Реферат по предмету "Математика, физика, астрономия"


Автоколебания системы с одной степенью свободы

Автоколебания системы с одной степенью свободы

Введение и краткое резюме


Настоящая работа посвящена исследованию движений автоколебаний системы с одной степенью свободы под действием внешней периодической силы. Такие движения представляют интерес для радиотелеграфии (например, к исследованию таких движений сводится теория регенеративного приемника). Особенно замечательно здесь явления так называемого "захватывания". Это явление заключается в том, что, когда период внешней силы достаточно близок к периоду автоколебаний системы, биения пропадают; внешняя сила как бы "захватывает" автоколебания. Колебания системы начинают совершаться с периодом внешнего сигнала, хотя их амплитуда весьма сильно зависит от амплитуды "исчезнувших" автоколебаний. Интервал захватывания зависит от интенсивности сигнала и от автоколебательной системы.


Теоретически этот вопрос уже разбирался, однако методами математически недостаточно строгими; кроме того, бралась характеристика весьма частного вида - кубическая парабола. Поэтому мы будем рассматривать случай произвольной характеристики при колебаниях близких к синусоидальных.


В этой работе мы рассмотрим периодические решения с периодом, равным периоду внешней силы, и их устойчивость при малых отклонениях. Мы оставим в стороне другие стационарные движения, возможные в исследуемой системы, например периодические решения с периодом, кратным периоду внешней силе, или квазипериодические решения. Мы оставим в стороне важный вопрос об устойчивости при больших отклонениях


Для отыскания периодических решений воспользуемся методом Пуанкаре, которые позволяют быстро решить задачу для случая колебаний, достаточно близких к синусоидальным. С этой целью введем в наше уравнение параметр m таким образом, чтобы при m = 0 уравнение превращалось в линейное и колебания делались синусоидальными. Этот параметр m , который мы предполагать достаточно малым, может иметь различный смысл в зависимости от выбора системы.


Для решения вопроса об устойчивости найденного решения при малых отклонениях воспользуемся методами Ляпунова, требуя, чтобы искомые решения обладали "устойчивостью по Ляпунову".


В настоящей работе мы не будем вычислять радиусы сходимости тех рядов, с которыми нам придется иметь дело; грубая оценка может быть сделана по Пуанкаре.


В § 1 и 2 рассматривается область достаточно сильной расстройки; § 3 и 4 посвящены рассмотрению области резонанса; в § 5 показывается, как общие формулы для амплитуд и для устойчивости, полученные в § 1- 4, могут быть применены в конкретных случаях, причем в качестве примера рассматривается случай Ван дер Поля. Результаты применения общих формул совпадают с теми, которые получил нестрогим путем Ван дер Поль.

§ 1 Отыскание периодического решения в случае достаточно сильной расстройки.


Уравнение, которое нас будет интересовать:


При m = 0 это уравнение имеет единственное периодическое решение


Рассмотрим случай, когда m бесконечно мало. Согласно Пуанкаре мы будем искать решение (1) в следующем виде:



Начальные условия выберем так:


F2 - степенной ряд по b 1 b 2, m начинающийся с членов второго порядка. Подставим (3) в (1):


Сравнивая коэффициенты при b 1 b 2, m получим уравнение для А, В, С. Начальные условия можно получить для них, подставив (4) в (3).


Решая задачи Коши, получим:


Для того, чтобы (3) представляли периодические решения необходимо и достаточно, чтобы


Введем обозначения ; для остальных функций аналогично.


Тогда (6) запишется в виде:


Если в этой системе можно b 1 b 2 представить в виде функции m так, чтобы b 1 b 2, m исчезли из системы (7) , то (3) - периодическое решение уравнения (1). Иначе Х- не периодично. Достаточным условием существования периодического решения при малых m служит неравенство 0 Якобиана.


В нашем случае:


Т.е. мы всегда имеем периодические решения при малых m и любых f. Искомое периодическое решение может быть найдено в виде.

§ 2 Исследование устойчивости периодического решения


Составим уравнения первого приближения, порождаемое решением (8). Сделаем замену: x = Ф(t) + x ; в уравнении (1) при этом отбросим члены , содержащие квадраты и высшие степени x и x '.


