Реферат по предмету "Философия"


Философская теология. Наука и Бог

--PAGE_BREAK--
4. Мир, расширяющийся со все нарастающей скоростью. Новейшие экспериментальные данные и теоретические изыскания говорят о том, что Вселенная разлетается все быстрее, и несмотря на евклидовость нашего мира, большая часть галактик в будущем будет нам недоступна. И виновата в столь странном устроении мира та самая темная энергия, которую сегодня связали с некоей внутренней энергией вакуума, заполняющего все пространство

Что же ждет нашу Вселенную в дальнейшем? Еще несколько лет назад у теоретиков в этой связи имелись всего две возможности. Если плотность энергии во Вселенной мала, то она будет вечно расширяться и постепенно остывать. Если же плотность энергии больше некоторого критического значения, то стадия расширения сменится стадией сжатия. Вселенная будет сжиматься в размерах и нагреваться. Значит, одним из ключевых параметров, определяющим развитие Вселенной, является средняя плотность энергии. Так вот, астрофизические наблюдения, проводимые до 1998 года, говорили о том, что плотность энергии составляет примерно 30% от критического значения. А инфляционные модели предсказывали, что плотность энергии должна быть равна критической. Апологетов инфляционной теории это не очень смущало. Они отмахивались от оппонентов и говорили, что недостающие 70% «как-нибудь найдутся». И они действительно нашлись. Это большая победа теории инфляции, хотя найденная энергия оказалась такой странной, что вызвала больше вопросов, чем ответов. Похоже, что искомая темная энергия — это энергия самого вакуума.

В представлении людей, не связанных с физикой, вакуум — «это когда ничего нет» — ни вещества, ни частиц, ни полей. Однако это не совсем так. Стандартное определение вакуума — это состояние, в котором отсутствуют частицы. Поскольку энергия заключена именно в частицах, то, как резонно полагали едва ли не все, включая и ученых, нет частиц — нет и энергии. Значит, энергия вакуума равна нулю. Вся эта благостная картина рухнула в 1998 году, когда астрономические наблюдения показали, что разбегание галактик немножко отклоняется от закона Хаббла. Вызванный этими наблюдениями у космологов шок длился недолго. Очень быстро стали публиковаться статьи с объяснением этого факта. Самым простым и естественным из них оказалась идея о существовании положительной энергии вакуума. Ведь вакуум, в конце концов, означает просто отсутствие частиц, но почему лишь частицы могут обладать энергией? Обнаруженная темная энергия оказалась распределенной в пространстве на удивление однородно. Подобную однородность трудно осуществить, ведь если бы эта энергия была заключена в каких-то неведомых частицах, гравитационное взаимодействие заставляло бы их собраться в грандиозные конгломераты, подобные галактикам. Поэтому энергия, спрятанная в пространстве-вакууме, очень изящно объясняет устроение нашего мира.

Однако возможны и другие, более экзотические, варианты мироустроения. Например, модель Квинтэссенции, элементы которой были предложены советским физиком А.Д. Долговым в 1985 году, предполагает, что мы все еще скатываемся с той самой горки, о которой говорилось в начале нашего повествования. Причем катимся мы уже очень долго, и конца этому процессу не видно. Необычное название, позаимствованное у Аристотеля, обозначает некую «новую сущность», призванную объяснить, почему мир устроен так, а не иначе.

Сегодня вариантов ответа на вопрос о будущем нашей Вселенной стало значительно больше. И они существенно зависят от того, какая теория, объясняющая скрытую энергию, является правильной. Предположим, что верно простейшее объяснение, при котором энергия вакуума положительна и не меняется со временем. В этом случае Вселенная уже никогда не сожмется и нам не грозит перегрев и Большой хлопок. Но за все хорошее приходится платить. В этом случае, как показывают расчеты, мы в будущем никогда не сможем достигнуть всех звезд. Более того, количество галактик, видимых с Земли, будет уменьшаться, и через 10—20 млрд. лет в распоряжении человечества останется всего несколько соседних галактик, включая нашу — Млечный Путь, а также соседнюю Андромеду. Человечество уже не сможет увеличиваться количественно, и тогда придется заняться своей качественной составляющей. В утешение можно сказать, что несколько сотен миллиардов звезд, которые будут нам доступны в столь отдаленном будущем, — это тоже немало.

