязкости крови доходит до стадии «очень низких» значений. Развивается выраженная гемодилюция. Ht снижается до 22--25 %, динамическая вязкость крови -- до 2,5--2,8 сПуаз и структурная вязкость крови -- до 15--18 с Пуаз.
Низкая величина вязкости крови у больного в критическом состоянии создает обманчивое впечатление гемореологического благополучия. Несмотря на гемодилюцию, при синдроме низкой вязкости крови микроциркуляция существенно ухудшается. В 2--3 раза повышается агрегационная активность красных клеток крови, в 2--3 раза замедляется прохождение эритроцитарной суспензии через нуклеопорные фильтры. После восстановления Ht путем гемоконцентрации in vitro в таких случаях обнаруживают гипервязкость крови.
На фоне низкой или очень низкой вязкости крови может развиться массивная агрегация эритроцитов, которая полностью блокирует микроциркуляторное русло. Это явление, описанное М.Н. Knisely в 1947 г. как «sludge»-феномен, свидетельствует о развитии терминальной и, видимо, необратимой фазы критического состояния.
Клиническую картину синдрома низкой вязкости крови составляют тяжелые микроциркуляторные нарушения. Заметим, что их проявления неспецифичны. Они могут быть обусловлены другими, не реологическими механизмами.
Клинические проявления синдрома низкой вязкости крови:
* тканевая гипоксия (в отсутствие гипоксемии);
* повышенное ОПСС;
* тромбозы глубоких вен конечностей, рецидивирующая легочная тромбоэмболия;
* адинамия,сопор;
* депонирование крови в печени, селезенке, подкожных сосудах.
Профилактика и лечение. Больные, поступающие в операционную или отделение интенсивной терапии, нуждаются в оптимизации реологических свойств крови. Это предотвращает образование венозных тромбов, снижает вероятность ишемических и инфекционных осложнений, облегчает течение основного заболевания. Наиболее эффективные приемы реологической терапии -- это разведение крови и подавление агрегационной активности ее форменных элементов.
Гемодилюция. Эритроцит -- основной носитель структурного и динамического сопротивления кровотоку. Поэтому гемодилюция оказывается наиболее действенным реологическим средством. Благотворный ее эффект известен давно. На протяжении многих веков кровопускание было едва ли не самым распространенным методом лечения болезней. Появление низкомолекулярных декстранов стало следующим этапом в развитии метода.
Гемодилюция увеличивает периферический кровоток, но в то же время снижает кислородную емкость крови. Под влиянием двух разнонаправленных факторов складывается, в конечном итоге, DО2 к тканям. Она может повыситься вследствие разведения крови или, напротив, существенно сократиться под влиянием анемии.
Максимально низкий Ht, которому соответствует безопасный уровень DО2, называют оптимальным. Точная его величина до сих пор остается предметом дискуссий. Количественные соотношения Ht и DО2 хорошо известны. Однако не представляется возможным оценить вклад индивидуальных факторов: переносимости малокровия, напряженности тканевого метаболизма, гемодинамического резерва и др. По общему мнению цель лечебной гемодилюции -- Ht 30--35 %. Однако опыт лечения массивных кровопотерь без гемотрансфузии показывает, что еще большее снижение Ht до 25 и даже 20 % с точки зрения кислородного обеспечения тканей вполне безопасно.
В настоящее время для достижения гемодилюции используют в основном три приема.
Гемодилюция в режиме гиперволемии подразумевает такое переливание жидкости, которое приводит к существенному увеличению ОЦК. В одних случаях кратковременная инфузия 1--1,5 л плазмозаменителей предваряет вводный наркоз и хирургическое вмешательство, в других случаях, требующих более длительной гемодилюции, снижения Ht добиваются постоянной нагрузкой жидкостью из расчета 50--60 мл/кг массы тела больного в сутки. Снижение вязкости цельной крови -- основное следствие гиперволемии. Вязкость плазмы, пластичность эритроцитов и их наклонность к агрегации при этом не меняются. К недостаткам метода следует отнести риск объемной перегрузки сердца.
Гемодилюция в режиме нормоволемии была предложена первоначально как альтернатива гетерологическим трансфузиям в хирургии. Суть метода заключается в дооперационном заборе 400--800 мл крови в стандартные контейнеры со стабилизирующим раствором. Контролируемую кровопотерю, как правило, восполняют одномоментно с помощью плазмозаменителей из расчета 1:2. При некоторой модификации метода возможна заготовка 2--3 л аутокрови без каких-либо побочных гемодинамических и гематологических последствий. Собранную кровь затем возвращают во время операции или после нее.
Нормоволемическая гемодилюция не только безопасный, но малозатратный метод аутодонорства, обладающий выраженным реологическим эффектом. Наряду со снижением Ht и вязкости цельной крови после эксфузии отмечается стойкое уменьшение вязкости плазмы и агрегационной способности эритроцитов. Активизируется поток жидкости между интерстициальным и внутрисосудистым пространством, вместе с ним усиливаются обмен лимфоцитов и поступление иммуноглобулинов из тканей. Все это в конечном итоге ведет к сокращению послеоперационных осложнений. Этот метод можно широко применять при плановых хирургических вмешательствах.
