--PAGE_BREAK--
Теперь очередь фирмы В отвечать снова. Фирма А снизит свое производство С 1/2 Qc до 3/8Qc — это приводит к снижению общего предложения товара Х с 3/4Qc до 5/8Qc. В результате этого цена товара вырастает до Р2. Фирма В предполагает, что фирма А будет продолжать выпускать это количество. Она рассматривает свою кривую спроса как линию, начинающуюся в точке, где рыночный выпуск равен 3/8Qc.Эта кривая спросаDb2, указанная на гр.D, рис.1. Максимальная прибыль существует в той точке, где MRb2=MC. Это равняется половине разности между конкурентным выпуском и величиной в 3/8 конкурентного выпуска, которую в настоящее время поставляет фирма А. Как показано в таблице 1, фирма В теперь производит 5/16 конкурентного выпуска. Общий рыночный выпуск равен теперь 11/16Qc, а цена снижается до Р3. За каждый месяц каждый дуополист производит половину разности между конкурентным выпуском и выпуском, осуществляемым конкурентной фирмой.
Как показано на гр. Е, рис.1, каждая фирма выпускает 1/3 Qc, а цена равна Ре. Это равновесие Курно для дуополии. Оно существовало бы. если только каждая фирма упорно полагала бы, что другая не будет регулировать свой выпуск, что подразумевает, что управление фирмы не учитывает своих ошибок, что, конечно, является большим упрощением. Но при более сложных допущениях становится сложно определить условия равновесия.
Пример 1. Отраслевой спрос на продукцию характеризуется функцией Р = 100 — 0.5Q; в отрасли работают две максимизирующие прибыль фирмы А и В со следующими функциями затрат: ТСа = 20 + 0.75qa^2 и ТСь = 30 + 0.5qb^2.
Выведем уравнение реакции для фирмы А. Так как MRa = 100 — qa — 0.5qь и MCa = 1.5qa, то pa = max при 100 — qa — 0.5qb = 1.5 qa Þ qa = 40 — 0.2qb.
Аналогичные расчеты для фирмы В дают ее уравнение реакции: qb = 50 — 0.25qa.
Равновесные значения цены и объемов предложения определяются из следующей системы уравнений:
P = 100 — 0.5 (qa + qb),
qa = 40 — 0.2 qb, Þ qA* = 31.6, qb* = 42.1, P* = 63.2.
qb = 50 — 0.25qa.
В состоянии равновесия прибыли фирм соответственно равны: pa = 63.2 • 31.6 — 20 — 0.75 * 31.6^2 == 1228.2, pь = 63.2*42.1 — 30 — 0.5*42.1^2 = 1744.5.
Чтобы проследить за процессом установления равновесной цены в модели дуополии Курно, допустим, что сначала в отрасли работала только фирма А. Она установила монопольную цену Рм = 80 и выпускает qm = 40. Для фирмы В, решившей в такой ситуации войти в отрасль, функция спроса имеет вид Р = 100 — 0.5(40 + qb), а ее предельный доход определяется по формуле MRb = 80- qb. Прибыль фирмы В будет максимальной, если 80 — qь = qb, т. е. при выпуске 40 ед. продукции. Такой же результат получается из уравнения реакции фирмы В. Вследствие этого рыночная цена снизится до 60 ден. ед. При такой цене объем предложения фирмы А уже не обеспечивает ей максимальную прибыль, и она изменит объем выпуска в соответствии со своим уравнением реакции исходя из того, что фирма В выпускает 40 ед. продукции: q’a = 40 — 0.2*40 = 32. В результате цена возрастет до 64. Ответный ход фирмы В выразится в том, что она в соответствии со своим уравнением реакции предложит на рынок q’b = 50 — 0.25 • 32 = 42, сбивая тем самым цену до 63. После того как фирма А в очередной раз скорректирует свой выпуск,
qa’' = 40 — 0.2 * 42 = 31.6, в отрасли установится равновесная цена 63.2.
ОБОБЩЕНИЕ МОДЕЛИ КУРНО
Используя предпосылки модели дуополии Курно, можно построить модель ценообразования при любом числе конкурентов. Примем в целях упрощения, что у всех конкурентов одинаковые экономические затраты на единицу продукции: ACi = 1 = const; i = 1, .., n. Тогда прибыль i-той фирмы равна pi, = Pqi, — lqi; так как Р = g — h åqi, то прибыль i-той фирмы можно представить в виде
pi = [g — h(q1 + q2 +… + qn)] qi — lqi = gqi — hqiq1 — hqiq2 — … — hqi^2 — … — hqiqn — lqi.