Воспользуемся тем фактом, что Ф (t) - решение уравнения. Получим уравнение первого приближения:


Это линейное дифференциальное уравнение с периодическими коэффициентами. Его решение мы будем искать в виде функции времени Удовлетворяют тому же уравнению, что и x , то есть (10). Начальные условия для них определены следующим образом.

; аналогичным образом можно показать, что (11).

Представим правую часть уравнения в виде степенного ряда по m .


будем искать в виде: (12).


Подставим (12) в (10) и сравнивая коэффициенты при соответствующих степенях m , получим:

Начальные условия для Ао , Во, …. Следует выбрать так, чтобы выполнялись условия (11). Действительно подставляя (11) в (12) и сравнивая коэффициенты при соответствующих степенях m , получим

Для В'о и Во аналогично. Для остальных же как видно из уравнений условия будут нулевые. Итак:

(14)

Решение (13) можно найти при помощи квадратур:

(15)

Если вспомнить общую теорию линейных диффуров с периодическими коэффициентами, то общее решение (10) имеет вид:


S1, S2 - периодические функции с тем же периодом, что и Ф (t). a 1, a 2 - характеристические показатели.


Если все , т.е. колебания затухают, то в этом случае выполняется теорема, доказанная Ляпуновым, относительно того, что периодическое решение уравнения первого приближения вполне устойчиво. Согласно Пуанкаре характеристические показатели можно определить из следующего уравнения:

=0 (16)
Полагаем ;

Тогда определитель будет:


Вопрос об устойчивости, как сказано выше, решается знаком Re (a ), или что все равно ÷ l ÷ . Если ÷ l ÷ < 1 имеет место устойчивость ÷ l ÷ = 1 этот случай для нашей задачи не представляет интереса. ÷ l ÷ > 1 имеет место неустойчивость.


При рассмотрении (18) имеют место 2 случая q > р2; q < р2; В первом случае l -комплексные; ½ l 2 ½ =q; (20) если q<1; устойчивость q>1 - неустойчивость.


Случай второй - l - действительные: ; (21) устойчивость соответствует p и q нетрудно получить в виде рядов по степени m из формул (19) (12).

(22)

Если принять во внимание (15)

(22a)
(23)

Мы видим, что при достаточно малом m и w ¹ n; n ' Z вопрос об устойчивости решается величиной q и следовательно знаком b, если b < 0- имеет место устойчивость, b > 0 - неустойчивость.


В нашем случае b имеет вид:

(23a)

§ 3 Отыскание периодического решения в области резонанса.


Тогда l = m l о; w 2 = 1+ aо m , (24) (aо , m - расстройка , реальный физический резонанс наступает при aо ¹ 0).


Тогда исследуемое уравнение имеет вид :

(25)

При m = 0 периодическое решение будет иметь вид : (26)


Следуя Пуанкаре, мы можем предположить периодическое решение в виде:

(27);

Начальные условия возьмем как и раньше:


Аналогично тому, как мы это делали в предыдущих параграфах. Подставляем (27) в (25) и, сравнивая коэффициенты при b 1 b 2, m и других интересующих нас величинах, получим уравнение, которым удовлетворяет A, B, C, D, E, F. Начальные условия для этих уравнений определим, если подставим (28) в (27).

(29)

Запишем условия периодичности для (27):


Делим на m :

( 30a )

Необходимым условием существования периодического решения является:


Эти уравнения определяют P и Q решения (26), в близости к которому устанавливается периодическое решение. Они могут быть записаны в раскрытой форме :

(31)

Для существования искомого периодического решения достаточно неравенство 0 детерминанта: (см. § 1).


D, Е и их производные найдутся из (29) при помощи формул аналогичных (15). Заметим, что (30) мы можем определить b 1, b 2, в виде рядов по степеням m . Таким образом, мы можем (27) как и в § 1 представить в виде ряда.

(33)

P,Q-определяются формулами (31) (32).

§ 4 Исследование устойчивости периодических решений в области резонанса


Аналогично тому, как мы это делали в § 2, составим уравнение первого приближения, порожденное решением (33).


Решение опять будем искать в виде . Однако нет необходимости проделывать все выкладки заново. Воспользуемся результатами § 2, приняв:


Из формул (22) (34) , тогда D - тот же Якобиан, что и (32). Распишем его:


(36)
;

Тогда, зная функцию f, мы можем вычислить D в виде функции P, Q и aо.


