Реферат по предмету "Геология"


Контроль и регулирование процессов извлечения нефти

--PAGE_BREAK--1. Условия проявления капиллярных сил


В процессе заводнения нефтеносных пластов формируется весьма сложный контакт жидкостей (фаз), обладающих различной поверхностной энергией.

На границе каждой фазы возникает поверхностный слой, в котором свойства вещества отличаются от его объемных свойств. Вследствие этого поверхность раздела обладает свободной энергией FS
,
отличной от энергии объемных фаз (отнесенных к одному и тому же количеству молекул). Свободная энергия поверхности соприкосновения фаз является функцией температуры Т и площади Sповерхности раздела фаз. Свободная энергия элементарной поверхности dS.
DFS= — λSdT+ σdS(1), или при Т = соnst

σ= (dFS/ dS) T(2)
где σ— свободная энергия единицы поверхности при некоторой постоянной температуре (межфазное натяжение); λS— энтропия поверхности.

Стремление свободной энергии к минимуму приводит к возникновению сил, действующих тангенциально к поверхности раздела фаз и стремящихся сократить ее.

Но так как поверхность раздела фаз по периметру cоприкасается с поверхностью каких-либо каналов или пор, то величина поверхности раздела фаз зависит от характера смачиваемости жидкостями этих каналов.

Вследствие того, что поверхностные слои фаз обладают различными свойствами, в разных фазах развивается неодинаковое внутреннее давление. Разность давлений в фазах представляет собой капиллярное давление на мениске PK,
направленное в сторону фазы, менее смачивающей поверхность каналов:
PK= PВ— PH= 2σcosθ/ r(3)
где PВ— внутреннее давление в более смачивающей фазе (воде);

PH— внутреннее давление в менее смачивающей фазе (нефти);

θ — угол избирательного смачивания;

r
— эффективный радиус канала.

Под действием капиллярного давления в канале постоянного сечения (радиуса) движение мениска (границы раздела фаз) будет самопроизвольным. В строго горизонтальном или в вертикальном каналах это движение должно происходить на неограниченную глубину. Высота вертикального подъема мениска в канале постоянного сечения ограничивается действием гравитационных сил.

Равновесная или предельная высота капиллярного подъема мениска в вертикальном канале равна:
hK= 2σcosθ/ r∆γ(4)
где ∆γ — разность удельных весов фаз.

Если же на пути движения мениска встречается резкое расширение канала, самопроизвольное продвижение его прекращается. Граница раздела фаз через расширение канала может продвинуться только под действием внешнего давления, превышающего капиллярное в расширенном сечении, которое становится противоположным по знаку, т.е. направлено в сторону более смачивающей фазы. Это приводит к тому, что в четочных каналах равновесная высота самопроизвольного подъема мениска значительно меньше, чем в каналах постоянного сечения.

Кроме того, мениск, поднятый в четочном канале выше равновесной высоты, например под действием внешнего давления, не опустится до равновесного уровня, а будет оставаться в этом положении вследствие той же причины — изменения направления капиллярного давления в расширенных сечениях каналов. Эти положения отражены графически на рис.1. Следовательно, в каналах переменного сечения капиллярные силы имеют прерывистый характер.
РK= РCM— РH= 2σcosθ/ r, РK= 2σcosθ/ (r1+ r2)
Это наглядно иллюстрируется простым опытом. Гидрофильную пористую среду одной плоскостью привести в соприкосновение с водой; уровень капиллярного подъема воды в пористую среду составит h1 от поверхности воды. Если же пористую среду сначала погрузить в воду, а затем поднять до соприкосновения с водой лишь нижней плоскости или совсем вынуть из воды, то уровень воды в пористой среде опустится до высоты h2, которая будет в несколько pаз больше h1.

Теперь следует уяснить характер и структуру среды, в которой протекают капиллярные процессы при заводнении пластов. Продуктивные нефтеносные пласты обладают макронеоднородностью или слоистостью. Вследствие этого заводнение пластов, особенно на фронте внедрения воды, носит довольно четкий послойный характер. На границе заводненных и нефтенасыщенных слоев возникает резкий скачок насыщенности, который обусловливает большой перепад капиллярного давления. Следовательно, первым направлением капиллярных процессов является вертикальная пропитка водой нефтенасыщенных слоев из смежных заводненных. Экспериментальные исследования указывают не только на возможность, но и на активность подобных процессов, хотя условия исследований, конечно, не вполне соответствовали реальным нефтяным пластам.

Процесс капиллярной пропитки, как и вообще капиллярное вытеснение менее смачивающей жидкости более смачивающей, — это отражение в интегрированном виде движения менисков в отдельных поровых каналах. Поэтому значение капиллярных процессов нельзя выяснить без правильного представления микроструктуры пористой среды. В работах проведено обстоятельное обобщение исследований внутренней структуры пористых сред и показано, что наиболее представительной моделью пористой среды может служить капиллярная модель. Микроэлемент пористой среды можно представить в виде «связки» капиллярных каналов разного диаметра, концы которых соединены в один узел. Иными словами, пористую среду можно рассматривать как множество капиллярных четочных каналов различных размеров, но постоянного сечения между узлами. Такая модель пористой среды была использована для объяснения явлений капиллярных противотоков нефти и воды в промысловых условиях.

Следовательно, при избирательной фильтрации жидкости в пористой среде отдельные норовые каналы обладают различной фильтрационной характеристикой, вследствие чего за фронтом внедрения воды в заводненных слоях нефть остается сосредоточенной в наиболее мелких поровых каналах, обладающих большим фильтрационным сопротивлением, и в каналах, не совпадающих с направлением движения фронта. Поэтому вторым направлением действия капиллярных сил являются пропитка, замещение нефти водой в наиболее мелких поровых каналах и вытеснение нефти в более крупные обводненные каналы.

До начала формирования нефтяных залежей продуктивные пласты были полностью водонасыщены и обладали гидрофильной поверхностью. Формирование нефтяных залежей осуществлялось за счет вытеснения воды нефтью, т.е. менее смачивающей жидкостью. Следовательно, на поверхности пор первоначально оставалась непрерывная пленка воды. Однако, как уже отмечалось, в работах показано, что эта пленка длительное время существовать не может. Под действием активных компонентов нефти, содержащей растворенный газ, происходят разрыв ее и частичное оттеснение воды от поверхности пор. Вследствие этого поверхность поровых каналов становится неоднородной не только по диаметру (сечению), но и по характеру смачиваемости: наряду с гидрофильной появляются участки с гидрофобной поверхностью. Микронеоднородность пористой среды усложняется еще энергетической неоднородностью, так как в различных точках пор граница раздела фаз (мениски) будет находиться под влиянием различного баланса энергии.

В этих условиях, когда норовые каналы не только непостоянны по своему сечению, но и обладают различной смачиваемостью поверхности, капиллярные силы имеют резко прерывистый характер, а условия для самопроизвольной глубокой пропитки резко ухудшаются.