Она достигает максимума при
dpi / dqi = g — hq1 — hq2 — … — 2hqi — … — hqn — l = g — hq1 — hq2 — … — hqi — … — hqn — hqi — l = 0
Поскольку g -hq1 -hq2 -...- hqn = P, то условие максимизации прибыли для отдельной фирмы имеет вид
Р — hqi = 1. (1.1)
Из равенства (1.1) следует qi* = (P-l)/h, т. е. в состоянии равновесия все фирмы будут иметь одинаковый объем реализации: åqi = nqi = Q, или
qi = Q / n = (g — P) / nh (1.2)
Это вытекает из допущения, что у всех фирм одинаковые предельные затраты производства.
Подставив значение (1.2) в уравнение (1.1), получим значение равновесной цены как функции от числа одинаковых по размеру фирм:
P* = l + hqi = l + h ((g — P*) / nh) ÞP* = (nl + g) / (n + 1)
При n = 1 получаем монопольную цену, a по мере увеличения п цена приближается к предельным издержкам.
ГЛАВА 2. МОДЕЛЬ ШТАКЕЛЬБЕРГА
Равновесие в модели Курно достигается за счет того, что каждый из конкурентов меняет свой объем выпуска в ответ на изменение выпуска другого до тех пор, пока такие изменения увеличивают их прибыль. В модели Штакельберга предполагается, что один из дуополистов выступает в роли лидера, а другой — в роли аутсайдера. Лидер всегда первым принимает решение об объеме своего выпуска, а аутсайдер воспринимает выпуск лидера в качестве экзогенного параметра. В этом случае равновесные объемы выпуска определяются не в результате решения системы уравнений реакции дуополистов, а на основе максимизации прибыли лидера, в формуле которой вместо выпуска аутсайдера находится уравнение его реакции. Определим равновесие Штакельберга в условиях примера 1
Если лидером является фирма А, то ее выпуск определяется из равенства MRa = МСа. Общая выручка фирмы А с учетом уравнения реакции фирмы В равна: TRa = = Pqa = [100 — 0.5(qa + 50 — 0.25qa)]qa = 75qa — 0.375 qa^2; тогда MRa = 75 — 0.75qa. Следовательно, прибыль фирмы А будет максимальной при 75 — 0.75qa = 1.5qa. Отсюда qa = 33.33; qь = 50 — 0.25 * 33.33 = 41.66; P = 100 — 0.5(33.33 + 41.66) = 62.5; pa = 62.5 * 33.3 — 20 — 0.75*33.3^2 = 1230; pb = 62.5*41.7 — 30 — 0.5 * 41.7^2 = 1707.
Таким образом, в результате пассивного поведения фирмы В ее прибыль снизилась, а фирмы А возросла. Если бы фирмы поменялись ролями, то прибыль фирмы А равнялась бы 1189, а фирмы В — 1747.8.
Для наглядного сопоставления равновесия Курно с равновесием Штакельберга линии реакции дуополистов нужно дополнить линиями равной прибыли (изопрофитами). Уравнение изопрофиты образуется в результате решения уравнения прибыли дуополии относительно ее выпуска при заданной величине прибыли. По данным примера 1 на рис. 2 построены изопрофиты и линия реакции фирмы А. Чем ниже расположена изопрофита, тем большему размеру прибыли она соответствует, так как ее приближение к оси абсцисс соответствует росту qa и уменьшению qb.
Наложив на рис. 2 аналогичный рисунок для фирмы В, получим рис. 3 на котором равновесие Курно отмечено точкой С, а равновесие Штакельберга точкой Sa при лидерстве фирмы А и точкой Sb при лидерстве фирмы В.
Картель. Однако наибольшие прибыли олигополисты получат в случае организации картеля — явного или скрытого сговора о распределении объема выпуска с целью поддержания монопольной цены на данном рынке. В условиях рассматриваемого числового примера суммарная прибыль участников картеля определяется по формуле
på= [100 — 0.5(qA + qB)] (qA+qB) — 20 — 0.75qA^2 — 30 — 0.5qB^2 = 100qA + 100qB - qAqB - — 1.25qA^2 — qB^2 — 50.
Условием ее максимизации является система уравнений:
100 — qB — 2.5qA = 0,
100 — qA — 2qB = 0,
из которой следует, что фирма А должна производить 25, а фирма В — 37.5 ед. продукции. В этом случае рыночная цена будет равна Р = 100 — 0.5(25 + 37.5) = 68.75, а прибыли фирм А и В соответственно равны pA = 68.75 * 25 — 20 — 0.75*25^2 = 1230, pB = 68.75 * 37.5 — 30 — 0.5 * 37.5^2 = 1845.
