Реферат по предмету "Физика"


Термодинамическое равновесие гетерогенных плазменных систем с суще

--PAGE_BREAK--На основе идеально-газовых представлений, как и ранее [(1.1.14), (1.1.14’), (1.1.15), (1.1.15’), (1.1.15’’)], получим соотношение для концентраций КЧ:
                                                   (1.2.3)
где Qm, Qm-1 – статистический вес соответственно m- и (m-1) – кратно ионизованной частицы КДФ; me – масса электрона; h и k – постоянные Планка и Больцмана.
Обозначив n0концентрацию нейтральных КЧ в системе, построим цепочку уравнений Саха (1.2.3), считая что для макрочастиц Qm/Qm-1=1. Частицы плазмозоля с положительными зарядами дают последовательность уравнений, которыми определяются все более высокие степени ионизации отдельной КЧ. Таким образом, получаем набор уравнений для процессов термоэмиссии  электрона с поверхности идентичных сферических частиц с зарядами   qm-1=(m-1)e, где m = 1, 2, 3, …,:
                                           (1.2.4)
                                                  
В уравнениях (1.2.4) К обозначена константа Саха для процесса термоэмиссии электрона с поверхности незаряженной частицы плазмозоля, т.е. для реакции    . Выражая из m – го уравнения  с помощью , которое в свою очередь, можно выразить    из (m-1) – го уравнения, и так далее, продолжая этот процесс вплоть до первого уравнения системы (1.2.4), получаем 
 
                   .                         (1.2.5)
                         
После некоторых преобразований произведение в последней формуле запишем так:
                            .                                          (1.2.6)
В данном случае введены обозначения
                                                                           (1.2.7)
Аналогично для отрицательных степеней ионизации дисперсных частиц получим:
             (1.2.8)
По последнему уравнению (1.2.8) найдем . Выразим  далее   из предыдущего уравнения этой системы и подставим его в выражение для . Продолжив, как и ранее, этот процесс вплоть до первого уравнения (1.2.8), окончательно получим
.                                       (1.2.9)
Уравнения (1.2.5) и (1.2.9) связывают концентрацию нейтральных частиц КДФ в плазмозоле с концентрациями m –кратно ионизованных положительных(1.2.9) макрочастиц. Совместно с законом сохранения заряда
                                                                 (1.2.10)
и условием сохранения полного числа КЧ в плазмозоле
                                                                       (1.2.11)
 (np – концентрация частиц КДФ) они позволяют определить замкнутую систему уравнений термоионизационного равновесия в плазмозоле идентичных частиц. Из (1.2.10) и (1.2.11) можно найти среднюю ионизацию частиц КДФ, т.е. их среднее зарядовое число:
                                                            (1.2.12)
и относительную концентрацию электронейтральных макрочастиц в системе
.                                       (1.2.13)
Как показал Саясов, соотношения, аналогичные (1.2.12) и (1.2.13), могут быть преобразованы с помощью эллиптических θ – функций к удобному для математического анализа виду:
                                                                     (1.2.14)
                                      (1.2.15)
 
Здесь                                                             (1.2.16)
     m=1,2,….
На основе таблиц θ –функций построены зависимости lg(ne/K) от lg(np/K) при
 

различных значениях параметра σ2, охватывающие достаточно широкий диапазон изменения размеров КЧ rp и температур Т монодисперсного плазмозоля.
После некоторых преобразований приходим к формуле Эйнбиндера, которая достаточно точна для высоких степеней ионизации частиц.
На рис.2 в координатах (lg rp, lg T), изображена область применения формулы
                                                                                 (1.2.17)
к описанию ионизационного равновесия в плазмозоле идентичных частиц. Множество точек плоскости (rp, T), соответствующее заштрихованной области I, выделяет состояния плазмозоля, для которых с относительной погрешностью  применима приближенная формула Эйнбиндера (1.2.17).
Эта формула является следствием идеально-газового приближения, т.е. получена без учета влияния микрополей на ионизацию частиц, а следовательно, корректна для систем газ – макрочастицы, в которых влиянием этих полей на ионизационные процессы можно пренебречь. Точность (1.2.17) повышается с усилением ионизации частиц КДФ, однако при этом все более начинают сказываться эффекты объемного заряда, что ограничивает его применимость “сверху” (в области больших зарядов свойства плазмозоля не могут аппроксимироваться идеально-газовым приближением).
Область II на рис.2, ограниченная координатными осями и линией ρ=1 (линия I), соответствует состояниям плазмозоля, которые  = 2πσ2  ≤ 1, так что exp(-πρ) ≤ 0.1 и в (1.2.14) для среднего заряда КЧ логарифмическую производную d/dy(lnθ3(y, ρ)) удобнее представить в виде разложения по параметрам y΄ и ρ´ [15, с.96]:
                                                                                               (1.2.18)
Распределение частиц КДФ по зарядам можно найти, используя (1.33), по которой определяют также относительную концентрацию дисперсных частиц с зарядовым числом m. Оно совпадает с нормальным (гауссовским) распределением [16], в котором σ имеет смысл дисперсии распределения.
В случае малой дисперсии σ2
                                .                                                       (1.2.19)
Здесь  (E-Entier (целая часть) от y), т.е. большинство частиц в системе имеет кратность ионизации    и , а средний заряд y — центр распределения Гаусса удовлетворяет неравенствам   ≤ y ≤. При высокой степени ионизации частиц  ne/n=z>>1 приближение Эйнбиндера можно распространить на всю область параметров rp, np и значение yz. Причем связь между  ne– средней концентрацией электронов и средним зарядом конденсированной частицы в соответствии с (1.2.19)
                                    (1.2.20)
где   .
В случае сильной ионизации частиц , так что (1.2.20) фактически совпадает с формулой, полученной Сагденом и Тращем из решения кинетической задачи о термоэмиссии электронов с идентичных частиц с зарядом ze.
В газовой фазе могут присутствовать легкоионизующиеся атомы (обычно атомы щелочных металлов) в виде естественных добавок (плазма продуктов сгорания) или вводится дополнительно с целью повышения ионизации. Наличие ионизующихся атомов в газовой подсистеме приводит к необходимости учета сложного баланса объемных и поверхностных процессов, определяющий межфазный обмен энергией, массой, импульсом и электрическим зарядом в НТП с КДФ. При этом частицы КДФ, являясь источниками и стоками электронов, могут как повышать в плазме ne, так и способствовать ее понижению.

