Н. А. КРИНИЦКИЙ
АЛГОРИТМЫ ВОКРУГ НАС
Издание второе
ВВЕДЕНИЕ
Двадцатый век в области науки и техники принес человечеству много крупных достижений: радио, звуковое кино, телевидение, атомная энергия, космические полеты, электронные вычислительные машины — вот только главнейшие вехи, известные каждому. Наверное, не менее известны кибернетика, вирусология, генетика.
Но не всем известно, что крупнейшим достижением науки XXв. является теория алгоритмов — новая математическая дисциплина. Теория электронных вычислительных машин, теория и практика программирования не могут обойтись без нее. Математическая логика и кибернетика предъявляют на нее свои права. Однако она является самостоятельной наукой, которая готова служить всем наукам, и имеет свое лицо, свой предмет.
Само название — теория алгоритмов — говорит о том, что ее предмет — алгоритмы. Что это такое? Понятие алгоритма является и очень простым и очень сложным. Его простота — в многочисленности алгоритмов, с которыми мы имеем дело, в их обыденности. Но эти же обстоятельства делают его туманным, расплывчатым, трудно поддающимся строгому научному определению.
Слово «алгоритм» происходит от имени узбекского математика Хорезми (по-арабски ал-Хорезми), который в IXв. н. э. разработал правила четырех арифметических действий над числами в десятичной системе счисления. Совокупность этих правил в Европе стали называть «ал-горизм». Впоследствии это слово переродилось в «алгоритм» и сделалось собирательным названием отдельных правил определенного вида (и не только правил арифметических действий). В течение длительного времени его употребляли только математики, обозначая правила решения различных задач.
В 30-х годах XXв. понятие алгоритма стало объектом математического изучения (прежде им только пользовались), а с появлением электронных вычислительных машин получило широкую известность. Развитие электронной вычислительной техники и методов программирования способствовало уяснению того факта, что разработка алгоритмов является необходимым этапом автоматизации. То, что сегодня записано в виде алгоритма, завтра будет выполняться роботами. В настоящее время слово «алгоритм» вышло за пределы хматематики. Его стали применять в самых различных областях, понимая под ним точно сформулированное правило, назначение которого — быть руководством для достижения необходимого результата.
Формирование научного понятия алгоритма, ставшее важной проблемой, не закончено и в настоящее время. И хотя теория алгоритмов является математической дисциплиной, она еще не очень похожа на такие широко известные науки, как геометрия или теория чисел. Она еще только зарождается, причем тем исходным материалом, на основании которого должно быть построено широкое научное понятие алгоритма, является интуитивное понятие, тоже очень широкое, но недостаточно ясное.
Описывая зарождение теории алгоритмов, мы не пойдем путем, которым шла история этой науки (хотя о ней и расскажем), а сразу познакомим читателя с современным интуитивным понятием алгоритма. Затем это понятие уточним настолько, чтобы стали возможными изложение традиционных теорий алгоритмов, дальнейшее уточнение понятия алгоритма и, наконец, широкое формальное определение.
В реальной жизни выполнение всяких действий связано с расходом различных ресурсов: материалов, энергии и времени. Даже производя какие-либо записи, мы расходуем ресурсы (например, бумагу, чернила и время). Еще недавно некоторые задачи нельзя было решить из-за слишком большого числа необходимых для этого операций и слишком малой скорости их выполнения. Появление электронных вычислительных машин сделало такие задачи разрешимыми. Это значит, что «математизируя» понятие алгоритма, нужно абстрагироваться, отвлечься от ограниченности ресурсов, требуя только их конечности, иначе теория алгоритмов устареет, как только развитие науки и техники позволит переступить через существующие границы ресурсов.
Алгоритму в интуитивном смысле в книге противопоставляется алгоритм в математическом, или формальном смысле. В последнем случае считается, что понятие оп-
ределено методами, принятыми в математике, и основывается либо на других понятиях, имеющих математическое определение, либо на первоначальных, описанных настолько четко, что их свойства могут быть приняты за аксиомы новой теории.