В таблице 2 показано, как меняется величина прибыли дуополистов в зависимости от рассмотренных вариантов их поведения на рынке.
Таблица 2
Варианты поведения на рынке
двусторонняя конкуренция по Курно
фирма В пассивно приспосабливается к выпуску фирмы А
фирма А пассивно приспосабливается к выпуску фирмы В
образование картеля (сговор)
pA
1228.2
1230
1189
1230
pВ
1744.5
1706
1747.8
1845
В графическом виде результат решения рассматриваемого примера представлен на рис.4. Точка С на пересечении линий реакции фирм А и В определяет их выпуск в состоянии равновесия по Курно, а точка К — при образовании картеля. При пассивном поведении фирмы В точка, представляющая объемы выпуска каждой из фирм, находится на линии реакции фирмы В, левее точки С; при пассивном поведении фирмы А эта точка расположена на линии реакции фирмы А, правее точки С.
В рассматриваемом примере создание картеля обеспечивает фирме В на 97 ед. прибыли больше, чем при самом благоприятном для нее варианте конкуренции, т. е. при пассивном приспособлении выпуска фирмы А к ее выпуску. Часть этого приращения прибыли фирма В может передать фирме А за согласие придерживаться картельной цены.
Монопольная цена, обеспечивая картелю избыточную прибыль, стимулирует приток в отрасль новых конкурентов. Чтобы предотвратить появление новых производителей данной продукции, картель может установить лимитную цену (pl), не позволяющую новым фирмам получить прибыль. Графический способ определения лимитной цены показан на рис. 5.
Кривая АС представляет средние затраты на выпуск всех участников картельного соглашения. Для предотвращения появления новых конкурентов вместо сочетания Рм,0м, соответствующего точке Курно, нужно выбрать комбинацию pl,ql. Тогда остаточный (неудовлетворенный) спрос на данном рынке будет представлен отрезком pl, Q1, который целиком расположен ниже кривой средних затрат. Поэтому если потенциальные конкуренты имеют одинаковую с членами картеля технологию, то производить данное благо им не выгодно.
Выведем формулу лимитной цены. Пусть АС = l + k/Q. Прямая отраслевого спроса D построена по формуле цены спроса: Р = g— hQ. Соответственно прямая остаточного спроса при цене pl описывается формулой Рос = pl — hQ. В точке касания кривой средних затрат АС и прямой остаточного спроса PL,Q1 выполняется равенство
PL — hQ = l + k / Q (1.3)
и наклоны обеих линий одинаковы. Значит, dPoc / dQ = dAC / dQ, т.е. -h = -k/Q^ 2 Þ Q = (k / h)^1/2.
Следовательно, точка касания линий АС и Рос соответствует Q = (k / h)^1/2. Подставив это значение Q в равенство (1.3), получим формулу для определения лимитной цены:
PL = l + k / Q + h (k / h)^1/2 = l + 2(k / h)^ 1/2
ГЛАВА 3. СГОВОР И КАРТЕЛИ
Картель — это группа фирм, действующих совместно и согласующих решения по поводу объемов выпуска продукции и цен так, как если бы они были единой монополией. В некоторых странах, например в США, картели запрещены законом. Фирмы, обвиняемые в сговорах для совместного установления цены и контроля над объемами выпускаемой продукции, подвергаются санкциям.
Но картель — это группа фирм, следовательно, он сталкивается с трудностями при установлении монопольных цен, которых не существует у чистой монополии. Основной проблемой картелей является проблема согласования решений между фирмами — членами и установления системы ограничений (квот) для этих фирм.
Образование картеля. Предположим в некоторой местности несколько производителей стандартизированной продукции хотят образовать картель. Допустим, что есть 15 региональных поставщиков данного продукта. Фирмы назначают цену равную средним издержкам. Каждая из фирм боится поднять цену из опасения, что другие не последуют за ней и ее прибыли станут отрицательными. Допустим, что выпуск находится на конкурентном уровне Qc (см. рис. 7 гр. А), соответствующему размеру выпуска, при котором кривая спроса пересекает кривую МС, являющейся горизонтальной суммой кривых предельных издержек каждого продавца. Кривая МС была бы кривой спроса, если бы рынок был полностью конкурентным. Каждая фирма выпускает 1/15 часть общего выпуска Qc.
продолжение
--PAGE_BREAK--