Впрочем, понадобятся ли нам звезды? 20 миллиардов лет — большой срок. Ведь всего за несколько сот миллионов лет жизнь развилась от трилобитов до современного человека. Так что наши далекие потомки, возможно, будут по внешнему виду и возможностям отличаться от нас еще больше, чем мы от трилобитов. Что же сулит им еще более отдаленное будущее, по прогнозам современных ученых? Ясно, что звезды будут тем или иным способом «умирать», но будут образовываться и новые. Этот процесс тоже не бесконечен — примерно через 1014 лет, по предположению ученых, во Вселенной останутся только слабосветящиеся объекты — белые и темные карлики, нейтронные звезды и черные дыры. Почти все они также погибнут через 1037 лет, исчерпав все запасы своей энергии. К этому моменту останутся лишь черные дыры, поглотившие всю остальную материю. Что может разрушить черную дыру? Любые наши попытки сделать это лишь увеличивают ее массу. Но «ничто не вечно под Луной». Оказывается, черные дыры медленно, но излучают частицы. Значит, их масса постепенно уменьшается. Все черные дыры тоже должны исчезнуть примерно через 10100 лет. После этого останутся лишь элементарные частицы, расстояние между которыми будет намного превосходить размеры современной Вселенной (примерно в 1090 раз) — ведь все это время Вселенная расширялась! Ну и, конечно, останется энергия вакуума, которая будет абсолютно доминировать во Вселенной. Кстати, свойства такого пространства впервые изучил В. Де Ситтер еще в 1922 году. Так что нашим потомкам предстоит либо изменить физические законы Вселенной, либо перебраться в другие вселенные. Сейчас это кажется невероятным, но хочется верить в могущество человечества, как бы оно, человечество, ни выглядело в столь отдаленном будущем. Потому что времени у него предостаточно.

Кстати, возможно, что уже и сейчас мы, сами того не ведая, создаем новые вселенные. Для того чтобы в очень маленькой области возникла новая вселенная, необходимо инициировать инфляционный процесс, который возможен только при высоких плотностях энергий. А ведь экспериментаторы уже давно создают такие области, сталкивая частицы на ускорителях… И хотя эти энергии еще очень далеки от инфляционных, вероятность создания вселенной на ускорителе уже не равна нулю. К сожалению, мы являемся тем самым «удаленным наблюдателем», для которого время жизни этой «рукотворной» вселенной слишком мало, и внедриться в нее и посмотреть, что там происходит, мы не можем…

Формирование звезд

Сначала формируется протозвезда. Частицы гигантского движущегося газопылевого облака в некоторой области пространства притягиваются между собой за счет гравитационных сил. Происходит это очень медленно, ведь силы, пропорциональные массам входящих в облако атомов (в основном атомов водорода) и пылинок, чрезвычайно малы. Однако постепенно частицы сближаются, плотность облака нарастает, оно становится непрозрачным, образующийся сферический «ком» начинает понемногу вращаться, растет и сила притяжения, ведь теперь масса «кома» велика. Все больше и больше частиц захватывается, все больше плотность вещества. Внешние слои давят на внутренние, давление в глубине растет, а, значит, растет и температура. (Именно так обстоит дело с газами, которые были подробно изучены на Земле). Наконец, температура становится такой большой – несколько миллионов градусов, — что в ядре этого образующегося тела создаются условия для протекания ядерной реакции синтеза: водород начинает превращаться в гелий. Об этом можно узнать, регистрируя потоки нейтрино – элементарных частиц, выделяющихся при такой реакции. Реакция сопровождается мощным потоком электромагнитного излучения, которое давит (силой светового давления, впервые измеренной в Земной лаборатории П.Лебедевым) на внешние слои вещества, противодействуя гравитационному сжатию. Наконец, сжатие прекращается, поскольку давления уравновешиваются, и протозвезда становится звездой. Чтобы пройти эту стадию своей эволюции протозвезде нужно несколько миллионов лет, если ее масса больше солнечной, и несколько сот миллионов лет, если ее масса меньше солнечной. Звезд, массы которых меньше солнечной в 10 раз, очень мало.