В работе показано, что самопроизвольная капиллярная пропитка пористой среды прекращается, если угол избирательного смачивания θ становится равным или больше 60°. В пористой среде со смешанной (гидрофильной и гидрофобной) смачиваемостью осредненный угол смачивания при движении мениска, очевидно, будет не менее 60°.

Первоначальное распределение насыщенности неоднороднослоистых пластов в реальных залежах, очевидно, отражает капиллярное равновесие, которое установилось при более высокой «связанной» водонасыщенности менее проницаемых слоев и наименьшей водонасыщенности высокопроницаемых слоев. В послойно заводненном же пласте при его разработке высокопроницаемые слои оказываются заводненными (водонасыщенными), а менее проницаемые слои остаются нефтенасыщенными. Исходя из физических представлений о стремлении двухфазной системы к уменьшению и даже исчезновению капиллярного перепада давления на контакте слоев, следовало бы ожидать постепенного перехода от насыщенности заводненных слоев к насыщенности менее проницаемых нефтенасыщенных слоев. Однако даже длительный контакт заводненных и нефтенасыщенных слоев в реальных условиях не обусловливает выравнивания их насыщенности. Скачок насыщенности остается.

Следовательно, капиллярная пропитка в послойно заводненных слоях и особенно на фронте заводнения или не реализуется совсем или условия для нее сильно затруднены и она происходит очень медленно. Вместо с тем капиллярные процессы в реальных нефтеносных пластах могут происходить и при некоторых условиях протекают весьма активно.
    продолжение
--PAGE_BREAK--2. Промысловые исследования капиллярных процессов при заводнении нефтеносных пластов


В процессе разработки нефтяных месторождений возникают самые разнообразные условия проявления капиллярных сил. Однако в большинстве случаев эти проявления или проходят незамеченными, или специально не фиксируются.

Длительные наблюдения за различными процессами заводнения нефтяных пластов позволили отметить капиллярные процессы:

1) при вскрытии и бурении пласта раствором на водной основе;

2) при выносе керна из пластов;

3) при простое и консервации обводненных эксплуатационных и нагнетательных скважин;

4) при консервации послойно заводненных залежей;

5) при обычном заводнении неоднороднослоистых или трещиноватых пластов.

Рассмотрим результаты исследований и наблюдений, свидетельствующих о ходе капиллярных процессов в этих условиях.

1. В нефтепромысловой практике широко известны факты нефте-газопроявлении продуктивных пластов при бурении на растворе с водной основой. Иногда нефтепроявлепия приводят к катастрофическим последствиям — к выбросу глинистого раствора из необсаженной скважины и аварийному, нерегулируемому фонтанированию, как это было, например, на скв.1 Красноярского месторождения, которая фонтанировала с дебитом более 2000 м3/суткив течение месяца в 1955 г. Обильные нефтепроявления и кратковременные выбросы раствора из скважин наблюдались на Покровском, Зольненском, Мухановском и других месторождениях Куйбышевской области.

Интересно отметить, что все нефтепроявления происходят при давлении в скважинах значительно выше пластовых. Так, например, в упомянутой скв.1 Красноярского месторождения давление столба раствора было на 25-30 ат выше пластового, но через несколько суток простоя произошел выброс раствора.

Вместе с тем, также хорошо известно, что при вскрытии продуктивных пластов раствором на водной основе выбуриваемый керн промывается водой, а в призабойную зону скважин внедряется фильтрат раствора. Глубина проникновения последнего в пласты может достигать 8-12 м. Существующие объяснения этих двух одновременно происходящих явлений противоречивы.

Промывка водой выбуриваемых кернов из пласта и призабойных зон скважин обычно объясняется опережающим оттеснением нефти из-под долота и от стенок скважин фильтратом раствора, а нефтепроявления продуктивных пластов при бурении объясняются:

1) увлечением нефти из призабойных зон пласта движущимся в скважине раствором,

2) поршневым всасыванием нефти из пласта при подъеме инструмента и 3) отмывкой остаточной нефти из выбуренной породы (шлама).

Несоответствие этих объяснений реальным условиям и противоречивость их можно показать на примере нефтепроявлений при бурении скв.402 Мухановского месторождения. Обычно в промысловой документации нефтегазопроявления отмечаются лишь как факты. В скв.402 процесс нефтепроявления изучался специально. Ее бурили с промывкой глинистым раствором удельного веса 1,27 — 1,29 Г/см3. При глубине забоя 2542 мбурение было приостановлено для проведения каротажа. Скважина простаивала 36 ч. Продуктивные нефтеносные пласты нижнего карбона залегают на глубине 2150-2250 м. Давление от столба раствора на уровне пластов было на 35-45 ат выше пластового. После каротажа бурение и промывка были возобновлены.

Сначала из затрубного пространства выходил раствор удельного веса 1,27-1,29 Г/см3, затем в нем появилась обильная пленка нефти, постепенно увеличивающаяся. Удельный вес раствора замерялся через каждые 5 мин до полного обновления раствора в скважине. С появлением пленки нефти в растворе удельный вес его постепенно снижался с 1,29 до 1,22-1,16 и даже до 1,13 Г/см3. Обильная пленка нефти с раствором выходила из скважины в течение 1,2-1,5 ч. В течение 25-30 мин выходил раствор удельного веса 1,13-1,16 Г/см3 свключениями нефти в виде крупных «хлопьев».

Приближенная оценка по формуле:
γсм = γн χ + γр (1 — χ) (5)
(где γсм, γн, γр — удельные веса соответственно смеси раствора с нефтью, нефти и чистого раствора; χ — содержание нефти в растворе) показывает, что снижение удельного веса глинистого раствора с 1,27-1,29 до 1,14-1,16 Г/см3обусловлено содержанием нефти в нем в количестве 24-30%. Расход промывочной жидкости при бурении составлял 30-40 л/сек. Следовательно, при концентрации нефти в растворе 24-30% за 25-30 мин из скважины раствором вынесено более 15-17 м3нефти или в пластовых условиях 18-20 м3. Если учесть, что обильная пленка нефти в растворе была в течение 1,2-1,5 ч, то общее количество нефти, вынесенной раствором, будет достигать 35-40 м3и более. Аналогичный вынос нефти с раствором неоднократно наблюдался после каждого прекращения бурения скв.407, 277 и многих других.

Как видно, результаты нефтепроявлений пластов по скв.402 Мухановского месторождения исключают возможность объяснения их указанными причинами. Накопление нефти в стволе скважины произошло во время простоя, когда не было движения раствора. До прекращения процесса бурения и после простоя содержание нефти в растворе было менее 1%. Забой скважины был на 300 мниже нефтяных пластов, и поршневого действия инструмента на пласты также не было. Иначе на индикаторе веса фиксировался бы вес не только инструмента, но и всего столба раствора. По этой же причине в растворе не было остаточной нефти из выбуренной породы. Кроме того, из всей мощности нефтяных пластов (100 м) было выбурено 30-35 м3породы, которые содержали всего 5-7 м3нефти и могли дать остаточной нефти не более 1,5 м3.