Заметим, что равенство (23 а) в нашем случае имеет вид:

; (37)

Опираясь на результаты исследования, полученных в § 2, нужно рассмотреть при исследовании устойчивости два случая: (при достаточно малых m )


1) p2 - q < 0


2) p2 - q > 0


В первом случае устойчивость характеризуется условием q<1 или, что то же самое b<0.


Во втором случае (*) последнее может быть выполнено только, если b < 0, а D > 0. Нетрудно видеть, что необходимым достаточным условием в обоих случаях является b < 0, D > 0. (Это можно получить из неравенства (*) ).

§ 5 Применение общих формул, полученных в предыдущих параграфах, к теории захватывания в регенеративном приемнике для случая, когда характеристика - кубическая парабола.


Мы рассмотрим простой регенеративный приемник с колебательным контуром в цепи сетки, на который действует внешняя сила Ро sin w 1 t.


Дифференциальное уравнение колебаний данного контура следующее:

(39)

Считая, что анодный ток зависит только от сеточного напряжения, а также, что характеристикой является кубическая парабола:

(40)

S-крутизна характеристики, К - напряжение насыщения .


Далее, вводя обозначения:


Получим дифференциальное уравнение для х:

(41)

А: (случай далекий от резонанса).


Для него применяем результаты § 1, полагая.


Исходное решение в не посредственной близости, к которому устанавливается искомое решение следующее:


Если w > 1, т.е. w о > w 1, то разность фаз равна 0, если w < 1, то разность фаз равна p . В этом отношении все происходит в первом приближении также, как и при обычном линейном резонансе. Устойчивость определяется знаком b (b < 0).

(42).

Т.е. те решения, для которых выполняется это условие, устойчивы.


В: (область резонанса , § 3, 4).


В качестве исходного периодического решения, в непосредственной близости к которому устанавливается искомое, будет решение следующего вида: x = P sin t + Q cos t (P, Q - const).


Запишем уравнение, определяющее эти P и Q, т.е. соотношение (31) для нашего случая.


Или преобразовав их, получим следующее:


Полагая Р = R sin j ; Q = R cos j . Далее найдем для амплитуды R и фазы j для того исходного периодического решения, в близости к которому устанавливается рассматриваемое периодическое решение , соотношения связывающие их :


Первая формула дает "резонансную поверхность" для амплитуды. Вторая - для фазы. По (38) условия устойчивости имеют вид b < 0, D > 0. Считаем b и D через формулы (35-37).

(46)

Т.е. решение является устойчивым, если удовлетворяется условие (**). В заключение выпишем формулы для вычисления aо, соответствующего ширине захватывания для рассматриваемого случая.


1)


a0 - является общим корнем уравнений


2)


Сама ширина D w , отсчитанная от одной границы захватывания до другой выражается следующим образом: D w = aо w 2о (MS - c r). Можно дать простые формулы для вычисления ширины захватывания в следующих случаях:


а) l 2о << 1; D w = w о Ро/Vоg.


б) для очень сильных сигналов ( Vоg - амплитуда сеточного напряжения при отсутствии внешней силы).

Список литературы

  1. Андронов А.А. Собрание трудов, издательство "Академии наук СССР", 1956.
  2. Андронов А.А., Витт А. К теории захватывания Ван дер Поля. . Собрание трудов, издательство "Академии наук СССР", 1956.
  3. Ляпунов А. Общая задача об устойчивости движения, Харьков, 1892.

Дата добавления: 06.04.2001



Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Геном человека в медицине, клонирование
Реферат Origins Of World War II
Реферат Понятие и общая характеристика договора поставки
Реферат 1. Визначення проблеми, яку передбачається розв’язати шляхом державного регулювання
Реферат Сифоны в древнеримских водопроводах
Реферат Металлические конструкции
Реферат Brecht And Zola Use Language To Practice
Реферат Особенности вещественного состава свинцово-цинковых руд и их влияние на экологическое равновесие на примере месторождений
Реферат «Русский бунт» в изображении А. С. Пушкина
Реферат Вагітність і артеріальна гіпотензія патогенез профілактика і лікування ускладнень 2
Реферат База имитационных модолей СППР-УДП
Реферат Первые Рюриковичи: Олег, Игорь, Ольга, Святослав
Реферат Отчет по практике в администрации сельского поселения
Реферат Технико-экономический анализ производственно-хозяйственной деятельности предприятия
Реферат Проектирование и создание автоматизированной информационной системы "Поликлиника"