Масса является одной из важных характеристик звезд. Любопытно отметить, что довольно распространены двойные звезды – образующиеся вблизи друг друга и вращающиеся вокруг общего центра. Их насчитывается от 30 до 50 процентов от общего числа звезд. Возникновение двойных, вероятно, связано с распределением момента количества движения исходного облака. Если у такой пары образуется планетная система, то движение планет может быть довольно замысловатым, а условия на их поверхностях будут сильно изменяться в зависимости от расположения планеты на орбите по отношению к светилам. Весьма возможно, что стационарных орбит, вроде тех, что могут существовать в планетных системах одинарных звезд (и существуют в Солнечной системе), не окажется совсем. Обычные, одинарные звезды в процессе своего образования начинают вращаться вокруг своей оси.

Другой важной характеристикой является радиус звезды. Существуют звезды – белые карлики, радиус которых не превышает радиуса Земли, существуют и такие – красные гиганты, радиус которых достигает радиуса орбиты Марса. Химический состав звезд по спектроскопическим данным в среднем такой: на 10000 атомов водорода приходится 1000 атомов гелия, 5 атомов кислорода, 2 атома азота, 1 атом углерода, остальных элементов еще меньше. Из-за высоких температур атомы ионизируются, так что вещество звезды является в основном водородно-гелиевой плазмой – в целом электрически нейтральной смесью ионов и электронов. В зависимости от массы и химического состава исходного облака образовавшаяся звезда попадает на тот или иной участок, так называемой главной последовательности на диаграмме Герцшпрунга-Рессела. Последняя представляет собой координатную плоскость, на вертикальной оси которой откладывается светимость звезды (т.е. количество энергии, излучаемой ей в единицу времени), а на горизонтальной – ее спектральный класс (характеризующий цвет звезды, который в свою очередь зависит от температуры ее поверхности). При этом «синие» звезды более горячие, чем «красные», а наше «желтое» Солнце имеет промежуточную температуру поверхности порядка 6000 градусов. Традиционно спектральные классы от горячих к холодным обозначаются буквами O,B,A,F,G,K,M, при этом каждый класс делится на десять подклассов. Так, наше Солнце имеет спектральный класс G2. По мере «выгорания» водорода в центре звезды ее масса немного меняется и звезда немного смещается вправо вдоль главной последовательности. Звезды с массами порядка солнечной находятся на главной последовательности 10-15 млрд. лет (наше Солнце находится на ней уже около 4,5 млрд. лет). Постепенно энергии в центре звезды выделяется все меньше, давление падает, ядро сжимается, и температура в нем возрастает. Ядерные реакции протекают теперь только в тонком слое на границе ядра внутри звезды. В результате звезда в целом начинает «разбухать», а ее светимость увеличиваться. Звезда сходит с главной последовательности и перебирается в правый верхний угол диаграммы Герцшпрунга-Рессела, превращаясь в так называемый «красный гигант». После того, как температура сжимающегося (теперь уже гелиевого) ядра красного гиганта достигнет 100-150 млн. градусов, начинается новая ядерная реакция синтеза – превращение гелия в углерод. Когда и эта реакция исчерпает себя, происходит сброс оболочки – существенная часть массы звезды превращается в планетарную туманность. Горячие внутренние слои звезды оказываются «снаружи», и их излучение «раздувает» отделившуюся оболочку. Через несколько десятков тысяч лет оболочка рассеивается, и остается небольшая очень горячая плотная звезда. Медленно остывая, она переходит в левый нижний угол диаграммы и превращается в «белый карлик». Белые карлики, по-видимому, представляют собой заключительный этап нормальной эволюции большинства звезд.