Изложенные результаты нефтепроявлений скв.402 не допускают также возможности объяснения попадания фильтрата глинистого раствора в пласт путем обычного опережающего оттеснения нефти из-под долота и от стенок скважины. Если бы это происходило, то не было бы нефтепроявлений, так как непосредственно призабойная зона пласта оказалась бы промытой и содержащей лишь остаточную нефть.

Следовательно, эти взаимозависимые явления (внедрение фильтрата раствора в пласт и приток нефти из него в скважины, где давление столба раствора выше, чем в пласте) можно объяснить лишь одновременным встречным движением в пористой среде воды и нефти. Такие условия могут возникнуть только вследствие активных капиллярных процессов, а именно капиллярного противотока фильтрата раствора из скважины в пласт, а нефти во встречном направлении из пласта в скважину.

Рассмотренные результаты исследований нефтепроявлений пластов при бурении позволяют сделать важную практическую рекомендацию. Для предотвращения аварийного выброса раствора из бурящихся скважин необходимо с появлением первых признаков нефти в растворе не прекращать бурения и промывки скважин раствором, а наоборот, промывку следует усиливать.

Тогда притекающая в скважину нефть будет примешиваться к раствору в небольшой концентрации, облегчение раствора будет незначительным, а выброс его невозможен.

2. Следующим промысловым примером, иллюстрирующим проявление капиллярных сил в нефтенасыщенной пористой среде, является промывка керна фильтратом глинистого раствора.

Широкий опыт исследования нефтенасыщенности кернов, извлеченных из различных пластов, свидетельствует о том, что происходит промывка их фильтратом глинистого раствора, поскольку содержание нефти в кернах существенно ниже, а воды определенно выше, чем в пластовых условиях. Причем вода в кернах имеет явные признаки фильтрата промывочного раствора.

Обычно факт промывки кернов объясняется опережающим оттеснением нефти фильтратом раствора из-под долота, т.е. предполагается, что это процесс локального заводнения за счет гидростатического перепада давления. Однако такое представление недостаточно обосновано и многие фактические данные противоречат ему. В качестве примера можно рассмотреть результаты анализа кернов пласта Д1 из скв.1283 Туймазинского месторождения, проведенного в лаборатории физики пласта ВНИИ (Ф.И. Котяхов, Ю.С. Мельникова и др.). Эти результаты (табл.1) особенно показательны потому, что исследование керна намечалось и проводилось по специальному плану и был обеспечен высокий вынос его из пласта. Но аналогичные данные имеются и по другим месторождениям.

Многочисленные лабораторные исследования вытеснения нефти водой из образцов керна показывают, что нефтеотдача их зависит от проницаемости (чем она выше, тем больше коэффициент вытеснения). Это вполне естественно. Как уже отмечалось, исследованиями В.М. Березина для девонских песчаников Туймазинского месторождения установлено, что при увеличении проницаемости от 70 до 1080 мд коэффициент вытеснения изменяется от 0,57 до 0,77. Исходя из представления опережающего оттеснения нефти фильтратом раствора из-под долота в глубь пласта, следовало бы ожидать такую же зависимость степени промывки керна от их проницаемости, т.е. остаточная нефтенасыщенность менее проницаемого керна должна была бы быть выше нефтенасыщенности более проницаемого керна.

Как видно из рис.2, довольно четко отмечается, что с увеличением проницаемости кернов нефтенасыщенность их увеличивается, а водонасыщенность уменьшается. Содержание хлоридов в воде из кернов свидетельствует о меньшей степени промывки высокопроницаемых кернов и более слабом разбавлении погребенной воды фильтратом раствора.

Эти результаты явно противоречатпредставлению промыва кернов вследствие опережающего оттеснения нефти из-под долота при выбуривании.
    продолжение
--PAGE_BREAK--Таблица 1
Физические свойства образцов керна из пластов Д1 и Д2 Туймазинского месторождения, выбуренных с раствором на водной основе (скв.1283)



Низкую водонасыщенность кернов (в среднем 20-35%) и суммарную нефте-водонасыщенность кернов (в среднем 50-65%) также невозможно объяснить указанной схемой промыва. Суммарная нефте-водонасыщенность кернов на забое составляет 100% от объема пор. При выносе кернов на поверхность она может быть снижена лишь за счет выделения и расширения газа из остаточной нефти. Но если перенасыщенность кернов на забое составляет всего 25-30%, то газ из этой нефти не может вытеснить 35-50% от объема пор жидкости из гидрофильных кернов и тем более воды, которая удерживается в порах капиллярными силами.

И, наконец, невозможность промыва кернов за счет опережающего оттеснения нефти из-под долота фильтратом раствора становится очевидной из сопоставления скоростей бурения и водоотдачи глинистых растворов. Водоотдача обычно применяемых при бурении растворов составляет 5-12 см3за 30 минчерез поверхность в 75 см2. Через 1 см2 поверхности забоя водоотдача раствора с учетом большого перепада давления между забоем и пластом не превышает 0,2-0,3 см3. При пористости пласта 20% и коэффициенте вытеснения 0,5 скорость водоотдачи глинистого раствора в пласт будет не более 4-6 см/чтогда как долото при бурении в продуктивном пласте проходит со скоростью не менее 5-6 м/ч. Как видно, скорость проходки долота не менее чем в 100 раз выше скорости водоотдачи раствора. Поэтому керн, выбуриваемый из пласта, никак не может быть промыт фильтратом раствора прежде, чем он войдет в керновую трубу.

Следовательно, промывка кернов фильтратом глинистого раствора происходит после его выбуривания, в стволе скважины, до выноса на поверхность. Процесс этот может осуществляться только под действием капиллярных сил, обусловливающих проникновение фильтрата раствора в керн, а нефти из керна в окружающий раствор. В зоне, где давление в скважине становится ниже давления насыщения, одновременно с капиллярной пропиткой происходят выделение газа из нефти и дополнительное вытеснение ее.

Таким образом, вода в керн внедряется только под действием капиллярных сил, а нефть из керна вытесняется вследствие совместного действия капиллярных сил и энергии расширяющегося газа. Исходя из такого процесса промывки кернов, становятся понятными и объяснимыми все отмеченные особенности нефтенасыщенности и водонасыщенности кернов в зависимости от проницаемости (рис.2).

3. Наиболее показательный и доступный для контроля процесс капиллярной пропитки водой нефтяного пласта наблюдается при простое или консервации обводненных эксплуатационных скважин.

В промысловой практике весьма распространены случаи, когда остановленные сильно обводненные скважины через некоторое время оказываются полностью заполненными нефтью. Бесспорно, что процесс этот протекает при встречном движении нефти и воды и всегда в нем преобладают капиллярные силы. Но когда в период простоя одних скважин другие скважины на залежи продолжают работать, можно предположить, что поступление нефти в простаивающие скважины происходит вследствие продолжающегося движения нефти в пласте к действующим скважинам, а не под действием капиллярных сил. Поэтому убедительными и однозначными данными, свидетельствующими о капиллярном характере замещения в скважинах воды нефтью, могут служить результаты по скважинам, когда совсем не было отбора нефти из залежи, т.е. в период консервации их.

