--PAGE_BREAK--Количественный анализ осуществляют непосредственно на хроматограмме (на слое сорбента или бумаге). Часто анализируемое вещество вымывают из слоя сорбента и полученный раствор анализируют каким-либо методом. В обоих случаях используют перечисленные выше спектральные, а также радиометрические методы. Предпочтение отдается первому способу, так как при этом значительно повышаются экспрессность и чувствительность определения. Следует отметить, что чувствительность определения зависит не только от условий разделения. Например, чем меньше Rf анализируемого вещества, тем менее размыта зона. Для рутинных количественных определений в ТСХ широко используют денситометры, которые измеряют интенсивность поглощения электромагнитного излучения при сканировании хроматографической пластинки. В результате регистрируется хроматограмма, которая имеет форму, аналогичную для газовой и других видов жидкостной хроматографии [3].
Во многих случаях для определения содержания веществ после разделения на пластинках ТСХ используют полуколичественный метод, применимый и в школьной лаборатории. Он заключается в визуальном сравнении размера пятна (а также сопоставлении их интенсивностей) с размерами серии пятен этого же вещества с известными концентрациями (стандартные растворы). Несмотря на простоту подхода, он обеспечивает правильность определения 5-10% при содержании 1-5 мкг.
Современное состояние и перспективы планарной хроматографии. Как это часто бывает в истории развития любого инструментального метода, после бурного развития в 60-70-х годах планарную хроматографию потеснил новый метод — высокоэффективная жидкостная хроматография (ВЭЖХ). Однако в последние годы тонкослойный вариант планарной хроматографии получил новый импульс для развития и наблюдается возрастание его роли в хроматографических методах. Это связано с меньшей стоимостью оборудования для ТСХ, разработкой двумерного и радиального вариантов разделения, внедрением пластин для высокоэффективной хроматографии, появлением систем автоматизированного многократного хроматографического проявления (АМХП). В двумерной хроматографии анализируемую смесь элюируют одним растворителем (или смесью), затем пластинку сушат и под углом 90° элюируют вторым растворителем. В радиальной хроматографии растворитель с регулируемой скоростью подается в центр пластинки, заставляя зоны перемещаться от центра к периферии. Это позволяет существенно ускорить процесс разделения.
Особенно перспективной является методика АМХП. Она удобна для определения пестицидов и продуктов их метаболизма в почвах, грязевых шламах и почвенных водах, а также в питьевой воде и водах минеральных источников. Хроматографическое разделение проводят в АМХП-системе, работа которой управляется и контролируется при помощи компьютера. Проводят многократное хроматографическое проявление (прогон растворителя). При таких многоступенчатых проявлениях (до 25 шагов) с возрастающей длиной полосы разделения и градиентным ступенчатым уменьшением полярности растворителя возможно разделение до 40 веществ на разделительной полосе длиной 8 см.
Важное значение имеет развитие высокоэффективной тонкослойной хроматографии (ВЭТСХ). За счет создания принудительного движения подвижной фазы с регулируемой скоростью, уменьшения размера частиц сорбента (до 5-7 мкм) и насыщения пространства над пластиной парами растворителя удается существенно ускорить процесс и повысить четкость разделения.
Широко используется сочетание ТСХ с другими методами, в частности с высокоэффективной жидкостной хроматографией. Например, такой прием применяют при анализе сточных вод. Первоначально анализируемый образец можно разделить на колонках ВЭЖХ. После этого отдельные фракции наносят на пластинки ТСХ и проводят разделение с использованием методики АМХП. Таким образом в анализируемой смеси разделяется до 30 отдельных фракций. В каждой из этих фракций, в свою очередь, на пластинке ТСХ определяется до десяти соединений. В отдельных случаях в образцах таким образом обнаруживали присутствие до 300 веществ. Такой прием продемонстрировал эффективность совместного использования двух методов при определении веществ в диапазоне концентраций от нанограммов до пикограммов.
Применение планарной хроматографии в анализе сложных смесей органических соединений. Возможности тонкослойной хроматографии в анализе различных объектов можно проиллюстрировать на примере анализа полициклических ароматических углеводородов (ПАУ), гербицидов на основе фенилмочевины и стеролов в пищевых продуктах.
