РЕФЕРАТ
по дисциплине «Культурология»
по теме: «Система счисления»
СОДЕРЖАНИЕ
Позиционная система счисления состоит в использовании ограниченного числа цифр, зато позиция каждой цифры в числе обеспечивает значимость (вес) этой цифры. Позиция цифры на математическом языке называется разрядом.
Другими словами, значение цифры «переменчиво» и зависит от ее позиции в числе. Например, в числе «одиннадцать» («11») две единицы имеют разное значение, это относится и к другим сочетаниям «единиц» «111», «1111», «11 111» и т. д.
Не всякие числовые системы используют именно такой позиционный способ записи, в истории человечества были и иные эксперименты.
Способ записи чисел с помощью римских цифр не грешит единообразием: если цифра расположена справа, то ее значение прибавляется к предыдущей, например число «XI» означает «одиннадцать», а если слева, то значение вычитается, например число «IX», состоящее из тех же цифр, уже означает только «девять». Кроме того, в римской системе счисления в числе вес цифры X в любой позиции равен просто десяти, например число XXXII (тридцать два). И, наконец, цифры разбросаны по оси чисел.
В нашу современную жизнь многое пришло из Рима, в том числе римское право, латынь в медицине и фармакологии. Однако римская система счисления не прижилась, потому что она отличается указанной выше сложностью, которая препятствует технологичности: скажем, римские числа трудно складывать или умножать, не говоря уже о более сложных функциях.
Существует не одно множество цифр, образующих систему счисления. Это множество получило особое название основание системы счисления.
Основание позиционной системы счисления это количество различных знаков или символов (цифр), используемых для отображения чисел в данной системе.
Выбор количества цифр диктуется какими-либо потребностями реальной жизни, науки или удобствами обработки. Исторически этот выбор определялся привычками или традициями конкретного народа.
Наиболее привычной для нас является десятичная система счисления. Исторически вначале, видимо, использовалась непозиционная единичная система счета с помощью камней или палочек. Система счета состояла из двух чисел один и два, а все, что больше двух, обозначалось, как «много».
Затем, благодаря наличию десяти пальцев рук у человека, возникла десятичная система счета. В этой системе используются специальные графические знаки арабские цифры, которые можно записать в следующем порядке: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Таких знаков десять, и они специально разделены запятыми, чтобы показать, что это отдельные («дискретные») знаки, которые не зависят друг от друга.
Идея позиционной системы счисления выдвигалась еще Архимедом в работе «Исчисление песка».
В разное время и у разных народов использовались системы счисления с различными основаниями:
Рассмотрим основные системы счисления, помимо десятичной.
В двоичной системе счисления основание равно двум. В этой системе счисления используются всего два знака, две цифры «0» и «1».
Такая система получила название двоичной системы счисления. Ее еще называют бинарной, от английского слова «binary», что, собственно, и переводится как «двоичный». В таблице 1 представлено соответствие десятичных и двоичных чисел.
Таблица 1. Соответствие десятичных и двоичных чисел
Десятичное число |
Двоичное число |
Десятичное число |
Двоичное число |
|
0 |
0 |
11 |
1011 |
|
1 |
1 |
12 |
1100 |
|
2 |
10 |
13 |
1101 |
|
3 |
11 |
14 |
1110 |
|
4 |
100 |
15 |
1111 |
|
5 |
101 |
16 |
10000 |
|
6 |
110 |
17 |
10001 |
|
7 |
111 |
18 |
10010 |
|
8 |
1000 |
19 |
10011 |
|
9 |
1001 |
20 |
10100 |
|
10 |
1010 |
В восьмеричной системе счисления основание - цифры 0,1,2,3,4,5,6,7.
Таблица 2. Соответствие десятичных и восьмеричных чисел
Десятичные числа |
Восьмеричные числа |
Десятичные числа |
Восьмеричные числа |
|
0-7 |
0-7 |
25-63 |
31-77 |
|
8 |
10 |
64 |
100 |
|
9-15 |
11-17 |
128 |
200 |
|
16 |
20 |
256 |
400 |
|
17-23 |
21-27 |
512 |
1000 |
|
24 |
30 |
1024 |
2000 |
Основание шестнадцатеричной системы счисления - цифры 0,1,2,3,4,5,6,7,8,9 и буквы A,B,C,D,E,F.
Соединим десятичные и шестна-дцатеричные числа в единую таблицу (табл. 3).
