Введение………………………………………………………..стр. 2-3
Глава
I
:
I.I. Оценка радиационной обстановки на объекте…………………........стр. 4-6
I.II. Расчётная часть (при применении ядерного боеприпаса)……….....стр. 6-8
I.III. Расчётная часть (после аварии на АЭС с выбросом РВ)…………стр. 9-10
Глава
II
:
II.I. Особенности управления объектом экономики при радиактивном загрязнении (загрязнении) местности…………………………………стр. 11-13
Заключение……………………………………………………..стр. 14
Список используемой литературы…………………………..стр. 15
Радиация играет огромную роль в развитии цивилизации на данном историческом этапе. Благодаря явлению радиоактивности был совершен существенный прорыв в области медицины и в различных отраслях промышленности, включая энергетику. Но одновременно с этим стали всё отчётливее проявляться негативные стороны свойств радиоактивных элементов: выяснилось, что воздействие радиационного излучения на организм может иметь трагические последствия. Подобный факт не мог пройти мимо внимания общественности. И чем больше становилось известно о действии радиации на человеческий организм и окружающую среду, тем противоречивее становились мнения о том, насколько большую роль должна играть радиация в различных сферах человеческой деятельности.
Проблема радиационного загрязнения стала одной из наиболее актуальных. Радиоактивность следует рассматривать как неотъемлемую часть нашей жизни, но без знания закономерностей процессов, связанных с радиационным излучением, невозможно реально оценить ситуацию.
На примере Чернобыльской трагедии мы можем сделать вывод о чрезвычайно большой потенциальной опасности атомной энергетики: при любом минимальном сбое АЭС, особенно крупная, может оказать непоправимое воздействие на всю экосистему Земли.
Масштабы Чернобыльской аварии не могли не вызвать оживленного интереса со стороны общественности. Но мало кто догадывается о количестве мелких неполадок в работе АЭС в разных странах мира.
Так, в статье М.Пронина, подготовленной по материалам отечественной и зарубежной печати в 1992 году, содержатся следующие данные: «…С 1971 по 1984 гг. На атомных станциях ФРГ произошла 151 авария. В Японии на 37 действующих АЭС с 1981 по 1985 гг. зарегистрировано 390 аварий, 69% которых сопровождались утечкой радиоактивных веществ.… В 1985 г. в США зафиксировано 3 000 неисправностей в системах и 764 временные остановки АЭС…» и т.д.
Осталось указать несколько искусственных источников радиационного загрязнения, с которыми каждый из нас сталкивается повседневно. Это, прежде всего, строительные материалы, отличающиеся повышенной радиоактивностью. Среди таких материалов – некоторые разновидности гранитов, пемзы и бетона, при производстве которого использовались глинозем, фосфогипс и кальциево-силикатный шлак. Известны случаи, когда стройматериалы производились из отходов ядерной энергетики, что противоречит всем нормам. К излучению, исходящему от самой постройки, добавляется естественное излучение земного происхождения. Существует огромное количество общеупотребительных предметов, являющихся источником облучения. Это, прежде всего, часы со светящимся циферблатом, которые дают годовую ожидаемую эффективную эквивалентную дозу, в 4 раза превышающую ту, что обусловлена утечками на АЭС, а именно 2 000 чел-Зв. Равносильную дозу получают работники предприятий атомной промышленности и экипажи авиалайнеров.
При изготовлении таких часов используют радий. Наибольшему риску при этом подвергается, прежде всего, владелец часов. Радиоактивные изотопы используются также в других светящихся устройствах: указателях входа-выхода, в компасах, телефонных дисках, прицелах, в дросселях флуоресцентных светильников и других электроприборах и т.д.
При производстве детекторов дыма принцип их действия часто основан на использовании альфа-излучения. При изготовлении особо тонких оптических линз применяется торий, а для придания искусственного блеска зубам используют уран.
Очень незначительны дозы облучения от цветных телевизоров и рентгеновских аппаратов для проверки багажа пассажиров в аэропортах.