Хорошо известно, что некоторые ПАУ обладают канцерогенной активностью. Их анализ актуален с экологической точки зрения: они присутствуют в следовых количествах в минеральном масле, воздухе, воде, выхлопных газах, а также в пищевых продуктах. Нормы по питьевой воде устанавливают их граничную концентрацию в 0,2 мкг/л для шести ПАУ, одним из которых является бензо(а)пирен
Для разделения ПАУ и количественного определения их в питьевой воде была использована ВЭТСХ с флуориметрическим детектированием. Специфичность флуориметрического определения достигалась очень тонким выбором длин волн возбуждения и регистрации, что позволило детектировать каждый отдельный компонент на пикограммовом уровне даже при неполном разделении веществ.
Определение гербицидов на основе фенилмочевины используемых для обработки растений, по одной из нормированных методик проводится методом ТСХ. Скорость перемещения веществ на пластинках определяется природой заместителей в них. На рис. 5 приведены результаты фотометрического детектирования (l = 254 нм) определяемых соединений после одно- и двукратного элюирования.
Стеролы — производные углеводорода стерана, имеющего гидроксильную группу в третьей позиции. Они широко распространены в природе и (в зависимости от происхождения) подразделяются на зоостеролы и фитостеролы. Наиболее важными из них являются холестерол (в русской литературе холестерин), 7-дигидрохолестерол, b-ситостерол, стигмастерол и эргостерол
Стеролы имеют важное значение для характеристики жиров (растительные и животные), а холестерол, как известно, при определенных условиях может повышать риск появления инфаркта. Растительные жиры содержат большей частью полиненасыщенные жирные кислоты и лишь следы холестерола. На основании физиологических аспектов питания рекомендуется употреблять больше растительных жиров, в частности маргарина, и определение стеролов в маргарине является важной характеристикой его качества. Для контроля его содержания можно использовать разные виды хроматографии, в том числе и ТСХ. После экстракции стеролы можно разделить в ВЭТСХ камере на пластинке импрегнированной нитратом серебра. Для детектирования используется флуоресцентный детектор. Предел обнаружения при этом составляет 3 нг/зону.[5, 6]
Развитие процесса хроматографирования во времени:
Глава 3. ПРИМЕРЫ ИСПОЛЬЗОВАНИЯ ТОНКОСЛОЙНОЙ ХРОМАТОГРАФИИ В АНАЛИЗЕ ПРИРОДНЫХ ВОД
Метод тонкослойной хроматографии определения ХОП в природных водах. [11]
Метод основан на извлечении ХОП из воды гексаном, сернокислотной очистке экстракта и определении в тонком слое сорбента на оксиде алюминия, силикагеле или пластинках силуфол в различных системах подвижных растворителей с проявлением мест локализации пестицидов различными проявляющими реагентами.
Подготовка к определению. Тщательно промытую хромовой смесью, содой, дистиллированной водой и высушенную пластинку протирают этиловым спиртом или эфиром и покрывают сорбционной массой. Массу готовят следующим образом. Смешивают 50 г просеянного через сито с размером отверстий 0,149 мм оксида алюминия в фарфоровой ступке с 5 г сульфата кальция, прибавляют 75 мл дистиллированной воды и перемешивают в ступке или колбе до образования однородной массы. На пластинку 9 * 12 см наносят 10 г сорбционной массы (на пластинку 13 Х 18 см — 20 г) и, покачивая, равномерно распределяют по всей пластинке. Пластинки сушат при комнатной температуре 18-20 ч, можно сушить 20 мин при комнатной температуре, а затем 45 мин в сушильном шкафу при 110 °С.
Смешивают 35 г силикагеля КСК, просеянного через сито с размером отверстий 0,149 мм, с 2 г сульфата кальция и 90 мл дистиллированной воды и перемешивают в ступке или колбе до однородной массы. Наносят на пластинки и сушат, как указано выше. Порция рассчитана на 10 пластинок.
