Симетричні нерозгалужені трифазні кола синусоїдного струму
1.Трифазний генератор
Трифазний генератор має дві основнічастини: статор і ротор. На статорі розміщуються три самостійні обмотки, осіяких зсунуті одна щодо іншої в просторі на 120° (рис.4.1).
Разом з ротором обертається створене йогострумом магнітне поле й у кожній обмотці наводиться е.р.с. Оскільки е.р.с.досягає максимального значення, коли осі обмотки і полюсів ротора збігаються,то зсув за фазою між трьома е.р.с. становить 120°. Окремі обмотки генератораодержали назву фаз, а сам генератор за кількістю фаз називається трифазним.
Аналітичні вирази миттєвих значенье.р.с. окремих фаз будуть мати при цьому такий вигляд:
/>;
/>;
/>. Приклад
Діюче значення фазної е.р.с. дорівнює 220В. Записати миттєві значення фазних е.р.с., прийнявши yеА= 0.
Рішення.
1. Максимальне значення фазної е.р.с.:
/>;
/>.
2. Миттєві значення фазних е.р.с.:
еА=310 sіnwt;
еB=310 sіn(wt – 120°);
еC=310 sіn(wt – 240°).
Побудуємо вектори е.р.с. на площині, осіякої зсунемо на 90° проти годинникової стрілки.
Система трьох е.р.с., однакових завеличиною і зсунутих за фазою одна щодо іншої на 120°, називається симетричноютрифазною системою е.р.с. Сума миттєвих значень фазних е.р.с. у будь-якиймомент часу дорівнює нулю, що видно з векторної діаграми (рис.4.3).
2. Трифазні системи
Розрахункова схема окремої фази генератора(наприклад, фази А) має вигляд, зображений на рис.4.4. Але частіше їїпоказують так, як зображено на рис.4.5. На цих схемах r, xА,/> –відповідно активний, реактивний і повний опори обмотки.
Кожну фазу (обмотку) трифазного генератораможна з'єднати з окремим споживачем електричної енергії (фазою навантаження),як показано на рис.4.6. У цьому випадку створюється незв'язана трифазнасистема з трьома самостійними колами і шістьма проводами. Така системанеекономічна і тому не знайшла застосування.
Три фази генератора або три фазинавантаження можна з'єднати за схемою зірки, при цьому однойменнізатиски фаз генератора або фаз навантаження поєднуються в один вузол(рис.4.7).
Якщо фази генератора і навантаження, які з'єднаніза схемою зірки, поєднати між собою, то створиться зв'язана трифазначотирипровідна система (рис.4.8).
Три проводи, що з'єднують початки фазгенератора і навантаження, називаються лінійними, а четвертий, якийз'єднує вузли схеми генератора і схеми навантаження, називається нульовим(нейтральним) проводом. Відповідно струм, що проходить по лінійномупроводу, називається лінійним струмом, а по нульовому (нейтральному)проводу – нульовим (нейтральним) струмом.
Відповідно до першого закону Кірхгофа
iN = iА+ iB + iC.
Три фази генератора або три фазинавантаження можна з'єднати за схемою трикутника: кінець першої фазиз'єднується з початком другої і так далі (рис.4.9).
Якщо фази генератора і навантаження, якіз'єднані за схемою трикутника, поєднати між собою, то створиться зв'язанатрифазна трипровідна система (рис.4.10).
Можна також створити зв'язані трифазнітрипровідні системи зі схемами з'єднання фаз генератора і навантаження: зірка– зірка, зірка – трикутник, трикутник – зірка.
3. З'єднання фаз генератора зіркою
Складемо розрахункову схему генератора,фази якого з'єднані зіркою, у випадку, коли генератор не навантажений, тобтопрацює на холостому ході (рис.4.11).
Приймемо, що потенціал точки 0дорівнюєнулю, і знайдемо потенціали точок А,В і С:
/>;
/>;
/>;
/>.
Різниця потенціалів на затисках фазигенератора називається фазною напругою.Знайдемо миттєві значенняфазних напруг генератора:
/>;
/>;
/>.
Різниця потенціалів на вихідних затискахгенератора називається лінійною напругою. Знайдемо миттєві значеннялінійних напруг генератора:
/>;
/>;
/>.
Побудуємо векторну діаграму фазних ілінійних напруг генератора (для діючих значень) на площині (рис.4.12).