I
.
I
. Оценка радиационной обстановки на объекте
Радиационная обстановка складывается на территории административного района, населенного пункта или объекта в результате радиоактивного заражения местности и всех расположенных на ней предметов и требует принятия определенных мер защиты, исключающих или уменьшающих радиационные потери среди населения.
Под оценкой радиационной обстановки понимается решение основных задач по различным вариантам действий формирований, а также производственной деятельности объекта в условиях радиоактивного заражения, анализу полученных результатов и выбору наиболее целесообразных вариантов действий, при которых исключаются радиационные потери. Оценка производится по результатам прогнозирования последствий применения ядерного оружия и по данным радиационной разведки.
Поскольку процесс формирования радиоактивных следов длится несколько часов, то предварительно проводят оценку радиационной обстановки по результатам прогнозирования радиоактивного заражения местности. Эти данные позволяют заблаговременно, т.е. до подхода радиоактивного облака к объекту, провести мероприятия по защите населения, рабочих, служащих, подготовке предприятия к переводу на режим работы в условиях радиоактивного заражения, подготовке противорадиационных укрытий и средств индивидуальной защиты.
Исходные данные для прогнозирования уровней радиоактивного заражения: время осуществления ядерного взрыва (аварии), его координаты, вид и мощность взрыва, направление и скорость среднего ветра. Только достоверные данные о радиоактивном заражении, полученные органами разведки с помощью дозиметрических приборов, позволяют объективно оценить радиационную обстановку. На объекте разведка ведется постами радиационного наблюдения, звеньями и группами радиационной разведки. Они устанавливают начало радиоактивного заражения, измеряют уровни радиации и иногда определяют время наземного ядерного взрыва. Полученные данные об уровнях радиации и времени измерений заносятся в журнал радиационной разведки и наблюдения. По нанесенным на схемы уровням радиации можно провести границы зон радиоактивного заражения.
Степень опасности и возможное влияние последствий радиоактивного заражения оцениваются путем расчета экспозиционных доз излучения, с учетом которых определяются: возможные радиационные потери; допустимая продолжительность пребывания людей на зараженной местности; время начала и продолжительность проведения спасательных и неотложных аварийно-восстановительных работ на зараженной местности; допустимое время начала преодоления участков радиоактивного заражения; режимы защиты рабочих, служащих и производственной деятельности объектов и т.д.
Основные исходные данные для оценки радиационной обстановки: время ядерного взрыва, от которого произошло радиоактивное заражение, уровни радиации и время их измерения; значения коэффициентов ослабления радиации и допустимые дозы излучения. При выполнении расчетов, связанных с выявлением и оценкой радиационной обстановки, используют аналитические, графические и табличные зависимости, а также дозиметрические и расчетные линейки. (
1)
При решении задач по оценке радиационной обстановки обычно приводят уровни радиации на 1 час после взрыва. При этом могут встретиться два варианта: когда время взрыва известно и когда оно неизвестно.
Для расчетов возможных экспозиционных доз излучения при действиях на местности, зараженной радиоактивными веществами, нужны сведения об уровнях радиации, продолжительности нахождения людей на зараженной местности и степени защищенности. Степень защищенности характеризуется коэффициентом ослабления экспозиционной дозы радиации Косл.
В штабах ГО имеются таблицы, по которым по уровню радиации, времени после взрыва и времени пребывания определяется экспозиционная доза излучения. В таблице ниже приведены экспозиционные дозы излучения только для уровня радиации 100Р/ч на 1 час после ядерного взрыва. Чтобы определить экспозиционную дозу излучения для другого значения уровня радиации на 1 час после взрыва, необходимо найденную по таблице экспозиционную дозу, полученную за указанное время пребывания с начала облучения после взрыва, умножить на отношение P1/100, где P1 - фактический уровень радиации на 1 час после взрыва.