Если пластинки с тонким слоем силикагеля темнеют после УФ-облучения, силикагель перед применением следует очистить от примесей. Для этого силикагель заливают на 18-20 ч разбавленной соляной кислотой (1: 1), кислоту сливают, промывают силикагель водой и кипятят в круглодонной колбе 2-3 ч с разбавленной азотной кислотой (1:1), промывают проточной водопроводной, затем дистиллированной водой до нейтральной реакции промывных вод, сушат в сушильном шкафу 4-6 ч при 1300с. Силикагель дробят и просеивают через сито с размером отверстий 0,149 мм.
Пластинки для хроматографии силуфол UV-254 (ЧССР) перед использованием импрегнируют о-толидином. Для этого каждую пластинку опускают на 0,5 см в 0,1 % -ный раствор о- толидина в ацетоне, налитый в камеру для хроматографирования. Пост того как фронт растворителя поднимется до верхнeгo края пластинки, ее вынимают и сушат на воздухе, избегая прямого солнечного света. После этого пластинки готовы к работе. Пластинки, импрегнированные о-толидином, хранят в эксикаторе.
Пластинки силуфол UV-254 предварительно промывают дистиллированной водой в хроматографической камере, высушиваю на воздухе и непосредственно перед использованием активирую в сушильном шкафу 4 мин при 65 ОС.
Ход определения. Экстракцию ХОП и концентрирование экстракта проводят по схеме, изложенной выше, при определении ХОП методом ГЖХ. При необходимости экстракты обрабатывают концентрированной серной кислотой, как указано в том же разделе.
Сконцентрированный до 1-2 мл экстракт (без очистки или после сернокислотной очистки) количественно с помощью ацетона переносят в коническую пробирку вместимостью 5 мл. В пробирку помещают заплавленный в верхней части стеклянный капилляр и удаляют растворитель на горячей водяной бане до объема 0,2-0,3 мл. Остаток количественно, с помощью того же стеклянного капилляра, но с отломанным запаянным концом, наносят на хроматографическую пластинку в одну точку, так чтобы диаметр пятна не превышал 1 см. Остаток экстракта в колбе смывают тремя порциями по 0,2 Мл диэтилового эфира, которые наносят в центр первого пятна. Справа и слева от пробы на расстоянии 2 см наносят стандартные растворы, содержащие 1; 3; 5,…, 10 мкг исследуемых препаратов (или другие количества препаратов, близкие к определяемым концентрациям препаратов).
Пластинки с нанесенными растворами помещают в хроматографическую камеру, на дно которой за 30 мин до начала хроматографирования наливают подвижный растворитель. При использовании пластинок с тонким слоем оксида алюминия или силикагеля в качестве подвижного растворителя применяют н-гексан или смесь гексана с ацетоном в соотношении 6: 1 для препаратов, R, которых в гексане ниже 0,3. При использовании пластинок силуфол подвижным растворителем является' 1 % -ный раствор ацетона в гексане, а при использовании пластинок силуфол, импрегнированных о- толидином,- гексан с диэтиловым эфиром в соотношении 49: 1. Край пластинки с нанесенными растворами может быть по гружен в подвижный растворитель не более чем на 0,5 см.
После того как фронт растворителя поднимется на 1О см, пластинку вынимают из камеры и оставляют на несколько минут для испарения растворителя. Далее пластинку орошают одним из проявляющих реактивов и подвергают действию УФ-лучей 10 — 15 мин (лампа ПРК-4). Пластинки следует располагать на расстоянии 20 см от источника света.
При обработке хроматограмм проявляющими реактивами на основе нитрата серебра ХОП проявляются на хроматограммах в виде серо-черных пятен на белом фоне. Окраска пятен устойчива несколько дней.
После обработки пластинок ортотолидиновым реактивом и УФ – облучением гексахлоран и эфиросульфонат проявляются через 20-35 минут в виде зелено-оранжевых пятен, устойчивых 2-3дня.