Но встречаются и аномалии. Некоторые звезды время от времени вспыхивают, превращаясь в новые звезды. При этом они каждый раз теряют порядка сотой доли процента своей массы. Из хорошо известных звезд можно упомянуть новую в созвездии Лебедя, вспыхнувшую в августе 1975 года и пробывшую на небосводе несколько лет. Но иногда случаются и вспышки сверхновых – катастрофические события, ведущие к полному разрушению звезды, при которых за короткое время излучается энергии больше, чем от миллиардов звезд той галактики, к которой принадлежит сверхновая. Такое событие зафиксировано в китайских хрониках 1054 года: на небосводе появилась такая яркая звезда, что ее можно было видеть даже днем. Результат этого события известен нам теперь как Крабовидная туманность, «медленное» распространение которой по небу мы наблюдаем в последние 300 лет. Скорость разлета ее газов в результате взрыва составляет порядка 1500 м/с, но она находится очень далеко. Сопоставляя скорость разлета с видимым размером Крабовидной туманности, мы можем рассчитать время, когда она была точечным объектом, и найти его место на небосклоне – эти время и место соответствуют времени и месту появления звезды, упомянутой в хрониках.

Если масса звезды, оставшейся после сброса оболочки «красным гигантом» превосходит солнечную в 1,2-2,5 раза, то, как показывают расчеты, устойчивый «белый карлик» образоваться не может. Звезда начинает сжиматься, и ее радиус достигает ничтожных размеров в 10 км, а плотность вещества такой звезды превышает плотность атомного ядра. Предполагается, что такая звезда состоит из плотно упакованных нейтронов, поэтому она так и называется – нейтронная звезда. Согласно этой теоретической модели у нейтронной звезды имеется сильное магнитное поле, а сама она вращается с огромной скоростью – несколько десятков или сотен оборотов в секунду. И только обнаруженные (именно в Крабовидной туманности) в 1967 году пульсары – точечные источники импульсного радиоизлучения высокой стабильности – обладают как раз такими свойствами, каких следовало ожидать от нейтронных звезд. Наблюдаемое явление подтвердило концепцию.

Если же оставшаяся масса еще больше, то гравитационное сжатие неудержимо сжимает вещество и дальше. Вступает в действие одно из предсказаний общей теории относительности, согласно которому вещество сожмется в точку. Это явление называется гравитационным коллапсом, а его результат – «черной дырой». Это название связано с тем, что гравитационная масса такого объекта настолько велика, силы притяжения настолько значительны, что не только какое-либо вещественное тело не может покинуть окрестность черной дыры, но даже свет – электромагнитный сигнал – не может ни отразиться, ни выйти «наружу». Таким образом, непосредственно наблюдать черную дыру невозможно, можно лишь догадаться о ее существовании по косвенным эффектам. Двигаясь в пространстве по направлению к черной дыре (о которой мы пока ничего не знаем), можно обнаружить, что рисунок созвездий, расположенных прямо по курсу начинает меняться. Это связано с тем, что свет, идущий от звезд и проходящий неподалеку от черной дыры, отклоняется ее тяготением. По мере приближения к дыре возникнет пустая область, окруженная светящимися точками-звездами, в том числе и такими, которых раньше не наблюдалось. Свет от некоторых звезд может, проходя мимо дыры, поворачивать вокруг нее, а затем попадать в приемные устройства наблюдателя. Таким образом, одна звезда может давать несколько изображений в разных местах. Все это, конечно, противоречит как нашему жизненному опыту, так и классическим представлениям, согласно которым свет распространяется прямолинейно. Однако в пользу существования черных дыр говорит целый ряд косвенных астрономических наблюдений, а отклонение света под действием гравитационного притяжения регистрируется уже при прохождении луча мимо такого «нормального» объекта, как Солнце.
Возникновения планет

Движение планет в Солнечной системе упорядоченное: они вращаются вокруг Солнца в одном направлении и почти в одной плоскости. Расстояния от одной планеты до другой возрастают закономерно. Орбиты планет близки к окружностям, что и позволяет им вращаться вокруг Солнца миллиарды лет, не сталкиваясь друг с другом.

Если движение планет подчиняется одному и тому же порядку, то и процесс их образования должен быть единым. Это показали в XVIII в. Иммануил Кант и Пьер Лаплас. Они пришли к выводу, что на месте планет вокруг Солнца первоначально вращалась туманность из газа и пыли.

Но откуда взялась эта туманность? И каким образом газ и пыль превратились в крупные планетные тела? Эти вопросы оставались нерешёнными в космогонии XIX и начала XX в. Камнем преткновения была и проблема момента количества движения планет. Масса всех планет системы в 750 раз меньше массы Солнца. При этом на долю Солнца приходится лишь 2% общего момента количества движения, а остальные 98% заключены в орбитальном вращении планет.