Примеров полной временной консервации залежей в нефтепромысловой практике немного. Однако в Куйбышевской области проведены два таких опыта — на залежах пласта Б2 месторождении Яблоновый Овраг и Губинском месторождении.

Залежь пласта Б2 была законсервирована в октябре 1957 г., когда обводненность добываемой продукции всех скважин составляла 95-97%. Консервация продолжалась в течение года. Пластовое давление в залежи за 3-4 месяца восстановилось до начального. За 6-8 месяцев все скважины оказались заполненными нефтью, давление на устьях поднялось до 5-10 ат. Когда они были введены в эксплуатацию, в первые сутки была получена безводная нефть.

Залежь пласта Б2 Губинского месторождения была законсервирована в октябре 1964 г. на 1-1,5 месяца в соответствии с экспериментом импульсного воздействия на пласт (цикличный отбор жидкости). Продукция скважин также была обводнена на 95-99% (табл.2). Так же, как и на месторождении Яблоновый Овраг, во всех скважинах происходило замещение воды нефтью.

Таким образом, данные по обводненным эксплуатационным скважинам пласта Б2 месторождения Яблоновый Овраг и Губинское в период их полной консервации свидетельствуют о довольно активном процессе замещения воды в скважинах нефтью из пласта. Процесс этот также протекает при встречном движении нефти и воды, когда давления на забое скважин выше, чем давления в нефтенасыщенных слоях пласта, поэтому обусловлен он определенно проявлением капиллярных сил.

4. Еще более интересные капиллярные процессы происходят в нагнетательных скважинах. Промысловые исследования при помощи расходомера показывают определенную зависимость профиля приемистости или эффективной мощности от объема закачиваемой в скважины воды. При уменьшении его снижается «эффективная мощность и проводимость пласта» (k/h), при увеличении объема закачки, наоборот, наблюдается увеличение «эффективной мощности пласта».

Как видно из рис.3, при малом объеме закачки (600 м3/сутки) верхние интервалы пласта воду не принимали, поэтому их можно было бы считать слабопроницаемыми, но с увеличением объема закачки до 1500 м3/суткиприемистость верхних и нижних интервалов пласта стала одинаковой, а при дальнейшем увеличении объема закачки воды в пласт до 2700 м3/сутки, наоборот, приемистость верхних интервалов стала значительно выше, чем нижних. Иными словами, с увеличением депрессии на пласт произошло обращение приемистости различно проницаемых интервалов пласта. Аналогичная картина наблюдается и на других месторождениях (Ромашкинском, Мухановском, Покровском и др.). Исходя из законов гидродинамики (закона Дарси), объяснить это явление обращения приемистости разных слоен нельзя. В работах увеличение гидропроводности с повышением депрессии объясняется существованием в неоднороднослоистых пластах так называемого порога давления. Однако при этом остается необъяснимым обращение приемистости различных интервалов при изменениях объема закачки воды или депрессии на пласт.


Рис.3 Профиль приемистости скв. 205 пласта А3 Кулешовского месторождения при различных расходах воды. Расходомер РГД.
Эти необычные явления могут быть обусловлены и эффективно объяснены лишь проявлением капиллярных сил при закачке воды. На фронте заводнения, в данном случае на стенке скважины, вследствие образования скачка насыщенности различных фаз на границе двух сред возникает градиент капиллярного давления, направленный на выравнивание насыщенности фазами разных сред. Вследствие неоднородности пластов капиллярный градиент давления является причиной того, что при ограниченной закачке воды в скважину при невысоких гидростатических перепадах (градиентах) давления вода внедряется лишь через некоторую часть поверхности стенки скважины, а через другую часть вода не внедряется совсем или даже нефть может поступать из пласта в скважину. С увеличением объема закачки и гидростатического перепада давления капиллярный градиент давления преодолевается и вода начинает внедряться в пласт через ту часть поверхности, через которую при малом объеме закачки поступлению ее в пласт препятствовали капиллярные силы. Практически в скважине с перфорированной обсадной колонной, очевидно, в одни отверстия вода поступает, а в другие, поскольку капиллярные силы препятствуют, нет.

Данные исследования скважин пласта Б2 Губинского месторождения в период консервации в октябре-ноябре 1964г.





Только так можно объяснить наличие нефти буквально у стенок нагнетательных скважин после прокачки огромных объемов воды и поступление сразу же нефти при самоизливе имеете с водой. Это наблюдалось также на многих месторождениях (Покровском, Кулешовском, Азнакаевскойплощади, Ромашкинскогоместорождения н др.).

Подобное явление установлено и экспериментально на линейных гидрофильных моделях пласта. При нагнетании воды был обнаружен концевой эффект на входном сечении модели пласта — вода внедрялась только через часть входного сечения, а из другой части сечения вытекала нефть во входную камеру. Затем с увеличением: закачки встречное движение нефти прекращалось, но вода по-прежнему поступала только через первоначальную обводненную часть входного сечения модели пласта.

5. И, наконец, наибольший интерес представляют промысловые данные о проявлении капиллярных сил в процессе заводнения продуктивных пластов. Показательные данные в этом отношении получены при заводнении карбонатных трещиновато-пористых пластов. В Куйбышевской области заводнение карбонатных пластов осуществляется с 1947 г. на многих месторождениях (Калиновском, Мухановском, Яблоновом Овраге, Покровском, Якушкинском и др.).

Роль капиллярных процессов в заводнении продуктивных карбонатных пластов всех этих месторождений отчетливо устанавливается сравнением скоростей движения первоначального фронта заводнения и воды с индикатором (флюоресцином) уже в заводненном пласте. Анализ результатов заводнения пластов и опытной закачки воды с различными индикаторами с целью определения направления и скорости движения воды проведен в работах.

В качестве примера можно рассмотреть наиболее ранние результаты заводнения пласта Iкунгурского яруса Мухаповского месторождения. Залежь разрабатывается с 1947 г. Проницаемость пласта по керну не более 30-50 мд, по промысловым данным 200 — 250 мд. Вязкостьнефти 3-5 спз. Запасы нефти около 2 млн. т. На залежи пробурено более 50 скважин с плотностью сетки 2-6 га/скв. До начала 1949 г. из залежи было извлечено примерно 12% запасов нефти — давление снизилось от начального (44 ат) до 22-26 ат. Отмечалось внедрение в залежь контурных пластовых вод. Через 1-1,5 года эксплуатации появилась вода в приконтурных скважинах. В июне 1949 г. начата опытная закачка в приконтурную скв. 19, а затем в скв.41, 102, 63, 99 на восточном участке. В октябре 1950 г. в скв. 19 была закачана вода с раствором флюоресцина. К этому времени все скважины участка (39 скважин) были в разной степени обводнены от 5-6 до 90-95%. Средняя обводненность продукции с участка составляла 43%. Вода с индикатором от скв. 19 была получена в 11 эксплуатационных скважинах (скв.62, 39, 32, 31, 61 и др.), расположенных в первом, втором и третьем рядах от контура нефтеносности на расстоянии 200-850 мот нагнетательной скв. 19. В ближайших скважинах флюорсцен был отмечен через 21-24 ч, а в дальних скважинах — через 2,5 суток после закачки его в скв. 19. Средняя скорость движения воды с флюоресциномсоставила 12,6 м/ч или 300 м/сутки. Повторные исследования закачки флюоресцина в скв.68, расположенную на противоположном крыле залежи, в 1951г. показали среднюю скорость движения воды 13,6 — 15,2 м/ч, или 360 м/сутки. Скорость молекулярнойдиффузии флюоресцина (по лабораторным исследованиям) не превышает 0,35 — 0,5 м/ч. Кроме того, флюоресцин адсорбируется породой пласта. Отбор жидкости из залежи в пластовых условиях оставался постоянным и даже в период закачки флюоресцина был меньше, чем в предшествующий период заводнения.