Запишемо миттєві значення фазних ілінійних напруг генератора:
uА = Uфm sіnwt;
uВ = Uфт sіn(wt – 120°);
uС = Uфт sіn(wt – 240°);
uАB = Uлm sіn(wt + 30°);
uBC = Uлт sіn(wt – 90°);
uCA = Uлт sіn(wt – 210°).
де Uфm і Uлm– максимальні (амплітудні) значення відповідно фазних і лінійних напруггенератора, В.
Встановимо зв'язок між діючими значеннями фазних (Uф)і лінійних (Uл) напруг генератора, для чого розглянемо трикутникнапруг (рис.4.13), який одержано з векторної діаграми.
З трикутника напруг знаходимо:
Uл= 2Uф cos30° = 2Uф/>=/>Uф .
Приклад
Записати миттєві значення фазних ілінійних напруг генератора на холостому ході, якщо діюче значення фазноїнапруги дорівнює 220 В і yuА= 0.
Рішення.
1. Максимальне значення фазної напруги:
/>;
/>.
2. Миттєві значення фазних напруг:
uА = 310 sіnwt ;
uВ = 310 sіn(wt – 120°) ;
uС = 310 sіn(wt – 240°) .
3. Максимальне значення лінійної напруги:
/>;
/>.
4. Миттєві значення лінійних напруг:
uАB = 536 sіn(wt + 30°) ;
uBC = 536 sіn(wt – 90°);
uCA = 536 sіn(wt – 210°) .
Складемо розрахункову схему генератора, фази якого з'єднані зіркою, увипадку, коли генератор навантажений (рис.4.14).
Введемо поняття фазного струму, підяким будемо розуміти струм, що проходить по фазі генератора. При з'єднанніобмоток генератора зіркою фазний струм дорівнює лінійному струму, тобто
Iф=Iл.
4. З'єднання фаз навантаженнятрикутником
трифазний генераторколо потужність
Складемо розрахункову схему при з'єднаннінавантаження трикутником (рис.4.15). При цьому:
iА,iВ,iС – лінійні струминавантаження, А;
iaв,ibc,ica – фазні струми навантаження, А;
/>,/>, /> – лінійні (фазні)напруги навантаження, В.
Як видно з розрахункової схеми, фазна напруганавантаження дорівнює лінійній напрузі навантаження, тобто
Uф = Uл .
За першим законом Кірхгофа знайдемо лінійніструми через фазні:
iА=iab– ica ;
iВ=ibc– iab ;
iС=ica– ibc .
Встановимо зв'язок між діючими значеннямифазних (Iф) і лінійних (Iл) струмівнавантаження при з'єднанні його фаз трикутником, для чого розглянемо трикутникструмів (рис.4.17), який одержано з векторної діаграми.
З трикутника струмів знаходимо:
Iл= 2 Iф cos30° = 2 Iф/>=/>Iф .
5. Потужності трифазного кола
Кожна фаза трифазного навантаження споживає активну,реактивну і повну потужності. При симетричному навантаженні та схемі з'єднанняфаз навантаження зіркою ці потужності в кожній фазі можна розрахувати в такийспосіб:
/>;
/>;
/>.
Потужності, які споживають три фази навантаження, можна розрахувати, помножившина кількість фаз навантаження (тобто на три) потужності, які споживає одна фаза:
/>;
/>;
/>.
Визначимо ці потужності через лінійнінапруги і струми:
/>;
/>;
/>.
При з'єднанні фаз навантаження трикутником вирази (4.28) і (4.29)справедливі, тільки в цих виразах будуть свої фазні струми і напруги. Визначимоці потужності через лінійні напруги і струми:
/>;
/>;
/>.
Таким чином, потужності, які споживає трифазне навантаження (незалежновід схеми його з'єднання), можна розрахувати в такий спосіб:
/>;
/>;
/>.
6. Розрахунок нерозгалужених трифазних кіл синусоїдного струму
Розглянемо розрахункову схемутрифазного трипровідного електричного кола, яке складається з ідеальногогенератора, з'єднаного зіркою, ідеальної лінії електропередачі, навантаження,з'єднаного зіркою (рис.4.18).
Нехай задано діюче значення електрорушійної сили Е вфазі симетричного генератора і повні опори фаз навантаження
/>,
а також коефіцієнти потужності фаз навантаження
cosjа= cosjb= cosjс= cosj .
Потрібно розрахувати діючі значення фазних і лінійних сил струмівгенератора і навантаження, фазних і лінійних напруг генератора і навантаження,а також потужності, які віддаються генератором і споживаються навантаженням.