Теорию алгоритмов, которой посвящена эта книга, мы называем содержательной в том смысле, что именно алгоритмы как таковые во всем их разнообразии являются ее предметом. В этом отношении она является противополож: ностью традиционных теорий, которые изучали вопросы существования и несуществования алгоритмов путем сведения вопросов к исследованию какого-либо одного узкого класса алгоритмов и потому очень многие важнейшие проблемы оставляли вне своего поля зрения. В последнее время традиционные теории алгоритмов нередко объединяют названием логические, а вышеупомянутую содержательную теорию стали называть аналитической.
Для понимания книги не нужна специальная подготовка, но порою требуется большая внимательность, например, при чтении главы 4, в которой коротко изложены логические теории алгоритмов. Об электронных вычислительных машинах и программировании в этой книге сказано очень мало. Лишь столько, сколько нужно для того, чтобы стала ясной связь теории алгоритмов и этой области, которая не только нуждается в результатах теории алгоритмов, но и порождает многие идеи этой теории.
В заключение автор пользуется случаем выразить глубокую признательность Н. М. Нагорному, оказавшему при подготовке 2-го издания большую помощь.
Глава 1
АЛГОРИТМЫ В ИНТУИТИВНОМ СМЫСЛЕ
§ 1. «Алгоритмические джунгли»
Среди разнообразных правил, с которыми приходится сталкиваться ежедневно и ежечасно, особую роль играют правила, предписывающие последовательность действий, ведущих к достижению некоторого необходимого результата. Нередко их называют алгоритмами. С научной точки зрения к этому названию нужно добавить слова «в интуитивном смысле».
Интуицией называют знание, приобретенное в результате обширного опыта, но еще не подвергнутое научному анализу и потому недостаточно четкое и строгое. По мере накопления опыта это знание обогащается, и потому наши интуитивные представления о чем-нибудь могут постепенно изменяться.
Знания, облеченные в научную, в частности математическую форму, не обладают такой изменчивостью, характеризуются большой точностью и служат основанием для научных выводов. В тех случаях, когда формализованные знания перестают соответствовать интуитивным представлениям, научные формулировки заменяют новыми.
Разъясним понятие алгоритма в интуитивном смысле на ряде примеров (слова «в интуитивном смысле», когда это не ведет к недоразумениям, будем опускать). К числу алгоритмов не относятся правила, что-либо запрещающие, например: «Вход посторонним запрещен», «Не курить», «Въезд запрещен» (изображается известным каждому водителю автомобиля знаком «кирпич»). Не относятся к ним и правила, что-либо разрешающие, такие как «Разрешена стоянка автотранспорта», «Вход», «Место для курения». А вот — «Уходя, гасите свет», «Идти слева, стоять справа» (на эскалаторе в метрополитене) — это уже алгоритмы, хотя и очень примитивные. Нужно отметить одну особенность алгоритма: дискретный характер процесса, определяемого самим алгоритмом. Правило «Во время движения по тротуару придерживайся правой стороны», хотя и является предписанием, но имеет непрерывный характер и потому не относится к числу алгоритмов. От него резко отличается текст, который можно встретить на некоторых телефонах-автоматах: «Приготовив двухкопеечную монету,
1) опустите ее в приемное отверстие;
2) снимите трубку и ожидайте звуковой сигнал;
3) услышав длинный непрерывный гудок, наберите требуемый номер и ожидайте ответный сигнал;
4) услышав длинные гудки, ждите ответа абонента;
5) «услышав короткие частые гудки, повесьте трубку и получите монету обратно: нужный вам абонент занят».
Подобные правила очень многочисленны и нередко имеют большое значение в нашей жизни. Рождаясь, человек сразу попадает в «гущу» алгоритмов.
«Перед кормлением ребенка в бутылочку с кефиром влить пастеризованный охлажденный отвар из риса или другой крупы и сахарный сироп; полученную смесь хорошо встряхнуть и подогреть.
Кефир — 5 г, отвар — 45 г, сахарный сироп — 5 г.