Аналогичные результаты были получены при исследовании скорости движения воды в заводненных пластах и всех других указанных месторождений Куйбышевской области. На Восточно-Степановском участке площадного заводнения Калиновского месторождения в 1948 г. скорость движения воды в заводненном пласте составляла 30-50 м/сутки. На месторождении Яблоновый Овраг 240 — 280 м/сутки, на Якушкинском и Покровском месторождениях 120-250 м/суткии на месторождении Карабулак-Ачалуки 30 — 45 м/сутки. Такие скорости движения воды возможны, конечно, только в сильно трещиноватых пластах. Но скорость движения первоначального фронта заводнения на этих же месторождениях при той же трещиноватости пластов не превышала 250 — 500 м/год, или 0,65-1,5 м/сутки.

Как видно, скорость движения воды (с флюоресцином) в заводненных пластах значительно (в 50-150 раз) выше, чем скорость движения первоначального фронта заводнения — фронта вытеснения нефти водой. Если учесть более высокие фильтрационные сопротивления пластов при первоначальном заводнении за счет вязкости нефти, то и тогда это отношение скоростей движения будет не менее чем в 10-20 раз больше.

Без участия капиллярных сил в процессе заводнения продуктивных пластов невозможно объяснить столь огромную разницу в скоростях движения первоначального фронта воды и воды «меченой» флюоресцином после заводнения пластов. Очевидно, при первоначальном внедрении воды в нефтенасыщенную зону залежи происходило замедление, «торможение» движения фронта вытеснения нефти водой, которое обусловливалось капиллярной пропиткой. Вследствие трещиноватости и слоистой неоднородности пластов внедрение воды в нефтяные залежи было неравномерным с опережающим заводнением трещин и наиболее проницаемых слоев. Это можно назвать первичным охватом пластов заводнением. Между обводненными трещинами и нефтенасыщенными пористыми блоками создается скачок насыщенности и как следствие высокий капиллярный градиент давления, который направлен на выравнивание насыщенности разных сред. Под действием капиллярного градиента давления происходит пропитка пористых нефтенасыщенных блоков, т.е. вторичный, дополнительный охват заводнением пластов, а следовательно, отток воды из трещин в блоки, что и является причиной «торможения» или замедленного движения первоначального фронта вытеснения нефти водой. После заводнения наиболее крупных трещин и капиллярной пропитки прилегающих к ним окрестностей пористых блоков закачиваемая вода без замедления проходит путь от нагнетательных скважин к эксплуатационным.

Таким образом, изложенные результаты исследования скоростей движения воды в карбонатных трещиноватых пластах свидетельствуют о том, что заводнение их сопровождалось капиллярными процессами. Помимо основного заводнения, обусловленного гидростатическим перепадом давления, происходил дополнительный охвват заводнением плотных пористых блоков.

При опережающем внедрении воды по трещинам даже при установившемся течении и μн > μв эпюра давлений между контуром питания и зоной отбора такова, что давление в заводненном слое или трещине выше, чем в смежном нефтенасыщенном пористом блоке. Следовательно, в течение всего периода продвижения фронта вытеснения нефти водой из трещин между ними и нефтенасыщенными менее проницаемыми пористыми блоками существует некоторый непостоянный перепад давления. Кроме того, во всех рассматриваемых залежах до закачки воды с индикатором искусственное заводнение осуществлялось при периодически изменяющемся объеме, что также создавало попеременный перепад давления. Однако пропитка пористых блоков за период продвижения фронта вытеснения нефти водой по трещинам полностью не завершена. Достаточно сказать, что по всем указанным месторождениям достигнутая нефтеотдача при заводнении составляет 30-43%. Очевидно, глубина капиллярной пропитки блоков была небольшая.

По пласту Б2 месторождения Яблоновый Овраг межслойная капиллярная пропитка наблюдалась на конечной стадии разработки залежи в период консервации ее в 1957 г. При вводе после консервации в эксплуатацию всех скважин обводненность продукции их возросла и достигала даже 100%. Затем через 3-4 месяца обводненность стала снижаться, достигла 92% и в течение последующих 1,5-2 лет оставалась ниже, чем была до консервации. За этот период дополнительная добыча нефти составила более 12,5 тыс. т, что соответствует повышению нефтеотдачи на 0,6-0,75%. Столь значительное снижение обводненности добываемой продукции свидетельствовало о повышении содержания подвижной нефти в заводненных слоях и трещинах, т.е. о явлении «перемешивания» нефти и воды в послойно обводненном пласте.

Эти результаты могли быть обусловлены, очевидно, только проявлением капиллярных сил, т.е. межслойной капиллярной пропиткой. В результате происходил переток нефти из менее проницаемых нефтенасыщенных слоев в высокопроницаемые заводненные, снижение фазовой проницаемости для воды и повышение ее для нефти.

Таким образом, капиллярные процессы происходят в самых разнообразных условиях при заводнении продуктивных нефтеносных пластов.
    продолжение
--PAGE_BREAK--3. О механизме капиллярной пропитки в реальных нефтеносных пластах


Теория и механизм капиллярных процессов в пористых средах изучались в работах. На основе экспериментальных и промысловых исследований нами сделана попытка выяснить лишь элементы механизма — направление линий тока при капиллярнойпропитке и условия преодоления прерывистости капиллярных сил в пористой среде.

Для выяснения этих вопросов полезно отметить одно не имеющее удовлетворительного объяснения явление. Не вызывает сомнения, что пласты, занимаемые современными залежами нефти, первоначально были полностью водонасыщенными и гидрофильными. В период формирования нефтяных залежей, следовательно, происходило вытеснение воды нефтью, т.е. вытеснение более смачивающей поверхность пор жидкости менее смачивающей. Причем образование нефтяных залежей в структурных ловушках произошло при однократном замещении объема воды нефтью. И тем не менее нефтенасыщенность неоднородного по свойствам объема залежей или водоотдача их при вытеснении воды нефтью достигла 90-94%. Даже из наименее пористых и проницаемых слоев пласта нефть вытеснила более 70 — 80% воды, а слоев, линз и зон, не охваченных «занефтением» (противоположно заводнению), в объеме нефтяных залежей, как правило, не наблюдается, т.е. коэффициент охвата пласта «занефтением» равен единице.