1.3. Учет ионизации атомов легкоионизируемой присадки.
Основные предположения модели плазмы с макрочастицами, содержащей атомы легко ионизующихся элементов (щелочных металлов), следующие: в состоянии термодинамического равновесия температуры газа и частиц одинаковы;  каждая из макрочастиц с точностью до флуктуаций сохраняет свой равновесный заряд ze; в газовой фазе сохраняются неизменными средние концентрации атомных зарядов – электронов и ионов.
В модели Лукьянова предполагается, что равновесная система неограниченна, а “частичная” подсистема (ансамбль частиц КДФ) состоит из однородно ионизованных (имеющих один и тот же заряд q=ze) идентичных сферических частиц радиуса rp с работой выхода W. Связь между концентрацией электронов ne в газовой фазе и зарядом отдельной дисперсной частицы определяется с помощью формулы Ричардсона – Дешмана [17, с.213] для плотности тока термоэлектронной эмиссии с поверхности КЧ. Этот ток уравновешивается потоком электронов прилипания, т.е. тех газовых электронов, которые за единицу времени “оседает” на частицы КДФ. В результате получаем уже известную формулу (1.2.20), в которой  заменено :
                          .                          (1.3.1)
Кроме частиц КДФ, в газовой фазе присутствуют легко ионизующиеся щелочные атомы, которые также вносят свой вклад в равновесную концентрацию электронов ne. Пренебрегая влиянием микрополей на ионизацию атомарных частиц запишем для них  формулу Саха (см. (1.1.16)): 
                   .                                    (1.3.2)
Учитывая более высокие степени ионизации атомов, получаем цепочку уравнений Саха. Однако для интервала температур Т=2000….3500 К вклад этих степеней пренебрежимо мал, и в систему ионизационных уравнений входит только первое – (1.3.2). Используя условия электронейтральности плазмы и закон сохранения массы для щелочной компоненты, получаем замкнутую систему термоионизационного равновесия:
                                    (1.3.3)                                                                                                                            
Система (1.3.3) записана в принятых обозначениях и представляет собой систему ионизационных уравнений Лукьянова [18].
На рис.3 показаны расчетные зависимости концентрации электронов (рис.3.а) и заряда частиц окиси алюминия (рис.3.б) от исходного содержания щелочных атомов (атомов калия), полеченных в [18]. Линии I и 2 соответствуют размерам rp частиц Al2O3. Штриховая линия 3 определяет ионизацию в чисто газовой плазме с теми же параметрами. Она проведена для наглядности несколько выше, поскольку для nA>1012cм-3 практически сливается с линиями 1,2. Видно, что при малых концентрациях щелочных атомов (nA108см-3) частицы КДФ способствуют повышению концентрации электронов в газовой фазе по сравнению с чисто газовой системой в тех же условиях (при таких же температуре и парциальном давлении щелочных атомов).
 

При более высоких концентрациях атомов щелочной присадки оказывается деонизирующее влияние дисперсных частиц: их заряд отрицателен и они служат стоками электронов (рис.3.б). Дальнейшее  повышение концентрации легко ионизующихся атомов приводит к росту ne и его асимптотическому приближению (“снизу”) к зависимости по Саха, т.е. формулой (1.1.18). Вне зависимости от размера заряд дисперсных частиц проходит через 0 при значении ne=ns.
Преобразуем систему (1.3.3) к удобному для аналитического рассмотрения виду. Из первого и четвертого уравнений .Используя второе и третье уравнения (подставляем выражение для ni в третье уравнение, из него neвыражаем z и определяющие параметры системы KS, np, nA; подставляем это соотношение в левую часть второго уравнения), окончательно получаем
        (1.3.4)
Трансцендентное уравнение   (1.3.4) относительно зарядового числа z дисперсной частицы в символическом виде запишем так:
                                       Ψ(z)=0                                                        (1.3.5)
Уравнение (1.3.5) однозначно решает вопрос об ионизации частиц и газа в модели, в которой не учитываются эффекты объемного заряда, существенно влияющие на электрон-ионные процессы в плазме. Как показывают эксперименты, отрицательные заряды частиц КДФ в плазме со щелочными присадками достаточно велики (z≥104), что ограничивает применимость этой модели. По характеру используемых физических допущений ее следует отнести к классу идеально-газовых моделей.