Смесь применяется по назначению врача как докорм полутора — двухмесячного ребенка.»[1]
Не думайте, что алгоритмы играют роль только в жизни людей. Вот еще алгоритм.
«Каждого щенка следует кормить отдельно от других, иначе более сильные и активные будут съедать большую порцию.
Подкармливают 3—4 раза в день после того, как щенки пососут мать, равными небольшими порциями, начиная с полстакана молока»[2]
В последнем правиле фраза «… иначе более сильные и активные будут съедать большую порцию» к самому правилу не относится. Такие фразы называют комментариями. Их отбрасывание на смысл правила не влияет.
Любая женщина (да, и многие мужчины) нередко обращаются к поваренной книге и там опять находят алгоритмы. Приведем и оттуда пример:
«Лимон очистить от кожицы, полученную цедру нашинковать и ввести в горячий сахарный сироп одновременно с желатином. При непрерывном помешивании сироп нагреть до кипения, потом отжать в сироп лимонный сок, добавить лимонную кислоту, профильтровать и охладить.
Лимонный сок — 8, сахар — 14, желатин — 3, кислота лимонная — 0,1».[3]
Садоводы, и профессионалы и любители, занимающиеся разведением цветов, вероятно, знакомы со следующим алгоритмом:
«Перед посевом на выровненной поверхности маркером или колышком под шнур проводят бороздки глубиной от 0,5 до 1 см на расстоянии 30—35 см друг от друга. В бороздки распределяют семена гнездами (по 8—10 зерен в гнездо). Расстояние между гнездами 15—20—25 см в зависимости от культуры. Заделывают семена перегноем, посыпая его сверху слоем не толще 0,5—1 см».[4]
Интересные примеры алгоритмов представляют широко известные рецепты, по которым в аптеках приготовляют и выдают лекарства. Лишь очень опытные врачи составляют каждый раз индивидуальный рецепт, в большинстве же случаев его выписывают из специального справочника:
«Rp. Arpenali0,05 D. t. d. N 20 intabulS. По 1 таблетке З раза в день».[5]
От точности выполнения подобного алгоритма порой зависит жизнь человека. Интересно, что составной частью такого алгоритма является другой алгоритм (для больного), определяющий применение лекарства и служащий не комментарием, а указанием, которое должно быть написано на этикетке и сообщено больному при выдаче ему лекарства.
А вот за столом сидит школьник. Чем он занят? По его словам, он готовит уроки. Какое к этому имеют отношение алгоритмы? Оказывается — большое. Он решает примеры по арифметике, складывает десятичные дроби. Спросите его, как он это делает, и он вам ответит:
«Сперва я одну дробь подписываю под другой так, чтобы одноименные разряды стояли друг под другом. Если в одном из чисел не хватает слева или справа цифр, я дополняю его нулями.
Потом, переходя от разряда к разряду, я складываю стоящие в них цифры и перенос. Число единиц в получившемся результате записываю в одноименный разряд суммы, а число десятков принимаю за перенос в следующий разряд.
Самый первый перенос (в младший разряд) всегда считается равным нулю. А если в старшем разряде возникает перенос, то перед началом обоих чисел нужно приписать по нулю. Процесс оканчивается тогда, когда исчерпаются все разряды слагаемых».
Это — алгоритм. Может быть, ученик и не сумеет его изложить так, как здесь написано, и ограничится более лаконичным «складываю числа», но он его обычно выполняет.
Не только дети, но и взрослые большую часть своего времени расходуют на выполнение алгоритмов. Многие инструкции и приказы, определяющие наши действия на работе,— это алгоритмы. Даже окончив работу и желая отдохнуть, мы постоянно сталкиваемся с ними. Представьте себе, что, сняв любительский кинофильм, вы собираетесь его проявить. У вас в руках недавно купленный набор «Химикаты для обращаемых кинопленок». Что же вы находите, вскрыв его? Конечно, химикаты, но кроме них инструкцию. Вот один из ее пунктов.
«Приготовление отбеливающего раствора.