В процессе же разработки нефтяных месторождений при вытеснении менее смачивающей жидкости (нефти) более смачиваемой (водой) нефтеотдача в лучших физико-геологических условиях не превышает 0,0-0,65, в заводненных слоях коэффициент вытеснения не превышает 0,7-0,8, а коэффициент охвата заводнением значительно меньше единицы (0,6 — 0,85) даже при многократнойпромывке залежей водой.

Чем же объясняется высокая эффективность вытеснения из гидрофильных неоднороднослоистых пластов воды нефтью и меньшая эффективность вытеснения нефти водой? Почему капиллярные силы не воспрепятствовали гравитационным силам в формировании единых нефтяных залежей в сильно неоднородных и расчлененных пластах? По-видимому, только в условиях нейтрализации или многократного нарушения равновесия капиллярных сил могло происходить заполнение объема заложи в полном соответствии с проявлением сил тяжести. Нейтрализация или нарушение равновесия поверхностно-молекулярных сил в процессе формирования нефтяных залежей могли обуславливаться различного рода колебаниями пласта и изменениями структуры пористой среды — тектоническими и колебательными процессами в земной коре, динамическим метаморфизмом пластов, пластической необратимой деформацией пористой среды и др.

На основе многочисленных и разнообразных исследований капиллярных процессов от отдельных поровых каналов до реальных продуктивных пластов можно констатировать, что механизм движения воды и нефти в пористой среде под действием внутренней энергии весьма сложен и описать все его признаки для разнообразных реальных условий, по-видимому, невозможно. Вместе с тем доказано, что движение нефти и воды в пористой среде обуславливается не только природными физико-геологическими свойствами системы нефть — вода — порода, но и внешними факторами: величиной давления, скоростью фильтрации, температурой и др. Следовательно, и механизм и активность капиллярных процессов при заводнении нефтеносных пластов не являются неизменными и нерегулируемыми. Наиболее доступно для воздействия на капиллярные процессы в реальных условиях, очевидно, изменение давления и скорости фильтрации, которые поддаются регулированию при разработке нефтяных залежей. Можно определить, какое состояние этих внешних факторов — установившееся или неустановившееся — благоприятствует проявлению капиллярных процессов при заводнении.

Микроскопическими исследованиями процесса заводнения гидрофильных пород установлено, что вытеснение нефти водой за счет поверхностно-молекулярных сил может происходить в двух формах (видах):

1)вытеснение нефти, вызванное течением воды по пленке, находящейся на гидрофильной поверхности пор, — пленочное внедрение воды в нефтенасыщенную зону пласта;

2)вытеснение нефти из мелких поровых каналов, соединенных с крупными порами, движущимися менисками, — менисковое вне- дрение воды в нефтенасыщенную зону пласта.

В послойно заводненном пласте капиллярное движение нефти и воды обоих этих видов обусловливает выравнивание насыщенности заводненных и нефтенасыщенных слоев вследствие взаимного обмена жидкостями и межслойных противотоков нефти и воды. При пленочном внедрении воды встречное движение происходит в пределах отдельных поровых каналов. По поверхности каналов вода внедряется в нефтенасыщенную зону, а по центральной части их нефть движется во встречном направлении в водонасыщенную зону. Менисковое внедрение воды в нефтенасыщенную зону происходит по каналам меньшего диаметра (сечения), нефть из них вытесняется в более крупные каналы, а по ним — в заводненную зону.

В реальных условиях нефтеносных пластов, т.е. с четочной структурой и неоднородной внутренней энергетической характеристикой (изменчивой смачиваемостью) поровых каналов, этот процесс капиллярного движения жидкостей значительно усложняется.


Рис.4 Капиллярное движение жидкости в канале переменного сечения (по М.М. Кусакову и Д.Н. Некрасову).
Наличие гидрофобных участков на поверхности пор и изменяющийся диаметр поровых каналов обусловливают так называемый капиллярный гистерезис и прерывистый характер капиллярного движения нефти и воды. На гидрофобных участках пор и расширениях поровых каналов самопроизвольное пленочное и менисковое движение воды прекращается вследствие изменения формы менисков и величины контактных углов смачивания.

Движение жидкости в каналах переменного сечения (рис.4) под давлением, возникающим на мениске, изучалось М.М. Кусаковым и Д.Н. Некрасовым. Было установлено, что самопроизвольное перемещение границы раздела жидкостей продолжается до тех пор, пока приращение потенциальной энергии по высоте (длине) канала не становится равным нулю (dU/dh=0), т.е. до отметки, на которой достигается равенство капиллярного давления гравитационному перепаду его. Эти отметки в каналах авторами названы «равновесными высотами». На рис.4 равновесные высоты фиксируются пересечением эпюр капиллярного давления и гравитационного перепада по длине канала.

В послойно заводненных пластах капиллярная пропитка происходит вследствие менискового внедрения воды в нефтенасыщенные слои или пористые блоки из заводненных слоев или трещин по бесчисленному множеству сообщающихся неточных поровых каналов. Причем четочный характер каналов, по которым происходит капиллярное внедрение воды, обусловливается пересечением их каналами в направлении, не совпадающем с капиллярной пропиткой. Поэтому даже при избирательной фильтрации жидкости в поровых каналах в процессе пропитки на пути движения менисков будут встречаться расширения каналов случайных размеров.

Капиллярное давление по высоте каждого канала является обратной функцией среднего радиуса канала в каждом сечении. Если ограничить радиус сечения на перекрестке каналов суммой радиусов пересекающихся каналов, то распределение капиллярного давления по высоте каналов над плоскостью водо-нефтяного контакта будет отображаться эпюрой, показанной на рис.5. Как видно, в любой плоскости, параллельной водо-нефтяному контакту, капиллярное давление в каналах различно.

Разница внутренних давлений по высоте каналов будет еще большей при наложении на эпюру капиллярных давлений энергетической неоднородности поровых каналов. Поэтому при наличии сообщаемости между каналами существует перепад капиллярных давлений. За счет этого перепада давления и возможен капиллярный противоток нефти и воды, т.е. менисковое внедрение воды в нефтенасыщенную зону по мелким каналам с вытеснением нефти по наиболее крупным каналам в заводненные слои. Причем в один крупный поровый канал нефть может вытесняться из нескольких каналов меньшего сечения одновременно или поочередно в соответствии с балансом расхода нефти и воды и замедлением движения менисков в расширениях каналов.

Глубина проникновения или высота подъема менисков в каналах меньшего диаметра будет определяться «равновесными высотами». На рис.5 эти высоты отмечены штриховкой. Теоретически равновесных высот может быть бесконечно много.