----------------------------------------------------------------------
Время | ВРЕМЯ ПРЕБЫВАНИЯ, ч
начала --------------------------------------------------------
облучения | 1 | 2 | 3 | 4 | 6 | 8 | 10 | 11 | 12 |
с момента --------------------------------------------------------
взрыва, ч | Экспозиционные дозы излучения (Р), получаемые на откр.
| местности при уровне радиации 100Р/ч на 1ч после ЯВ.
----------------------------------------------------------------------
0.5 | 113 | 158 | 186 | 204 | 231 | 249 | 262 | 273 | 310 |
1 |64.8 |98.8 | 121 | 138 | 161 | 178 | 190 | 201 | 237 |
2 | 34 |56.4 |72.8 |85.8 | 105 | 119 | 131 | 140 | 174 |
4 |16.4 |29.4 |40.2 |49.2 |63.4 |74.7 |83.8 |91.6 | 122 |
6 |10.6 |19.4 |27.0 |33.8 |45.0 |54.2 |62.0 |68.7 |96.6 |
8 | 7.6 |14.4 |20.4 |25.6 |34.8 |42.6 |49.3 |55.1 |80.5 |
10 | 6.0 |11.2 |16.0 |20.4 |28.2 |34.9 |40.7 |46.0 |69.4 |
12 | 4.8 | 9.2 |13.2 |17.0 |23.7 |29.5 |34.8 |39.6 |60.8 |
24 | 2.2 | 4.3 | 6.3 | 8.3 |12.0 |15.8 |18.5 |21.4 |35.1 |
По многочисленным данным, собранным в Хиросиме и Нагасаки, отмечены следующие степени поражения людей после воздействия на них однократных доз излучения:
1100 - 5000 Р - 100% смертность в течение одной недели;
550 - 750 Р - смертность почти 100%; небольшое количество
людей, оставшихся в живых, выздоравливает в
течении примерно 6 месяцев;
400 - 550 Р - все пораженные заболевают лучевой болезнью;
смертность около 50%;
270 - 330 Р - почти все пораженные заболевают лучевой
болезнью; смертность 20%;
180 - 220 Р - 50% пораженных заболевают лучевой болезнью;
130 - 170 Р - 25% пораженных заболевают лучевой болезнью;
80 - 120 Р - 10% пораженных чувствует недомогание и усталость
без серьезной потери трудоспособности.
0 - 50 Р - отсутствие признаков поражения
Если же период облучения будет больше четырех суток, то в облученном организме начинают протекать процессы восстановления пораженных клеток. Эффективность воздействия на организм человека однократной дозы излучения с течением времени после облучения составляет через: 1 неделю - 90%, 3 недели - 60%, 1 месяц - 50%, 3 месяца - 12%. Например, если люди были облучены экспозиционной дозой 30P три недели назад, то остаточная доза радиации составляет 30 * 0.6 = 18Р. Таким образом, зная возможные дозы излучения и степень поражения ими людей, можно определить вероятные потери среди населения.
Под режимом защиты рабочих, служащих и производственной деятельности объекта понимается порядок применения средств и способов защиты людей, предусматривающий максимальное уменьшение возможных экспозиционных доз излучения и наиболее целесообразные их действия в зоне радиоактивного заражения.
Режимы защиты для различных уровней радиации и условий производственной деятельности, пользуясь расчетными формулами, определяют в мирное время, т.е. до радиоактивного заражения территории объекта.
Определение допустимого времени начала преодоления зон (участков) радиоактивного заражения производится на основании данных радиационной разведки по уровням радиации на маршруте движения и заданной экспозиционной дозе излучения.
Для облегчения решения задач по оценке радиационной обстановки для уровней радиации от десятков до тысяч рентген в час разрабатывают возможные режимы проведения СНАВР и производственной деятельности для каждого объекта, которые оформляют в виде таблиц и графиков и используют для принятия решений в условиях непосредственного радиоактивного заражения территории объекта. (5)
I
.