Определение полиароматических углеводородов в объектах окружающей среды методами жидкостной и тонкослойной хроматографии. [7]
Было определено содержание полиароматических углеводородов (ПАУ), в частности, бенз(а)пирена в снежном покрове. Пробоподготовку осуществляли экстракцией диэтиловым эфиром. Качественный анализ осуществляли методом тонкослойной хроматографии. Пробы наносили на пластину Silufol UV-254 и осуществляли хроматографический анализ в двух системах: система 1 — раствор кофеина в хлороформе; система 2 — смесь циклогексана и н-гексана. Использование системы 1 позволило снизить нижний предел обнаружения.
Количественный анализ осуществляли методом газожидкостной хроматографии (ГЖХ). Исследование проводили на хроматографе «Цвет-500» с пламенно-ионизационным детектором. В качестве сорбента использовали силиконовый каучук SE-54 с нанесенной на него неподвижной фазой OV-101. Анализ проводили в режиме программирования температуры от 200 до 310° С со скоростью 4 С /мин. В качестве газа-носителя использовали азот. Метод позволил определить ПАУ на уровне ПДК.
Денситометр «Сорбфил» для количественной ТСХ. [8]
Денситометрия является наиболее удобным методом количественных расчетов в тонкослойной хроматографии (ТСХ). Для ее реализации используются денситометры, сканирующие ТСХ пластину узким лучом света определенной длины волны, и видеоденситометры, производящие расчеты по видеоизображениям хроматограмм. Основными преимуществами последних является высокая скорость обработки и простота документирования.
Денситометр «Сорбфил» (производство ЗАО «Сорбполимер») позволяет обрабатывать любую ТСХ, видимую в дневном или УФ свете с длиной волны 254 или 365 нм. Изображение пластины, полученное с помощью сканера, цифровой или видеокамеры передается в компьютер. Исходя из базового положения денситометрии, что размер и интенсивность окраски пятна есть функция количества вещества в пятне, программа «Денситометр Сорбфил» производит расчет процентного состава веществ в смеси и концентрации вещества в пробе. Воспроизводимость измерений составляет 98% при относительном среднеквадратичном отклонении площади хроматографических зон менее 4%, что не превышает значение обычное для сканирующих денситометров. Результаты расчетов (графики, таблицы), текстовые пояснения, а также изображение хроматограммы, могут быть сохранены и отпечатаны в виде отчета.
Простота конструкции и достаточно высокая точность результатов ориентированы на лаборатории любого типа. Применение денситометра «Сорбфил» не требует изменения существующих методик ТСХ анализа.
Денситометр «Сорбфил» сертифицирован (сертификат Госстандарта России RU.C.31.001.А №6488, регистрационный №23965-02 в Государственном реестре средств измерений).
Метод определения нефтепродуктов тонкослойной
хроматографией с люминесцентным окончанием. [9,10]
Принцип метода. Метод основан на выделении нефтепродуктов из воды экстракцией четыреххлористым углеродом, концентрировании экстрак-та и хроматографическом отделении нефтепродуктов в тонком слое окиси алюминия в смеси органических растворителей: петролейный эфир: четы-реххлоритстый углерод: уксусная кислота (70:30:2). Количественное опреде-ление нефтепродуктов производится люминесцентным методом. Метод предназначен для анализа вод с содержанием нефтепродуктов выше 0,02 мг/л. Люминесцентное определение основано на способности входящих в со-став нефтепродуктов ароматических, особенно полициклических конденси-рованных углеводородов под действием ультрафиолетовых лучей (λвозб.=300-400 нм) интенсивно люминесцировать в коротковолновой области спектра (λизмер.=343 нм, ν=23040 см-1).
Реактивы
1. Окись алюминия, безводная
2. Четыреххлористый углерод, CСl4, ч.д.а.
3. Сернокислый натрий Na2SO4, безводный, х.ч.
4. Петролейный эфир, х.ч.
5. Гексан, С6Н14, х.ч.
6. Уксусная кислота, СН3СООН, ледяная, х.ч.
7. Подвижный растворитель (петролейный эфир (или гексан): четыреххлористый углерод: ледяная уксусная кислота)
70 г петролейного эфира или гексана, 30 мл четыреххлористого угле-рода и 2 мл ледяной уксусной кислоты встряхивают в склянке с притертой пробкой. Готовят непосредственно перед употреблением, используют в тече-ние рабочего дня.
продолжение
--PAGE_BREAK--