Для каждого канала высота капиллярного подъема границы раздела нефть — вода (мениска) согласно работе определяется из соотношений:
    продолжение
--PAGE_BREAK--Hpg = 2σ *cosθ/ r, r = f (h) (6) Исходя из энергетической неоднородности пористой среды, т.е. разнород-ности смачиваемости поверхности пор, к этим соотношениям следует добавить еще одно: cosθ = φ (h) (7)


где φ (h) — некоторая зависимость смачиваемости поверхности канала от высоты над водонефтяным контактом; f (h) — зависимость радиуса rканала от высоты над плоскостью контакта заводненных и нефтенасыщенных слоев.

Расчеты, проведенные по рассмотренной схеме (рис.5) и реальные размеры поровых каналов смачиваемости и плотности нефти и воды, показывают, что средняя минимальная равновесная высота подъема менисков в микронеоднородной пористой среде при статических условиях, т.е. за счет лишь внутренней энергии, не превышает 10-15см. Следовательно, самопроизвольная капиллярная пропитка нефтенасыщенных пористых сред и, в частности, в послойно заводненном пласте происходить может, но глубина ее незначительна. Очевидно, для преодоления менисками в четочных поровых каналах равновесных высот и увеличения глубины капиллярнойпропитки необходима некоторая дополнительная внешняя энергия.

Затемненныеплощади рис.5, образованныепересечением эпюр капиллярного давления и гравитационного перепада по высоте каналов, эквивалентны дополнительной внешней энергии (работе), необходимой для преодоления мениском равновесных высот. Видимо, глубокая капиллярная пропитка нефтенасыщенныхпористых сред будет происходить при условии, когда равновесные высоты будут преодолеваться мениском при помощи внешних сил. В условиях прерывистой и разнородной смачиваемости поверхности пор пленочное движение воды также возможно, только оно не обеспечивает существенной пропитки водой нефтенасыщенных слоев.

Однако смачиваемость поверхности пор переменна. Под действием внешних факторов может происходить усиление или даже инверсия смачиваемости пористой среды, для чего, очевидно, также требуется дополнительная внешняя энергия.

Как показано, капиллярная пропитка нефтеносных пластов происходит в самых разнообразных условиях заводнения и может быть довольно существенной и глубокой. Но всем наблюдаемым в реальных условиях заводнения пластов капиллярным явлениям свойственна общая аналогия — капиллярные процессы происходили при наличии избыточного или неустановившегося (переменного по знаку) давления в водонасыщенной среде. По-видимому, именно эти условия в пласте являются благоприятными для активной капиллярной пропитки. Неустановившееся состояние в пласте или избыточное давление в водонасыщенной среде, созданное искусственно при заводнении, очевидно, и представляет ту дополнительную внешнюю энергию, необходимую для преодоления менисками равновесных высот и инверсии смачиваемости гидрофобных участков поверхности пор.

Следовательно, капиллярные процессы при заводнении неоднородных нефтеносных пластов регулируемы и воздействовать на ход этих процессов можно обычными технологическими средствами.

Это подтверждается многочисленными экспериментальными исследованиями. Установлено, что с повышением гидрофильности пород уменьшается остаточная нефтенасыщенность, т.е. увеличивается полнота вытеснения нефти. Поэтому для повышения степени заводнения нефтенасыщешшх слоев и более полной отмывкинефти в послойно обводненных пластах, обладающих разнородной смачиваемостью, следует стремиться к увеличению гидрофилизации пластов.

Ряд исследований указывает на то, что гидрофильность пород можно увеличивать искусственно путем повышения давления, температуры и скорости фильтрации. В работах показано, что с повышением давления увеличивается поверхностное натяжение на границе нефти с водой, происходят уменьшение избирательного угла смачивания водой поверхности пор и увеличение капиллярного вытеснения.

Интересное явление установлено в работе. Пористая среда,обладающая разнородной смачиваемостью, не имеет на поверхности пор непрерывного слоя воды, который разорван проникшей нефтью, и на отдельных участках нефть контактирует непосредственно с поверхностью пор. При малых скоростях движения жидкости в пористой среде такая прерывистая пленка воды на поверхности пор сохраняется, однако с увеличением скорости фильтрации происходят отрыв капель нефти от поверхности пор и восстановление сплошного слоя воды. Иными словами, пористая среда, обладающая смешанной смачиваемостью, при высоких скоростях движения жидкости становится гидрофильной. Инверсия смачиваемости обусловливается искусственно созданными градиентами давления.

По-видимому, повышением гидрофилизации пласта, а следовательно, и усилением капиллярной пропитки неоднородной пористой среды при высоких скоростях вытеснения объясняются результаты работ, в которых получено, что с увеличением скорости вытеснения повышается нефтеотдача неоднородной системы за счет более полного заводнения менее проницаемых и застойных зон. Причем в работе отмечается «разрушение» застойных зон, капиллярная пропитка их при высоких скоростях движения жидкости. Наличие же внешнего перепада давления между водонасыщенной и нефтенасыщенной средами способствует преодолению менисками расширений поровых каналов при четочном строении их. Таким образом, в реальных нефтеносных пластах, обладающих слоистой макронеоднородностыо и неоднородностью внутренней структуры пористой среды, происходят капиллярные процессы, направленные на повышении водонасыщенности нефтенасыщенных слоев и увеличение нефтенасыщенности заводненных слоев. Эти процессы сопровождаются встречным движением (противотоками) нефти и воды под действием внутренней энергии пластов. Однако при стационарных условиях в пласте возможности самопроизвольной капиллярной пропитки в послойно заводненных слоях весьма ограничены. Чтобы капиллярные процессы при заводнении пластов имели практическое значение и способствовали повышению охвата пластов заводнением, требуются определенные технологические условия разработки и мероприятия по регулированию их.

Для повышения гидрофильности пластов, усиления капиллярного вытеснения нефти водой из слабопроницаемых слоев и зон в заводненные высокопроницаемые, для повышения коэффициента вытеснения и коэффициента охвата заводнением неоднородных пластов необходимо увеличивать скорости движения жидкости и создавать неустановившееся состояние давления в пластах или избыточное давление в водонасыщенных слоях. На практике это осуществимо при импульсном воздействии на пласты или цикличной закачке воды.
    продолжение
--PAGE_BREAK--4. Характеристика капиллярных противотоков в микронеоднородной пористой среде


На основе экспериментальных и промысловых исследований было показано, что капиллярные процессы при заводнении нефтеносных пластов сопровождаются встречными движениями, противотоками нефти и воды. В работе получены экспериментальные зависимости для расхода, скорости и глубины капиллярной пропитки.


Рис.6 Схема микронеоднородной пористой среды, мсжслойных и капиллярных противотоков нефти и воды и вытеснения остаточной нефти при pk— pc≠ const
Аналогичные зависимости можно получить и аналитическим путем. Как уже отмечалось, исследованиями установлено, что микронеоднородность пористой среды может выражаться некоторой функцией распределения пор по размеру F(δ). Для песчаника, например, распределение пор по размеру подчиняется нормальному или логарифмически нормальному закону с диапазоном изменения размеров пор от нуля до 500 мки более. В этих условиях, исходя из классической зависимости между капиллярным давлением и размером поровых каналов, очевидно, что при капиллярном межслойном противотоке внедрение воды в нефтенасыщенные слои происходит по наиболее мелким, а переток нефти по более крупным поровым каналам (рис.6). Расход жидкости и скорость внедрения воды при капиллярной пропитке можно выразить через функцию распределения размеров пор.