II
. Расчётная часть (при применения ядерного боеприпаса)
Исходные данные:
Время ядерного взрыва боезапаса в 0 часов. Через 7 часов после ядерного взрыва доклад дозиметра: ”Наблюдается радиоактивность. Мощность дозы 26 рад/ч”.
Время обнаружения радиоактивности является временем начала спада мощности дозы и временем начала облучения (tно
)
1.
Эталонная мощность дозыP1
=Pt
t1,2
, P1
=26*71,2
=268,59
2.
Для удобства нарисуем таблицу зависимости Pt
=P1
t-1.2
Таблица 1.
t | 1 | 2 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 60 | 72 | 84 | 96 |
Pt | 268.59 | 116.911 | 31.283 | 13.617 | 8.137 | 5.927 | 4.535 | 3.644 | 3.028 | 2.58 | 1.974 | 1.586 | 1.318 | 1.123 |
Построим зоны заражения в соответствии с рис.1
|
|
|
|
По данным таблицы 1 построим график зависимости мощности дозы от времени.
3.
а) На открытой местности коэффициент защиты Kзащ
=1
Доза радиации, которую получают люди живущие в палатках (на открытой местности)
За 4 суток D=358.512
За 15 сутокD=497.781
б) Кирпичный одноэтажный дом имеет коэффициент защиты Kзащ
=12
Подвал в этом доме имеет Kзащ
=50. Тогда
в доме D=31.543
в подвале D=7.57 Выводы: В случае а) при получении дозы облучения D в течение 4 суток возможно заболевание населения лучевой болезнью 2 степени, при дозе 200…400 рад. Скрытый период продолжается около недели, после чего появляются тяжелое недомогание, расстройство функций нервной системы, головные боли, головокружение, частые рвоты, повышение температуры тела. Количество лейкоцитов в крови уменьшается более чем в два раза. Смертельные исходы могут доходить до 20%. При активном лечении выздоровление наступает через 1,5…2 месяца.
В случае б) поглощенные дозы Dподвал
и Dдом
являются умеренными и не влекут за собой серьезного ущерба здоровью. Работоспособность в данной ситуации сохраняется,замедленно время реакции в сложной обстановке, смертельные случаи единичны.
4.
С 8 до 20 часов Kзащ
=1 (открытая местность), а с 20 до 8 часов Kзащ
=12 (кирпичный одноэтажный дом). Доза, которую получат люди за 4 суток D=D1
+ D2
+ D3
+ D4
+ D5
+ D6
+ D7
+ D8
+D9
, где
D1
=1.998– доза, полученная людьми с 7 до 8 часов, D2
=148.361– доза, полученная людьми с 8 до 20 часов,
D3
=5.515– доза, полученная людьми с 20 до 32 часов,
D4
=41.433– доза, полученная людьми с 32 до 44 часов,
D5
=2.472– доза, полученная людьми с 44 до 56 часов,
D6
=22.866– доза, полученная людьми с 56 до 68 часов,
D7
=1.539– доза, полученная людьми с 68 до 80 часов,
D8
=15.410– доза, полученная людьми с 80 до 92 часов,
D9
=4.608 - доза, полученная людьми с 92 до 103 часов.
D=244.204
5.
Так как местность открытая то Кзащ
=1. Доза которую получают люди вышедшие на открытую местность
tно
=t+3=7, tко
= tно
+8=15
D=93.980
6.
Так как местность открытая то Кзащ
=1, D=10 рад (из условия).
Подставим значение tко
получим
Решая уравнение получим tно
=84
7.
Доза D=6 (из условия), tно
=7 ч, tко
=247 ч
Доза радиации которую могут получить люди
Отсюда
=77.301
8.
Мероприятия необходимые для уменьшения воздействия РВ - это главным образом эвакуация, медицинская защита и укрытие населения в защитных сооружениях.