Содержимое пакета «Д» растворить в 500 мл воды при температуре 18—20° С, затем осторожно добавить содержимое пакета «Е». Объем раствора довести до 1000 мл. Раствор профильтровать»
Это опять алгоритм.
Всюду алгоритмы. Они окружают нас, переплетаются, проникают друг в друга; шага нельзя ступить, не наталкиваясь на них. Но как разительно отличаются «алгоритмические джунгли» от настоящих, в которых густые спутавшиеся растения стесняют нас, цепко держат в плену. Удивительным образом алгоритмы не связывают нас, а ведут самыми надежными путями к решению сложнейших проблем.
§ 2. Исходные данные и результаты. Массовость алгоритма
Итак, мы в «джунглях». Но чтобы в них ориентироваться, нужно понять, что такое алгоритм. Приведенные выше примеры уже позволяют осуществить некоторый анализ; еще ряд примеров содержит глава 2, в которую можно «подглядывать».
Сразу бросается в глаза, что каждый алгоритм предполагает наличие некоторых исходных данных и приводит к получению определенного искомого результата. Например, в § 1 для алгоритма приготовления детской пищи исходными данными являются порции кефира (50 г), крупяного отвара (45 г) и сахарного песка (5 г), а результатом — соответствующее количество детской пищи (очевидно, 100 г). Для медицинского рецепта (алгоритма) исходным данным является медикамент арпенал, используемый для лечения язвы желудка, а результатом—-коробочка с двадцатью таблетками и надписью «по 1 таблетке 3 раза в день». Для алгоритма сложения исходным данным является пара слагаемых (чисел), а результатом—сумма (опять число).
Создается впечатление, что каждый алгоритм — это правило, указывающее действия, в результате цепочки которых от исходных данных мы приходим к искомому результату. Такая цепочка действий называется алгоритмическим процессом, а каждое действие — его шагом.
Можно подумать, что каждый алгоритм задает вполне определенный процесс. К сожалению, не совсем так. Только для самых простых алгоритмов можно говорить об определенных алгоритмических процессах. Для более сложных алгоритмов (мы это увидим на стр. 20) указать определенный процесс нельзя. Но для тех алгоритмов, о которых мы уже говорили, существование такого процесса не вызывает сомнения. Поэтому пока мы говорим о наиболее простых алгоритмах; будем считать, что каждый из них задает вполне определенный алгоритмический процесс.
Но вернемся к анализу тех предметов, которые могут быть исходными данными и результатами. Очевидно, для каждого алгоритма можно брать различные варианты исходных данных. Это видно из того, что, например, для алгоритма приготовления детской пищи можно слова «граммы» при описании исходных данных понимать как «весовые части». Качество получаемой пищи при этом не изменится. Может измениться только ее количество. Для рецепта приготовления лимонного желе, очевидно, так и сделано. Многие алгоритмы остаются в силе для различных вариантов исходных данных. Алгоритм сложения можно применить к парам любых положительных чисел. Алгоритм дополнительного кормления щенят годится не только, например, для Рексика и Бобика, но и для других щенят.
Замеченное нами свойство алгоритмов, перечисленных в § 1 (их применимость к большому числу вариантов исходных данных), называют их массовостью. Долгое время считали, что пригодность алгоритмов для многих частных случаев является настолько существенной и важной их чертой, что должна войти в научное определение алгоритма. Это исключало[6] многие правила из компетенции науки (из-за их «недостаточной» массовости) и затрудняло[7] как научные исследования, так и применение их результатов на практике (а вдруг перед нами именно ненаучный случай?), что представляет собой серьезные неудобства.
А между тем ценность представляют и правила (алгоритмы), применимые даже только к одному-единственному варианту исходного данного. К их числу относятся алгоритмы пользования различными автоматами (например, автоматом, продающим газеты, или телефоном-автоматом, если они рассчитаны на одну определенную монету), алгоритмы следования по маршруту, начинающемуся в определенном пункте и ведущему в заданное место, и многие другие. Ценность подобных алгоритмов настолько широко известна, что они положены в основу сюжетов многих литературных произведений (вспомним рассказы о кладоискателях).