Алгоритм розрахунку наступний:
1. Складаємо розрахункову схемуоднієї фази кола.
Приймаємо, що потенціал точки 0дорівнює нулю. Можна довести, що при симетричному режимі роботи кола потенціалточки 0’ також дорівнює нулю.
Тому можна з'єднати точки 0 і 0’, від чого режим роботи кола не зміниться.
Виділяємо одну фазу кола (рис.4.19).
2. Визначаємо діючі значення сил струмів.
У даному випадку фазний струм генератора дорівнює лінійномуструму і дорівнює фазному струму навантаження. Наприклад, для фази Авін дорівнює:
/>.
Інші струми Iв і Iсдорівнюють струму Iа.
3. Визначаємо діючі значенняфазних напруг.
У даному випадку фазні напруги генератора дорівнюють фазнимнапругам навантаження. Наприклад, для фази а воно дорівнює:
/>.
Інші напруги Uа, Uв, Uс,Ub,Uс дорівнюють Uа.
4. Визначаємо діючізначеннялінійних напруг.
У даному випадку лінійні напруги генератора дорівнюютьлінійним напругам навантаження. Наприклад:
/>.
Інші напруги Uав, Uвс, Uса,Ubс,Uса дорівнюють Uаb.
5. Визначаємо активнупотужність.
У даному випадку активна потужність,яка віддається генератором, дорівнює активної потужності, яку споживаєнавантаження:
/>
/>,
де Uф іUл –відповідно фазна і лінійна напруги, В;
Iф іIл – відповідно фазний ілінійний струми, А.
6. Визначаємореактивну потужність.
У даному випадку реактивна потужність,яка віддається генератором, дорівнює реактивної потужності, яку споживаєнавантаження:
/>
/>.
7. Визначаємо повнупотужність.
У даному випадку повна потужність, якавіддається генератором, дорівнює повній потужності, яку споживає навантаження:
/>
/>.
Приклад
Трифазне симетричне навантаження одержуєживлення від трифазного симетричного генератора за допомогою ідеальної лініїелектропередачі. Генератор з'єднаний зіркою, навантаження з'єднане зіркою,лінія електропередачі трипровідна. Активний опір фази навантаження дорівнює12Ом, індуктивний опір фази навантаження дорівнює16Ом.Діюче значення е.р.с. у фазі генератора дорівнює 300В.
Розрахувати дане трифазне електричнеколо.
Рішення.
1. Розрахункова схема кола приведенана рис.4.18, а для однієї фази – на рис.4.19.
2. Визначаємо повні опори навантаження:
/>.
3. Визначаємо діючі значення фазних ілінійних сил струмів генератора і навантаження:
/>.
4. Визначаємо діючі значення фазнихнапруг генератора і навантаження:
/>.
5. Визначаємо діючі значення лінійнихнапруг генератора і навантаження:
/>.
6. Визначаємо кут зсуву фаз навантаження:
/>.
7. Визначаємо активну потужність, якавіддається генератором і споживається навантаженням:
/>.
8. Визначаємо реактивну потужність генератора інавантаження:
/>.
9. Визначаємо повну потужність, яка віддаєтьсягенератором і споживається навантаженням:
/>.
7. Переключення навантаження із зіркина трикутник
Одержимо основні співвідношення міжструмами, а також між потужностями, при переключенні схеми з'єднання фазнавантаження зіркою на схему трикутника (рис.4.20).
При з'єднанні фаз навантаження зіркоюлінійний (фазний) струм дорівнює:
/>.
Знаходимо потужності при з'єднанні фазнавантаження зіркою:
PY= />UлIл cosφ = />Uл/> cos φ= /> cos φ;
QY= />sin φ ;
SY= />.
При з'єднанні фаз навантаження трикутникомлінійний струм більше фазного в /> раз:
/>.
Знаходимо потужності при з'єднанні фазнавантаження трикутником:
PΔ= />UлIл cosφ = />Uл/> cos φ= 3/>cos φ;
QΔ= 3/>sin φ ;
SΔ= 3/>.
Співвідношення між струмами дорівнює:
/>.
Знайдемо співвідношення між потужностями:
/>.
Аналогічно:
/> ; /> .
Такимчином, при переключенні фаз навантаження зі схеми з'єднання зіркою на схемутрикутника лінійні струми і потужності, які споживає навантаження, збільшуютьсяв три рази.