Медицинская защита населения имеет цель предупредить или ослабить поражающее воздействие на них ионизирующих излучений и отравляющих (ядовитых) веществ путем проведения профилактических мероприятий с применением медицинских средств защиты. К медицинским средствам защиты относятся радиозащитные препараты, антидоты, антибиотики, вакцины, сыворотки и др.
Укрытие населения в защитных сооружениях – надежный способ защиты от всех поражающих факторов. Систему защитных сооружений составляют убежища, противорадиационные укрытия (ПРУ), метрополитены и т.п.
С водой РВ в организм попадают в малых количествах (крупные частицы быстро оседают на дно водоема, из которого приходится производить забор воды) и не вызывают острых лучевых поражений с потерей трудоспособности людей или продуктивности животных.
Внутренние поражения происходят главным образом при попадании РВ с пищей и кормом. Всасывающиеся радиоактивные продукты распределяются в организме крайне неравномерно. Особенно много концентрируется их в щитовидной железе и печени. Эти органы подвергаются облучению очень большими дозами, приводящему либо к разрушению ткани, либо к развитию опухолей. (4)
I
.
III
. Расчётная часть (после аварии на АЭС с выбросом РВ)
Исходные данные:
10.08.99 года в 0 часов произошла авария на АЭС. Через 4 часа после аварии на открытой местности наблюдается мощность дозы P4
=0,5 рад/ч.
1.
P1
=P4
t0.4
. Для удобства нарисуем таблицу зависимости Pt
=P1
t-0.4
Таблица 2.
T | 1 | 2 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 60 | 72 | 84 | 96 |
Pt | 1.089 | 0.825 | 0.532 | 0.403 | 0.343 | 0.305 | 0.279 | 0.026 | 0.244 | 0.231 | 0.212 | 0.197 | 0.185 | 0.175 |
По данным таблицы 2 построим график зависимости мощности дозы от времени.
2.
Эталонный уровень радиации Pt
= P
Мощность дозы будет:
- за месяц Pt
=1.089×720-0,4
=0.078
- за 3 месяца Pt
=1.089×2160-0,4
=0.05
- за 6 месяцев Pt
=1.089×4390-0,4
=0.038
- за год Pt
=1.089×8760-0,4
=0.029
3.
Kзащ1
=9 (в помещении), Kзащ2
=1 (на открытой местности).
Доза радиации, которую могут получить люди:
За первые 10 суток доза радиации D=24.737
За месяц доза радиации D=50.289
За 3 месяца доза радиации D=99.904
За год доза радиации D=235.429
4.
Мероприятия, необходимые для уменьшения воздействия РВ - это главным образом медицинская защита и укрытие населения в защитных сооружениях.
5.
Воду и питание желательно завозить из незараженных областей в специальных противорадиационных контейнерах.
6.
Основными правами, задачами городской комиссии и ее составом являются:
1. Организация работ по ликвидации последствий стихийных бедствий, аварий (катастроф), обеспечения постоянной готовности органов управления и сил для ведения этих работ, а также для осуществления контроля за разработкой и реализацией мер по предупреждению ЧС.
Для этого создаются Государственная комиссия Кабинетов Министров по ЧС (КЧС) при совминах союзных республик, исполкомах краевых, областных и городских Советов народных депутатов.
Работа КЧС организуется во взаимодействии с органами ГО, МВД, КГБ, военного командования и организациями государственного надзора и контроля. При них создается постоянный рабочий орган на базе штабов и служб ГО.
Решения КЧС во время ЧС являются обязательными для выполнения всеми организациями и предприятиями, расположенными на соответствующей территории.
2. Обеспечение всего населения защитными сооружениями, подготовка и проведение рассредоточения и эвакуации населения в случае необходимости, применение медицинских средств защиты и недопущение к употреблению зараженных продовольствия и воды.
В состав городской комиссии входят:
а) управление по делам гражданской обороны и оперативному управлению (это управление делится на: оперативную группу, группу защиты населения и группу боевой подготовки и обучения),
б) управление по экологии
в) управление по материально-техническому обеспечению
г) управление по финансам(4)
II
.