Расплывчатость термина «массовость» подтверждается известным парадоксом Эвбулида, который иногда называют парадоксом кучи. Сущность его можно передать, задавая себе ряд вопросов и тут же отвечая на них. Один камень — это куча? Нет. А два камня? Тоже нет. А три? В конце концов мы либо придем к выводу, что куч не существует, либо вынуждены будем признать, что есть такое число камней, увеличение которого на единицу приводит к получению кучи. И то и другое противоречит фактам и является следствием расплывчатости понятия кучи. И все же просто «отмахнуться» от свойства массовости нельзя. Нужно несколько изменить его трактовку, с тем чтобы устранить указанные выше неудобства.
Какой же смысл следует вкладывать в термин «массовость»? А вот какой. Нужно считать, что для каждого алгоритма существует некоторый класс объектов (пред-
…………………………………………………….
шаги этого процесса бывают достаточно простыми, а их число не очень большим. Практически число совершенных шагов связано с количеством затраченного на их выполнение времени, а может быть (да и наверное так!), с расходом ряда других ресурсов.
Следует ли при изучении алгоритмов задать для числа шагов какую-нибудь раз и навсегда выбранную границу? Если допустить алгоритмы, выполнение которых требует, например, ста шагов, то почему не допустить и такие, которые потребуют ста одного шага, ста двух шагов и т. д.? Тем более, что развитие науки и техники делает нас богаче ресурсами и позволяет сегодня выполнять различные действия быстрее, чем это было возможно вчера.
Отвлекаясь от реальной ограниченности времени и ресурсов, которыми мы располагаем, будем требовать лишь того, чтобы алгоритмический процесс оканчивался после конечного числа шагов и чтобы на каждом шаге не было препятствий для его выполнения. В этом случае и будем считать, что алгоритм применим к исходному данному.
Так как требование завершения алгоритмического процесса за конечное число шагов не учитывает реальных возможностей, связанных с затратами времени и расходованием ресурсов, то говорят, что при этом алгоритм потенциально (а не реально) выполним.
Неприменимость алгоритма к допустимому исходному данному будет заключаться в том, что алгоритмический процесс либо никогда не оканчивается (при этом говорят, что процесс бесконечен), либо его выполнение во время одного из шагов наталкивается на препятствие (при этом. говорят, что он безрезультатно обрывается).
Проиллюстрируем оба эти случая. Приведем пример бесконечного алгоритмического процесса. Всем известен алгоритм деления десятичных дробей. Числа 4,2 и 3 являются для него допустимыми исходными данными. При этом получается следующий процесс:
/>
Искомый результат равен 1,4. Но совсем иная картина получится для чисел 20 и 3, которые тоже представляют собой допустимые исходные данные. Для них получится такой процесс:
/>
Сколько бы ни продолжался процесс, он не заканчивается и не встречает препятствий. Оказывается, что нельзя получить для исходных данных 20 и 3 искомого результата. Если же оборвать процесс по произволу, то его результат будет только приближением к частному, но не частным. Кстати, алгоритм, предусматривающий обрыв процесса на каком-то шаге, уже не будет тем алгоритмом, который мы рассматриваем.
Теперь приведем пример безрезультатно обрывающегося процесса. Представьте себе, что алгоритм состоит из нескольких более простых предписаний, обычно называемых пунктами.
1. Исходное данное умножить на 2. Перейти к выполнению п. 2.
2. К полученному числу прибавить единицу. Определить остаток у от деления этой суммы на 3. Перейти к выполнению п. 3.
3. Разделить исходное данное на у. Частное является искомым результатом. Конец.
Пусть целые неотрицательные числа (так называемые натуральные) будут допустимыми исходными данными для этого алгоритма.
Для числа 6 алгоритмический процесс будет протекать так.
Первый шаг: 6-2=12; переходим к п. 2.
Второй шаг: 12+1 = 13; у=1; переходим к п. 3.