Таблица 3. Соответствие десятичных и шестнадцатеричных чисел
Десятичное число |
Шестнадцатеричное число |
Десятичное число |
Шестнадцатеричное число |
|||
0-9 |
0-9 |
29 |
1D |
|||
10 |
А |
30 |
1Е |
|||
11 12 |
В С |
31 32-41 |
1F 20-29 |
|||
13 |
D |
42-47 |
2A-2F |
|||
14 |
Е |
48-255 |
30-FF |
|||
15 |
F |
256 |
100 |
|||
16 |
10 |
512 |
200 |
|||
17-25 |
11-19 |
1024 |
400 |
|||
26 |
1А |
1280 |
500 |
|||
27 |
1В |
4096 |
1000 |
|||
28 |
1C |
Шестнадцатеричная система используется, чтобы более компактно записывать двоичную информацию. В самом деле, «шестнадцатеричная тысяча», состоящая из четырех разрядов, в двоичном виде занимает тринадцать разрядов (100016 = 10000000000002).
2. Перевод чисел из одной системы счисления в другую
Рассмотрим способы перевода чисел из одной системы счисления в другую.
а) Перевод двоичного числа в десятичное.
Необходимо сложить двойки в степенях, соответствующих позициям, где в двоичном стоят единицы. Например:
Возьмем число 20. В двоичной системе оно имеет следующий вид: 10100.
Итак (считаем слева направо, считая от 4 до 0; число в нулевой степени всегда равно единице)
10100 = 1*24 + 0*23 + 1*22 + 0*21 + 0*20 = 20
16+0+4+0+0 = 20.
б) Перевод десятичного числа в двоичное.
Необходимо делить его на два, записывая остаток справа налево:
20/2 = 10, остаток 0
10/2=5, остаток 0
5/2=2, остаток 1
2/2=1, остаток 0
1/2=0, остаток 1
В результате получаем: 10100 = 20
в) Перевод шестнадцатеричного числа в десятичное.
В шестнадцатеричной системе номер позиции цифры в числе соответствует степени, в которую надо возвести число 16:
8A = 8*16 + 10 (0A) = 138
Напоследок приведем алгоритм перевода в двоичную и из двоичной системы, предлагаемый Л. Радюком.
Пусть А(цд) - целое десятичное число. Запишем его в виде суммы степеней основания 2 с двоичными коэффициентами. В его записи в развёрнутой форме будут отсутствовать отрицательные степени основания (числа 2):
A(цд) = a(n-1) * 2^(n-1) + a(n-2) * 2^(n-2) + … + a(1) * 2^1 + a(0) * 2^0.
На первом шаге разделим число А(цд) на основание двоичной системы, то есть на 2. Частное от деления будет равно:
a(n-1) * 2^(n-2) + a(n-2) * 2^(n-3) + … + a(1), а остаток равен a(0).
На втором шаге целое частное опять разделим на 2, остаток от деления будет теперь равен a(1).
Если продолжать этот процесс деления, то после n-го шага получим последовательность остатков:
a(0), a(1),…, a(n-1).
Легко заметить, что их последовательность совпадает с обратной последовательностью цифр целого двоичного числа, записанного в свёрнутой форме:
A(2) = a(n-1)…a(1)a(0).
Таким образом, достаточно записать остатки в обратной последовательности, чтобы получить искомое двоичное число.
Тогда сам алгоритм будет следующим:
1. Последовательно выполнять деление исходного целого десятичного числа и получаемых целых частных на основание системы (на 2) до тех пор, пока не получится частное, меньшее делителя, то есть меньше 2.
2. Записать полученные остатки в обратной последовательности, а слева добавить последнее частное.
Для перевода чисел из восьмеричной и шестнадцатеричной систем счисления в двоичную необходимо цифры числа преобразовать в группы двоичных цифр. Для перевода из восьмеричной системы в двоичную каждую цифру числа надо преобразовать в группу из трёх двоичных цифр триаду, а при преобразовании шестнадцатеричного числа в группу из четырёх цифр тетраду.
ЗАКЛЮЧЕНИЕ
Подводя итоги работы, можно сделать следующие выводы.
! |
Как писать рефераты Практические рекомендации по написанию студенческих рефератов. |
! | План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом. |
! | Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач. |
! | Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты. |
! | Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ. |
→ | Виды рефератов Какими бывают рефераты по своему назначению и структуре. |