I
. Особенности управления объектом экономики при радиационном загрязнении (загрязнении) местности
Последствия радиационной аварии (РА) обусловлены их поражающими факторами - местности (в основном
Воздействие проникающей радиации ЯВ на ОЭ проявляется главным образом через ее действия на людей, конструкционные материалы и приборы, которые чувствительны к радиации. Поражающее же действие РЗ связано с заражением (загрязнением) местности, акватории и также с облучением людей. В практической дозиметрии в качестве основных параметров, характеризующих степень опасности поражения людей излучением и РЗ местности по
Устойчивость работы ОЭ в ЧС мирного и военного времени зависит в первую очередь от надежной защиты его рабочих и служащих. Поэтому оценивая устойчивость функционирования какого либо ОЭ к воздействию указанных поражающих факторов, необходимо оценить воздействие ионизирующих излучений на рабочих и служащих, занятых в производстве, а также воздействие на радиоэлектронную аппаратуру и материалы. (2)
Критерием устойчивости работы объекта
при воздействии проникающей радиации и радиоактивного заражения является предельно допустимая доза (ПДД) облучения людей, которая не приводит к потере их работоспособности и заболеванию лучевой болезнью.
ПДД или основной дозовой предел
в случае выполнения аварийных работ на РЗ местности из-за аварий, катастроф на атомных станциях (АС) и других радиационно-опасных объектах (РОО), устанавливается "Нормами радиационной безопасности (НРБ)". Так, для действующих, строящихся, реконструируемых и проектируемых АС согласно НРБ-96 планируемое повышение облучения в дозе - эффективная доза в год: 100 м3в (10 бэр) с разрешения территориальных органов Госсанэпиднадзора и 200 м3в (20 бэр) только с разрешения Госкомсанэпиднадзора РФ /12,11/.
Для военного времени при ЯВ
/ 1 / ПДД установлены следующие: при однократном облучении (в течении 4 сут.) - 50 Р; при многократном облучении - 100 Р (в течении 30 сут.), 200 Р (в течение 3 месяцев) и 300 Р (в течение 1 года).
Условия работы ОЭ после ядерного взрыва или радиационной аварии, катастрофы на РОО характеризуются радиационной обстановкой (РО) на его территории, а следовательно, уровнем радиации и местом работы людей (в зданиях или на открытой местности).
Исходными данными для оценки устойчивости
работы ОЭ при РЗ местности и действии проникающей радиации являются: уровень радиации и доза излучения после ЯВ; характеристика производственных зданий и сооружений (расположение, конструкция, этажность и т.д.); характеристики защитных сооружений (ЗС); характеристики технологического оборудования, приборов, автоматики и используемых материалов.
Оценка устойчивости работы промышленного объекта и др. ОЭ производится в такой последовательности
:
1. Определяется степень защищенности рабочих и служащих, характеризуемая коэффициентом ослабления (Kосл.) защитных сооружений или производственных зданий.
В этом случае находятся значения каждого здания, сооружения, убежища и др. ЗС, в которых будет работать или отдыхать производственный персонал.
2. Рассчитывается допустимая доза облучения людей и уровень радиации через 1ч после взрыва на данный рабочий день.
Уровень радиации после взрыва и доза облучения персонала объекта определяются при выявлении и оценке РО по данным разведки местности.
По значению дозы излучения оценивается устойчивость работы объекта согласно указанному определению по критерию устойчивости: Dоб
3. Определяется критерий устойчивости работы ОЭ.
При этом значение полученной дозы излучения сравнивается с ПДД согласно определению критерия устойчивости объекта: Dоб
4. Выявляется возможность герметизации помещений объекта для предотвращения распространения РВ и радиоактивных газов.
5. Определяется режим радиационной защиты рабочих и служащих.
По значению уровня радиации на ОЭ через 1ч после взрыва согласно методике оценки РО находится режим защиты персонала объекта.
