Реферат по предмету "Информатика, программирование"


Построение графиков функций. Решение нелинейных уравнений и систем нелинейных уравнений

Введение
Тема контрольной работы«Построение графиков функций. Решение нелинейных уравнений />и систем нелинейных уравнений»по дисциплине «Информатика».
Цель изадачи работы:
1. Научитьсясоздавать и применять ранжированные переменные.
2. Научитьсястроить графики в декартовой системе.
3. Научитьсярешению нелинейных уравнений и систем нелинейных уравнений с помощью решающегоблока.
4. Решениесистемы линейных уравнений матричным способом.
При решении многихтехнических задач математические модели решения представляют собой нелинейныеуравнения, системы нелинейных уравнений, системы линейных уравнений.
Уравнения и системыуравнений, возникающие в практических задачах, обычно можно решить толькочисленно. Методы численного решения реализованы и в программе MathCad.
Для выполненияпрактической части:
Загрузить программу MathCAD с помощью ярлыка.
Сохранитьфайл в собственной папке под именем ….

Задание №1
Создатьранжированные переменные и вывести таблицы их значений
1. Создатьранжированную переменную z, которая имеет:
начальноезначение                       1
конечноезначение                          1.5
шагизменения переменной          0.1
и вывеститаблицу значений переменнойz
2. Создатьранжированную переменную y, которая имеет:
начальноезначение                         2
конечноезначение                          7
шагизменения переменной             1
и вывеститаблицу значений переменной y
3. Создатьранжированную переменную t, которая имеет:
начальноезначение                         a
конечноезначение                          b
шагизменения переменной             h
и вывеститаблицу значений переменнойt
 
Для создания ранжированных переменных используют Палитру
/>
Последовательность действий:
1.  /> (ввести начальное значение)
2.  (запятая)
3.  ввести следующее значение (1.1)
4.  нажимают кнопку/>
5.  1.5 (ввести конечное значение
Если шагизменения =1, то не выполняют пункты 2. и 3.
Для выводатаблицы значений, достаточно ввести имя переменной и знак />.
/> 

Выполнение Задания №11.1 1.2 1.3
/>
/>
/>
Задание ранжированной переменной в виде /> удобно тем, что изменяя значения a, h, b автоматически изменяется и таблица вывода ранжированной переменной
Задание №2
 
Построитьграфик функции
 
f(x)=sin(x)+ex-2    на диапазоне [-5; 2]
/> 
Выполнение задания №2
Последовательность действий:
1. Создатьранжированную переменную x
/>
2. Создатьфункцию пользователя                  />

3. Для построения графика использовать Палитру Graph />
и кнопку />
/>
4. Ввести вместо ввода по оси Xимя независимого аргумента –x
5. Ввести вместо ввода по оси Y   – f(x)
6. Отвестиот графика указатель мыши и щелкнуть левой кнопкой мыши. График будет построен
/>
Рис. 1.1
Для форматированияграфика, дважды щелкнуть в области графика.
Появитсядиалоговое окно


/>
В этом окне
1.на Вкладке Ось X-Y установитьпереключатель Пересечение
2.на Вкладке Трассировки можно установить цвет и толщину линии
Еслищелкнуть по графику (появятся маркеры вокруг графика), то методом протягиванияв нужном направлении можно изменить размеры графика.
Таквыглядит график после форматирования
/>
Рис. 1.2

Теоретическая часть
Блок уравнений инеравенств, требующих решения, записывается после ключевого слова Given (дано). Призаписи уравнений используется знак логического равенства =, кнопка находитсяв Палитре Boolean.
Заканчивается блокрешения вызовом функции Find (найти). В качестве аргументов этойфункции – искомая величина. Если их несколько (при решении системуравнений, то искомые неизвестные должны быть перечислены через запятую).
Всякое уравнениес одним неизвестным может быть записано в виде, f(x)=0,
где f(x) – нелинейная функция. Решение такихуравнений заключается в нахождении корней, т.е. тех значений неизвестного x, которые обращают уравнениев тождество. Точное решение нелинейного уравнения далеко не всегда возможно. Напрактике часто нет необходимости в точном решении уравнения. Достаточно найтикорни уравнения с заданной степенью точности.
Процесс нахожденияприближенных корней уравнения состоит из двух этапов:
1 этап. Отделение корней, т.е.разбиения области определения функции f(x), на отрезки, в каждом из которых содержится только одинкорень уравнения.
2 этап.Уточнение приближенныхкорней уравнения, т.е. доведение их до заданной степени точности.
 
 

Практическаячасть
 
Задание №1
Постановказадачи:
Найтикорень уравнения x3-x2=2 с точностью Е=0,00001
Приведемзаданное уравнение к виду f(x)=0
x3-x2-2 =0    f(x)= x3-x2-2/>
Выполнение задания №1
1 этап– отделение корней
 
/> Создать функция пользователя
/> Создать ранжированную переменную x
/> Построить график f(x)
Из графикавидно, что приближенное значение x=1.5 (то значение x, при котором функция пересекает ось x)
2 этап– уточнение приближенного значения корня
 Специальный вычислительный блок имеет следующую структуру
/> Задают начальное значение x (из графика – приближенное)
/> TOL – Системная переменная, которой присваивается значение требуемой точности 0.00001
Так как требуемаяточность вычисления 0.00001, то дважды щелкнув по результату, необходимоотформатировать результат (задать нужное количество десятичных знаков).Given
Given (дано) – ключевое слово, открывающее блок решения
x3-x2 –2 = 0
Так записывается уравнение. При записи уравнений в решающем блоке используют знак логического равенства =, которому соответствует кнопка /> Палитры />
/> Вызвать функции Find, которая в качестве аргументов должна содержать искомую величины (если их несколько, то они перечисляются через запятую)
/>
Ответ: x=1.69562
Проверка:
Найденноезначение корня подставим в заданное уравнение.
Если x найден верно, то f(x)=0 (так как мы ищем приближенное значение, то в правой частиможет быть не нуль, а очень малое значение
Уточнениекорня в программе MathCad

/>
 
Задание №2
 
Постановказадачи:
Решитьсистему уравнений /> с точностьюЕ=0.00001
 
Выполнение задания №2
/>
/>
3. Построить графики функций y1 (x) и y2 (x)

/>
4. Находимиз графика точку пересечения кривых
/>
/>
 
Проверка:
/>
 

Литература
1. Симонович С. Информатика: базовый курс. – СПб.: Питер, 1999, 640 с.
2. Дьяконов В. MATHCAD 8/2000: специальный справочник – СПБ: Питер, 2001. – 592 с.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат «О ходе выполнения распоряжения Правительства Курганской области №97 от 24. 02. 2009 года «О целевой программе Курганской области «Обеспечение конкурентоспособности и развития экономики Курганской области на 2009 – 2011 год»
Реферат Применение типологического подхода к анализу внешнеэкономической деятельности
Реферат CONSTELLATIONS Essay Research Paper Constellations are groupings
Реферат Психологическая профилактика эмоционального выгорания лиц, занятых в профессиях социального типа
Реферат Чикаго-бойз
Реферат A History Of Poland Essay Research Paper
Реферат Налоговые доходы бюджета Кыргызстана
Реферат Генитальный герпес
Реферат Датско-шведская война 1658 1660
Реферат Облік активної частини балансу підприємства
Реферат Метод Монте-Карло и его применение
Реферат Учёт приобретения материальных ценностей и расчётов с поставщиками
Реферат Боб Марли
Реферат Необхідність виділення з організму продуктів обміну 2
Реферат Введение в психологию