2. Дебаевский подход моделирования гетерогенных  кулоновских систем.
Модели дебаевского типа заимствуют представления из теории слабых электролитов Дебая – Хюнкеля [19]. Каждая частица КДФ, как и ион [19], поляризует свое окружение, что приводит к появлению избыточного усредненного заряда в окрестности выделенного (рассматриваемой частицы КДФ), т.е. к эффектам электростатического экранирования. Закон распределения избыточного заряда в окрестности КЧ определяется больцмановской  статистикой для концентраций заряженных частиц в самосогласованном  электростатическом поле в системе координат частицы. Распределение потенциала φ и объемного заряда ρ (избыточного заряда) подчинены уравнению Пуассона. Совместно с законом сохранения заряда для объема, занятого плазмой, а также больцмановскими распределениями зарядов в поле  частицы, оно составляет замкнутую систему уравнений для зарядового числа z выделенной КЧ.
2.1. Объемный заряд и потенциал в плазмозоле.
Рассмотрим бесконечную среду, содержащую идентичные сферические частицы КДФ, равномерно распределенные в нейтральном газе с высоким потенциалом ионизации (Iq>>kT), T – температура газа и частиц. В результате электростатических взаимодействий локальные концентрации электронов и дисперсных частиц в окрестности выделенной КЧ отличаются от средних по объему, и избыточный заряд  вблизи КЧ (фактически усредненная по времени плотность электростатического заряда среды  в системе координат КЧ) будет
                                                (2.1.1)
где — радиус вектор точки, z – средний заряд КЧ, e – элементарный заряд.
В (2.1.1) предполагается, что все частицы КДФ имеют один и тот же –заряд z.
Распределение избыточного заряда (2.1.1) и самосогласованного потенциала  связаны уравнением Пуассона
.                                                   (2.1.2)
Электронейтральные молекулы буферного газа, поляризуясь в поле КЧ, также вносят свой вклад в экранирование. Поэтому в правую часть (2.1.2) должна входить (в общем случае) диэлектрическая проницаемость . Однако, для рассматриваемых давлений (р~1….10 МПа) 1 и не учитывается.
Поскольку система неограниченна и в ней нет выделенных направлений, оператор Лапласа Δ в (2.1.2) содержит только радиальную часть, а функции точки  — локальные концентрации электронов  и частиц   будут зависеть только от расстояния . Интегрируя уравнение (2.1.1) по всему объему плазмы, не содержащему выделенной КЧ, для изотропного случая (сферически симметричное распределение избыточного заряда) получаем
.                                                (2.1.3)
Уравнение (2.1.3) отражает факт электронейтральности плазмозоля. Локальные концентрации   и  связанны с усредненными по объему концентрациями ne  и npбольцмановскими соотношениями:
                                            (2.1.4)
Отметим, что (2.1.4) справедливы только в случае слабой ионизации дисперсных частиц, т.е. при . В этом приближении они допускают линеаризацию.
Из уравнения (2.1.1), которое определяет избыточный заряд в окрестности рассматриваемой КЧ и условия, вытекающего из закона сохранения заряда для среды в целом,
      
znp-ne=0 ,                                                       (2.1.5)
находим связь между распределением усредненного электростатического потенциала  и избыточного заряда . Окончательно приходим к дифференциальному уравнению 2-го порядка для избыточного заряда   в окрестности заданной КЧ:
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Основные тенденции развития Российской империи в начале XX века
Реферат Открытоугольная глаукома. История болезни
Реферат Политико-правовая природа конституционного правосудия. Органы конституционного правосудия США и Российской Федерации и их место в системе высших органов государственной власти
Реферат The Silver Chalice Essay Research Paper The
Реферат Разработка теоретико-методологических подходов к анализу правовых и экономических особенностей договора купли-продажи недвижимости
Реферат Арутюнян Армен докт юрид наук, профессор, Защитник Прав Человека (Омбудсмен) ра ограничение основных прав и ограничение государственной власти как конституционный компромисс между свободой и государством
Реферат The Crucible Reverend John Hale
Реферат Конаковский фаянс: история и современность
Реферат Русский Леонардо да Винчи
Реферат История философской антропологии
Реферат Индикативное планирование в системах управления социально - экономическими процессами
Реферат Исторические судьбы России в поэме А. С. Пушкина Медный всадник
Реферат Департамент финансов Администрации города Вологды
Реферат Экономико-географическая характеристика Гренландии Комплексная географическая
Реферат Особливості правового режиму земель історико-культурного призначення