Типовой режим включает три этапа (периода):
а) I этап - продолжительность прекращения работы объекта и пребывания людей в ЗС;
б) II этап - продолжительность работы объекта с использованием ЗС для отдыха людей;
в) III этап - продолжительность работы объекта с использованием для отдыха жилых домов с ограничением времени пребывания людей на открытой местности.
Таким образом, допустимая продолжительность работы рабочих и служащих на промышленном объекте и режим их поведения в условиях РЗ будет зависеть от:
- уровня радиации на ОЭ;
- от значений Kосл. производственных зданий сооружений и ЗС, где будут работать и отдыхать люди;
- от величины дозы излучения на данные сутки работы ОЭ.
С учетом этих факторов и с использованием методики оценки РО определяется и вводится режим радиационной защиты рабочих и служащих объекта.
Анализ результатов оценки устойчивости работы ОЭ в условиях воздействия проникающей радиации и РЗ завершается выводами, в которых указываются:
ожидаемые дозы облучения на открытой РЗ местности;
критерий устойчивости объекта;
степень защиты персонала и оборудования;
возможность непрерывной работы объекта в обычном режиме и при РЗ территории ОЭ;
мероприятия по повышению устойчивости работы объекта. (
6)
СРЕДСТВА ЗАЩИТЫ НАСЕЛЕНИЯ
I. Коллективные средства защиты
- убежища
- быстровозводимые убежища (БВУ)
- противорадиационные укрытия (ПРУ)
- простейшие укрытия (ПУ)
II. Индивидуальные средства защиты органов дыхания
- фильтрующие противогазы
- изолирующие противогазы
- фильтрующие респираторы
- изолирующие респираторы
- самоспасатели, шланговые, автономные
- патроны к противогазам
III. Индивидуальные средства защиты кожи
- фильтрующие
- изолирующие
IV. Приборы дозиметрической разведки
V. Приборы химической разведки
VI. Приборы - определители вредных примесей в воздухе
VI. Фотографии (3)
В результате исследований выявляются слабые места в работе предприятий и даются рекомендации руководителям предприятий по устранению этих слабых мест и по повышению устойчивости работы объектов. Мероприятия по предупреждению аварий и катастроф представляют собой комплекс организационных и инженерно - технических мероприятий , направленных на выявление и устранение причин этих явлений, максимальное снижение возможных разрушений и потерь , если эти причины полностью неудается устранить , а также на создание благоприятных условий для проведения спасательных и аврийно-восстановительных работ.
Наиболее эффективное мероприятие - закладка в проекте вновь создаваемых объектов планировочных , технических и технологических решений , максимально уменьшающих вероятность возникновения аварий, или снижающих материальный ущерб в случае , если авария произойдет .
Учитываются требования охраны труда , техники безопасности , правила эксплуатации энергетических установок , подъемно - транспортного оборудования , емкостей под высоким давлением и т.д..
1.
Экология, охрана природы и экологическая безопасность.: Учебное пособие/Под ред.
проф. В.И.Данилова-Данильяна. В 2 кн. Кн. 1. -- М.: Изд-во МНЭПУ, 1997. – 424 с.
2.
Брошюра «Радиация. Дозы, эффекты, риск».
3.
статья М.Пронина, подготовленной по материалам отечественной и зарубежной печати в 1992 году.
4.
Зайцев А.П.. «Защита населения в чрезвычайные ситуации», выпуск №2 – М.: « Военное знание», 2000.
5.
Защита от оружия массового поражения. В.В. Мясников. – М.: Воениздат, 1984.
6.
Бобок С.А., Юртушкин В.И. Чрезвычайные ситуации: защита населения и территорий. – М.: «Издательство ГНОМ и Д», 2000.
! |
Как писать рефераты Практические рекомендации по написанию студенческих рефератов. |
! | План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом. |
! | Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач. |
! | Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты. |
! | Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ. |
→ | Виды рефератов Какими бывают рефераты по своему назначению и структуре. |