Вплотную этими проблемами наука занялась лишь во второй половине XX в. Почти до конца 80-х гг. раннюю историю нашей планетной системы приходилось «воссоздавать» лишь на основе данных о ней самой. И только к 90-м гг. стали доступны для наблюдений невидимые ранее объекты – газопылевые диски, вращающиеся вокруг некоторых молодых звёзд, сходных с Солнцем.

Газопылевую туманность, в которой возникли планеты, их спутники, мелкие твёрдые тела – метеориты, астероиды и кометы, называют протопланетным (или допланетным) облаком. Планеты вращаются вокруг Солнца почти в одной плоскости, а значит, и само газопылевое облако имело уплощённую, чечевицеобразную форму, поэтому его называют ещё диском. Учёные полагают, что и Солнце, и диск образовались из одной и той же вращающейся массы межзвёздного газа – протосолнечной туманности.

Начальная фаза протосолнечной туманности – предмет исследования астрофизики и звёздной космогонии. Изучение же её эволюции, приведшей к появлению планет, — центральная задача космогонии планетной.

Возраст Солнца насчитывает чуть меньше 5 млрд. лет. Возраст древнейших метеоритов почти такой же: 4,5-4,6 млрд. лет. Столь же стары и рано затвердевшие части лунной коры. Поэтому принято считать, что Земля и другие планеты сформировались 4,6 млрд. лет назад. Солнце относится к звёздам так называемого второго поколения Галактики. Самые старые её звёзды значительно (на 8-10 млрд. лет) старше Солнечной системы. В Галактике есть и молодые звёзды, которым всего 100 тыс. – 100 млн лет (для звезды это совсем юный возраст). Многие из них похожи на Солнце, и по ним можно судить о начальном состоянии нашей системы. Наблюдая несколько десятков подобных объектов, учёные пришли к следующим выводам.

Размер допланетного облака Солнечной системы должен был превышать радиус орбиты последней планеты – Плутона. Химический состав молодого Солнца и окружавшего его газопылевого облака-диска, по-видимому, был одинаков. Общее содержание водорода и гелия достигало в нём 98%. На долю всех остальных, более тяжёлых элементов приходилось лишь 2%; среди них преобладали летучие соединения, включающие углерод, азот и кислород: метан, аммиак, вода, углекислота. Другими методами и в других отраслях знания.

Расчёты показывают, что в пределах орбиты Плутона, т. Е. диска радиусом 40 а. е., общая масса всех планет вместе с утерянными к настоящему времени летучими веществами должна была составлять 3-5% от массы Солнца. Такую модель облака называют облаком умеренно малой массы, она подтверждается и наблюдениями околозвёздных дисков.

Если бы масса облака была сопоставима с массой центрального тела, то должна была бы образоваться звезда – компаньон Солнца (или же надо найти объяснение выбросу огромных излишков вещества из Солнечной системы).

Наименее изучена самая ранняя стадия – выделение протосолнечной туманности из гигантского родительского молекулярного облака, принадлежащего Галактике. В 40-х гг. академик Отто Юльевич Шмидт выдвинул ставшую общепринятой гипотезу об образовании Земли и других планет из холодных твёрдых допланетных тел – планетезымалей. Распространённая ранее точка зрения, что планеты»- это небольшие остатки некогда раскалённых гигантских газовых сгустков солнечного состава, потерявших летучие вещества, пришла в противоречие с науками о Земле.

Земля, как показывают исследования, никогда не проходила через огненно-жидкое, т. Е. полностью расплавленное состояние. Исследуя шаг за шагом эволюцию допланетного диска, учёные получили последовательность основных этапов развития газопылевого диска, окружавшего Солнце, в систему планет.

Первоначальный размер облака превышал современный размер планетной системы, а его состав соответствовал тому, который наблюдается в межзвёздных туманностях: 99% газа и 1% пылевых частиц размерами от долей микрометра до сотен микрометров. Во время коллапса, т. Е. падения газа с пылью на центральное ядро (будущее Солнце), вещество сильно разогревалось, и межзвёздная пыль могла частично или полностью испариться. Таким образом, на первой стадии облако состояло почти целиком из газа, притом хорошо перемешанного благодаря высокой турбулентности – разнонаправленному, хаотичному движению частиц.