Плотность вероятности распределения размеров пор при логарифмически нормальном законе описывается выражением
f(δ) =  (8)
где δ— размер, или сечение, поровых каналов; σ — стандартное отклонение; lnε— среднее значение lnδ.

Функция распределения размеров пор
F(δ) = f(δ) d(δ) (9)
Связь между средней проницаемостью среды kсри размерами поровых каналов устанавливается в виде
 (10)
где Г0 = χ / l— коэффициент извилистости, т.е. отношение длины пути χ, пройденного жидкостью, к геометрической длине l
пористой среды.

Фактически коэффициент извилистости Г0отображает избирательный характер фильтрации жидкости в микронеоднородной пористой среде и, следовательно, может выражаться через плотности вероятности распределения размеров пор, т.е.
Гo = f (δ) max / f (δ) i (11)
Можно полагать, что в процессе капиллярной пропитки фильтрация жидкости происходит избирательно, как и при движении за счет внешнего перепада давления. Тогда в любом сечении пласта, нормальном направлению капиллярной пропитки, поры с размерами 0 ≤ δ≤δi,. будут затоплены водой, а с размерами δ≤ δi≤ δшахнефтенасыщенны (рис.7). Причем суммарный расход жидкости через любую такую плоскость равен нулю, т.е.
qв= — qн= [Skгар(∆pk± h∆γ)] / μcphcpГ0(12)
где kгар— средняя гармоническая проницаемость по линии тока жидкости, определяемая по формуле:
kгар= 2/ (1/kср. в+ 1/ kср. н) (13)


Рис.7 Распределение размеров пор в песчанике, k= 1д, m= 18,4% (по В.Н. Николаевскому и А.Ф. Богомоловой)

1— размеры пор, в которые внедряется вода;

2 — размеры пор, из которых вытесняется нефть.
kcp. в, kcp. н— средняя проницаемость поровых каналов, соответственно заполненных водой и нефтью; ∆рк-разность средних капиллярных давлений в водонасыщенных поровых каналах и нефтенасыщенных:
∆рк = рк. в (0чδi) — рк. н (δiчδmax) (14)
δср. в, δср. н— средние значения размеров водонасыщенных и нефтенасы-щенных каналов, определяемые соотношениями
 (15)



δi— размер самого крупного порового канала, затопленного водой; h— глубина (высота) капиллярного внедрения воды в нефтенасыщенный слой; ∆γ— разность удельных весов воды и нефти; тви тн — пористость заводненных и нефтенасыщенных поровых каналов соответственно; μср= (μн+ μв) /2 — средняя вязкость жидкости по пути фильтрации; S— площадь поверхности фильтрации.

В формулах (13) и (15) kcp. в и kcp. нопределяются из соотношения (10) при замене пределов интегрирования в числителе от 0 до δiи от δiдоδmaxсоответственно.

Капиллярный перепад давления при капиллярном противотоке значительно проще можно определить другим путем. По распределению размером пор можно получить распределение капиллярного давления, которое ввиду обратной зависимости капиллярного давления от размера пор будет выражаться ввиде:
F(pk) = 1 — F(δ
)(16)
Статистическое среднее значение капиллярного давления в микронеоднородной пористой среде можно определить через функцию распределения:
 (17)
где рк0— капиллярное давление в самых мелких поровых каналах;

ркт — капиллярное давление в самых крупных каналах (трещинах).

Для определения перепада капиллярных давлений при противотоке необходимы средние значения их для заводненных ркв, нефтенасыщенных ркнканалов, которые равны:
 (18)

 (19)
где α=4σcosθ; рк, ркiи ркт капиллярные давления соответственно в поровых каналах с размером δmin, δiи δmах.

Теперь можно определить глубину капиллярного внедрения воды в нефтенасыщенные слои, застойные зоны и линзы. Из условия материального баланса
qвt= Shcpηвδср. в/δср = Vηв ηo (20)
Из соотношений (12) и (20) можно получить зависимость для глубины пропитки пористой среды при капиллярном противотоке без учета гравитационных сил:
 (21)
ηв — коэффициент вытеснения нефти водой в заводненных каналах;

η= δср. в/δср — коэффициент охвата заводнением нефтенасыщенных слоев при капиллярном противотоке.

Остальные параметры кгар, Г0, δсри ∆рк определяются по соотношениям (13), (11), (15), (18) и (19). Подставив их в (21) и приняв mв= mн= m/2, что следует из равенства суммарного расхода жидкости при противотоке нулю, получим выражение для глубины капиллярной пропитки:
 (22)
которое аналогично ранее полученному экспериментально в работе [11]. По соотношениям (21) или (22) можно определить не только среднюю глубину, но и скорость капиллярной пропитки. Приняв следующие значения параметров, входящих в формулу (22): σ = 30 дин/см2, соsθ= 0,6, ηв = 0,9, μср=2 спз, Г0= 2, а значения т = 18%, кср= 1д, кср. н=1,6 д, кср. в=0,4 д, в соответствии с распределением размера пор реального песчаника из работы получим: средняя глубина капиллярной пропитки в течение 1сек с начала пропитки составит 0,05 см, через 1 ч достигнет 3 см, через 1 сутки 14,7 см, через 1 месяц 80,5 см, через 1 год 2,8 ми т.д. Как видно, скорость капиллярной пропитки затухает во времени, а глубина пропитки даже в идеализированных условиях пористой среды — постоянного сечепия каналов и смачиваемости — в течение длительного периода не превышает минимальной мощности нефтенасыщенных слоев при послойном заводнении реальных пластов. Если же учесть, что капиллярная пропитка в реальных условиях должна происходить в пористой среде с неточными поровыми каналами и переменной смачиваемостью, то значения глубины капиллярного внедрения воды во времени будут значительно меньшими.

    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Анализ тестопригодности по методу Сamelot
Реферат Создание программы на языке Delphi 70 Написание программы
Реферат Организация занятий физическими упражнениями, спортом для самовоспитания и самосовершенствования
Реферат Экономический либерализм, его сущность и воплощение
Реферат Создание баннеров с помощью программы Adobe PhotoShop 70
Реферат Диагностика агрессивности у подростков
Реферат Криминалистическое исследование внешних признаков человека (габитоскопия)
Реферат Захист капіталів банків від недобросовісних зайомників, кредиторів і конкурентів
Реферат Селективные вольтметры, частотно-селективные вольтметры или вольтметры несущей частоты
Реферат Создание базы данных учета деятельности промоутеров в компании Чистая вода
Реферат Создание мультимедийного электронного учебника Проектирование баз данных
Реферат Амортизация основних фондов (Амортизація основних фондів)
Реферат Значение лекарственных веществ и лекарственных форм, содержащих антибиотик
Реферат Петр I и идеология «Ученой дружины»
Реферат Планирование на предприятии "Ресторан "Измайловский"