Третий шаг: 6: 1=6. Конец.
Искомый результат равен 6. Иначе будет протекать алгоритмический процесс для исходного данного 7.
Первый шаг: 7-2=14; переходим к п. 2.
Второй шаг: 14+1 = 15; у=0; переходим к п. 3.
Третий шаг: 7:0 — деление невозможно. Процесс натолкнулся на препятствие и безрезультатно оборвался.
Подчеркнем еще раз, что на практике всегда требуется реальная выполнимость алгоритма, мы же требуем лишь потенциальной выполнимости. Это связано с определенной абстракцией.
§ 4. Понятность алгоритма
Анализируя интуитивное понятие алгоритма, мы замечаем еще одну особенность. Предполагается, что исполнитель правила всегда знает, как его выполнять. Говорят, что алгоритм понятен для исполнителя. В первых книгах по теории алгоритмов говорится даже об их общепонятности. С таким утверждением согласиться нельзя. Даже свойство понятности не так просто, как кажется на первый взгляд.
Представим себе, что нами получен некоторый письменный текст. Можно ли утверждать, что он понятен и в каких случаях? Если алфавит, буквы которого использованы в тексте, нам незнаком, то ответ будет один: текст непонятен. Но если все буквы принадлежат знакомому алфавиту, может оказаться, что составляющие его слова нам незнакомы. В этом случае текст тоже непонятен. А если все слова знакомы? Тогда возникает вопрос о способе их соединения в предложения. Если он противоречит грамматическим правилам, опять текст непонятен. А если все грамматические правила соблюдены? В этом случае неизвестно, понятен текст или нет. Ведь может оказаться, что он является кодом какого-то другого текста и его скрытый истинный смысл не совпадает с его непосредственным смыслом. Если о тексте (кроме него самого) ничего не известно, то назвать его понятным нельзя. Если известно, что текст представляет собой алгоритм, то неопределенность его уменьшается, но незначительно. Полная ясность будет лишь тогда, когда будет известно, что надо делать для того, чтобы этот алгоритм выполнить.
Свойство понятности можно, таким образом, истолковать как наличие алгоритма, определяющего процесс выполнения алгоритма, заданного в виде текста. Такое объяснение «понятности» позволяет предположить, что не только люди, но и животные и некоторые машины могут быть исполнителями алгоритмов.
Итак, каждому исполнителю известен алгоритм, которым нужно руководствоваться для выполнения других алгоритмов, адресованных исполнителям его класса. Исполнитель может этот алгоритм знать, например, если он человек, или может быть так дрессирован, чтобы его выполнять, если он животное, или может быть так устроен, чтобы его выполнять, если он машина.
В дальнейшем (гл. 9, § 4) читатель узнает, что про некоторые машины (ЭВМ) по отношению к некоторым алгоритмам выполнения алгоритмов (операционным системам) так и напрашивается антропоморфическое выражение «она' его знает». И все же даже у этих машин механизм понимания алгоритмов не тот, что у людей.
Может показаться, что, разъясняя понятие алгоритма, мы апеллировали к этому же понятию и допустили некорректное рассуждение, называемое порочным кругом. В данном случае это не так (см. § 5).
§ 5. Рекурсивные определения
Если хотят ввести новое понятие, то, как говорят математики, ему дают определение.
Читатель, безусловно, знаком с так называемыми прямыми определениями. В них новое понятие выражается через одно или несколько уже известных. Например, если нам уже известно, что такое отрезок прямой, замкнутая ломаная и три, то мы можем определить понятие треугольника словами «треугольник — это замкнутая ломаная, состоящая из трех прямых отрезков».
Возможно, читатель слышал и о так называемых порочных кругах. Порочный круг — это определение, в котором новое понятие выводится либо из самого себя, либо из другого понятия, которое было из него выведено. В математике порочные круги не употребляются и поэтому пояснить их определением, взятым из области математики, нельзя. Но неверно было бы утверждать, что порочные круги не могут быть применены с пользой. Так называ