По мере формирования диска турбулентность стихает. Это занимает немного времени – около 1000 лет. При этом газ охлаждается и в нём вновь образуются твёрдые пылевые частицы. Таков первый этап эволюции диска.

Для остывающего допланетного облака характерно очень низкое давление – менее десятитысячной доли атмосферы. При таком давлении вещество из газа конденсируется непосредственно в твёрдые частички, минуя жидкую фазу. Первыми конденсируются самые тугоплавкие соединения кальция, магния, алюминия и титана, затем магниевые силикаты, железо и никель. После этого в газовой среде остаются лишь сера, свободный кислород, азот, водород, все инертные газы и некоторые летучие элементы.

В процессе конденсации становятся активными пары воды, окисляющие железо и образующие гидраризованные соединения. Основные же космические элементы – водород и гелий – остаются в газообразной форме. Для их конденсации потребовались бы температуры, близкие к абсолютному нулю, ни при каких условиях недостижимые в облаке.

Химический состав пылинок в допланетном диске определялся температурой, которая падала по мере удаления от Солнца. К сожалению, рассчитать изменение температуры в допланетном облаке очень трудно. Химический состав планет земной группы показывает, что они состоят в основном из веществ, конденсировавшихся при высоких температурах. В составе ближней части пояса астероидов преобладают каменистые тела. По мере удаления от Солнца в поясе астероидов увеличивается число тел, которые содержат обогащённые водой минералы и некоторые летучие вещества. Их удалось обнаружить в метеоритах, являющихся осколками астероидов. Среди малых планет, по-видимому, нет или очень немного ледяных тел. Следовательно, граница конденсации водяного льда должна была проходить за ними, не ближе внешнего края пояса астероидов – в три с лишним раза дальше от Солнца, чем Земля.

В то же время крупнейшие спутники Юпитера – Ганимед и Каллисто – наполовину состоят из воды. Они находятся на гораздо большем расстоянии от Солнца, чем пояс астероидов. Значит, водяной лёд конденсировался во всей зоне образования Юпитера. Начиная с орбиты Юпитера и дальше в допланетном облаке должны были преобладать ледяные пылинки с вкраплениями более тугоплавких веществ. В области внешних планет, при ещё более низкой температуре, в составе пылинок оказались льды метана, аммиака, твёрдая углекислота и другие замёрзшие летучие соединения. Подобный состав в настоящее время имеют кометные ядра, залетающие в окрестности Земли с далёкой периферии Солнечной системы.

Первые конденсаты – пылинки, льдинки – сразу после своего появления начинали двигаться сквозь газ к центральной плоскости облака. Чем крупнее были частицы, тем быстрее они оседали, так как при своём движении более крупные частицы (в отличие от мелких) встречают меньшее сопротивление газа на единицу их массы.

    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Логика и язык
Реферат Бадан в вашем саду
Реферат Pr-агентство вайенштефан «Оценка эффективности рекламной кампании в сети Интернет»
Реферат Структура і діяльність "Ощадбанку"
Реферат Теория самоактуализации (А.Г.Маслоу)
Реферат Физиократы в России (Экономические воззрения М.В. Ломоносова и А.Н. Радищева)
Реферат Европейская культура XVlll века. Эпоха Просвещения
Реферат Is Macbeth Responsible For The Bloodshed Essay
Реферат Cash Balance Essay Research Paper Cash Balance
Реферат «Программа социально-экономического развития страны на 2011 -2015 гг новое лицо белорусского государства»
Реферат Академик Г.Ф. Морозов и его вклад в исследования природы Крыма
Реферат Створення швейного цеху по виготовленню спецодягу для працівників ВП Хмельницької АЕС
Реферат Ancient Asteroid Essay Research Paper The article
Реферат Триметилхлорсилан – перспективний конденсуючий реагент в реакціях за участю карбонільних сполук
Реферат Психологічні основи застосування комп'ютерів у процесі навчання