Эндогенная гемодилюция развивается при фармакологической вазоплегии. Снижение Ht в этих случаях обусловлено тем, что из окружающих тканей в сосудистое русло поступает обедненная белками и менее вязкая жидкость. Подобным эффектом обладают эпидуральная блокада, галогенсодержащие анестетики, ганглиоблокаторы и нитраты. Реологический эффект сопутствует основному терапевтическому действию этих средств. Степень снижения вязкости крови не прогнозируется. Она определяется текущим состоянием волемии и гидратации.
Антикоагулянты. Гепарин получают путем экстракции из биологических тканей (легких крупного рогатого скота). Конечный продукт представляет собой смесь полисахаридных фрагментов с разной молекулярной массой, но со сходной биологической активностью.
Наиболее крупные фрагменты гепарина в комплексе с антитромбином III инактивируют тромбин, в то время как фрагменты гепарина с мол.м-7000 воздействуют преимущественно на активированный фактор X.
Введение в раннем послеоперационном периоде высокомолекулярного гепарина в дозе 2500--5000 ЕД под кожу 4--6 раз в сутки стало широко распространенной практикой. Подобное назначение в 1,5--2 раза снижает риск тромбозов и тромбоэмболий. Малые дозы гепарина не удлиняют активированного частичного тромбопластинового времени (АЧТВ) и, как правило, не вызывают геморрагических осложнений. Гепаринотерапия наряду с гемодилюцией (намеренной или побочной) -- это основные и наиболее эффективные методы профилактики гемореологических расстройств у хирургических больных.
Низкомолекулярные фракции гепарина обладают меньшим сродством к тромбоцитарному фактору Виллебранда. В силу этого они по сравнению с высокомолекулярным гепарином, еще реже вызывают тромбоцитопению и кровотечение. Первый опыт применения низкомолекулярного гепарина (клексан, фраксипарин) в клинической практике дал обнадеживающие результаты. Препараты гепарина оказались эквипотенциальны традиционной гепаринотерапии, а по некоторым данным даже превышали ее профилактический и лечебный эффект. Помимо безопасности, низкомолекулярные фракции гепарина отличаются также экономным введением (1 раз в сутки) и отсутствием необходимости в мониторинге АЧТВ. Выбор дозы, как правило, проводится без учета массы тела.
Плазмаферез. Традиционное реологическое показание к плазмаферезу -- синдром первичной гипервязкости, который обусловлен избыточной продукцией аномальных белков (парапротеинов). Их удаление приводит к быстрому обратному развитию болезни. Эффект, однако, непродолжительный. Процедура носит симптоматический характер.
В настоящее время плазмаферез активно применяют для предоперационной подготовки больных с облитерирующими заболеваниями нижних конечностей, тиреотоксикозом, язвенной болезнью желудка, при гнойно-септических осложнениях в урологии. Это приводит к улучшению реологических свойств крови, активизации микроциркуляции, значительному сокращению числа послеоперационных осложнений. Производят замену до 1/2 объема ОЦП.
Снижение уровня глобулинов и вязкости плазмы после одной процедуры плазмафереза может быть существенным, но кратковременным. Основным же благотворным эффектом процедуры, который распространяется на весь послеоперационный период, является так называемый феномен ресуспендирования. Отмывание эритроцитов в среде, свободной от белков, сопровождается стабильным улучшением пластичности эритроцитов и снижением их агрегационной наклонности.
Фотомодификация крови и кровезаменителей. При 2--3 процедурах внутривенного облучения крови гелий-неоновым лазером (длина волны 623 нм) малой мощности (2,5 мВт) наблюдается отчетливый и продолжительный реологический эффект. По данным прецизионной нефелометрии под влиянием лазеротерапии снижается число гиперергических реакций тромбоцитов, нормализуется кинетика их агрегации in vitro. Вязкость крови остается неизменной. Аналогичным эффектом обладают также УФ-лучи (с длиной волны 254--280 нм) в экстракорпоральном контуре.
Механизм дезагрегационного действия лазерного и ультрафиолетового излучения не совсем ясен. Предполагают, что фотомодификация крови вызывает сначала образование свободных радикалов. В ответ возбуждаются механизмы антиоксидантной защиты, которые блокируют синтез естественных индукторов тромбоцитарной агрегации (в первую очередь простагландинов).
Предложено также ультрафиолетовое облучение коллоидных препаратов (например, реополиглюкина). После их введения динамическая и структурная вязкость крови снижается в 1,5 раза. Существенно угнетается и тромбоцитарная агрегация. Характерно, что немодифицированный реополиглюкин не способен воспроизвести все эти эффекты.
Литература
1. «Неотложная медицинская помощь», под ред. Дж. Э. Тинтиналли, Рл. Кроума, Э. Руиза, Перевод с английского д-ра мед. наук В.И.Кандрора, д. м. н. М.В.Неверовой, д-ра мед. наук А.В.Сучкова, к. м. н. А.В.Низового, Ю.Л.Амченкова; под ред. Д.м.н. В.Т. Ивашкина, Д.М.Н. П.Г. Брюсова; Москва «Медицина» 2001
2. Интенсивная терапия. Реанимация. Первая помощь: Учебное пособие / Под ред. В.Д. Малышева. -- М.: Медицина.-- 2000.-- 464 с.: ил.-- Учеб. лит. Для слушателей системы последипломного образования.-- ISBN 5-225-04560-Х
! |
Как писать рефераты Практические рекомендации по написанию студенческих рефератов. |
! | План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом. |
! | Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач. |
! | Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты. |
! | Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ. |
→ | Виды рефератов Какими бывают рефераты по своему назначению и структуре. |