--PAGE_BREAK--§1. Фотоэлектрические процессы с участием экситонов в полупроводниковых кристаллах
Фотоэлектрические процессы с участием экситонов в полупроводниковых кристаллах подробно изучены для кристаллов CdS, CdSe, Ge, GaAs, Cu2О. Для сернистого кадмия впервые показано существование спектров двух типов (или групп) (рис. 3) [18]. В спектрах первого типа экситонным линиям поглощения соответствуют максимумы фототока, а в спектрах второго типа этим же линиям соответствуют минимумы кривых фотопроводимости. Такой вид корреляции оказался характерным для всех кристаллов с прямыми разрешенными экситонными переходами (CdS, CdSe, CdTe, ZnSe, HgJ2). Механизм возникновения этого явления связан со свойствами поверхности и подробнее будет рассмотрен ниже.
Дж. Хапфилдом в 1961 г. было высказано соображение о важности сравнения величины фототока при одном и том же коэффициенте поглощения (α), но при разных величинах энергии в области экситонных линий и сплошного фона. Это позволило бы выделить истинный экситонный вклад в фотопроводимость. Такое сравнение было сделано Б. В. Новиковым и др. для кристаллов CdS [19]. Оказалось, что фототок в области экситонных максимумов поглощения в несколько раз выше, чем в глубине собственного поглощения при равных значениях коэффициента α. Поскольку квантовый выход фототока в этой спектральной области для CdS постоянен [20], то наблюдаемое различие, по-видимому, связано с временами жизни свободных носителей. Можно предположить, что «горячие» носители, создаваемые в глубине собственного поглощения, имеют меньшее время жизни, чем носители, созданные экситонами. Авторы этой работы использовали факт разрушения экситонов в тонком слое около поверхности (ионизация поверхностным электрическим полем) для определения диффузионной длины экситонов. Она составила в CdS от 200 до 1000 нм, а в CdSe от 200 до 400 нм.
А. Коре и С. Никитин сравнили структуру фототока и коэффициент поглощения для «желтой» серии экситона в кристалле Сu2О (рис. 4) [13].
Оказалось, что s-состояния экситона слабо проявляются в спектре фототока. В тоже время d — и р — состояния имеют много большую интенсивность в спектре фотопроводимости. Фотопроводимость в этом кристалле возникает при разрушении экситонов в локальных электрических полях. Если экситон движется в неоднородном электрическом поле, то оно будет поляризовать экситон и втягивать его в область более высоких электрических полей. Поскольку поляризуемость d — и р-состояний выше, чем поляризуемость s-состояний, то и вероятность разрушения их электрическим полем оказывается выше.
Авторы публикаций [21, 22] исследовали поведение фототока в непрямых экситонных переходах кристаллов германия и кремния. Ими было установлено, что в согласии с теоретическими работами М. Трлифая вероятность взаимодействия экситона с примесным центром зависит от его кинетической энергии и максимальна при k→ ∞. Эти же авторы показали, что для наиболее чистых кристаллов германия (N+ – N–~ 1012 cм–3) в слабых электрических полях экситоны не создают свободных носителей тока, если их кинетическая энергия меньше энергии связи экситона. Этим подтверждается основополагающая гипотеза Я. И. Френкеля об экситонах как нейтральных квазичастицах.
Многими исследователями было доказано участие связанных экситонов в создании свободных носителей тока. Так, в кристаллах CdS был обнаружен максимум фототока на линии I2, принадлежащий экситону, локализованному на нейтральном доноре [11]. Предполагалось, что фототок в этом комплексе возникает в результате оже-процесса. В некоторых кристаллах CdS наблюдалась серия эквидистантных максимумов на кривых фотопроводимости, связанная с ионизацией экситонов на комплексе I2с испусканием оптического фонона [11].
В спектрах фотоответа р-п перехода для структуры на основе фосфида галлия, легированного азотом, авторами публикаций [23] были обнаружены максимумы фототока на линиях поглощения экситонов, связанных на единичных и на парных атомах азота. Анализируя свои данные, исследователи пришли к необычному выводу о миграции энергии связанных экситонов к р-п переходу с последующей их диссоциацией в области объемного заряда. Передача этого возбуждения происходит на расстояния, превышающие 10 мкм, что значительно больше, чем диффузионная длина для электронов и дырок в этом соединении.
В кристаллах германия, легированных мышьяком и фосфором, авторами работы [24] также наблюдались четкие максимумы на кривой фотопроводимости, принадлежащие связанным экситонам. Кроме того, наблюдались более слабые максимумы, приписанные исследователями возбужденным состояниям дырки, входящей в экситон-примесный комплекс.
Отметим также, что экситоны дают вклад и в создание фотоэдс. Впервые (в 1968 г.) это явление наблюдал В. Е. Лашкарев с сотрудниками для кристаллов CdS [20]. В. Н. Поляковым и др. исследованы (1985 г.) спектры барьерного фотоотклика гетероперехода п-CdS-n-CdSe в области экситонного поглощения CdSe и влияния на них напряжения смещения и дополнительной подсветки [25]. Ими определена диффузионная длина экситонов для CdSe. Она оказалась равной 25 ÷ 125 нм. Среди других работ на эту тему отметим недавно появившуюся работу Н. Нака и др. [26]по двухфотонному фотовольтаическому эффекту на экситонах в Сu2О.
продолжение
--PAGE_BREAK--§2. Влияние поверхности на фотоэлектрические процессы с участием экситонов.
Вклад экситонов в фотоэлектрические процессы определяется как поведением экситонов (аннигиляция, ионизация), так и свойствами созданных ими носителей тока (время жизни, подвижность, квантовый выход). Большая величина коэффициента поглощения в максимумах экситонных линий соединений типа А2В6 (~ 105 см–1) приводит к тому, что состояние поверхности и приповерхностной области (наличие примесей и дефектов на поверхности, высокие электрические поля) должно оказывать существенное влияние на процессы с участием экситонов. Выяснилось, что механическая обработка поверхности кристалла CdS приводит, например, к переходу кривых фотопроводимости 1-го типа ко 2-му [27]. Эффективным методом изменения состояния поверхности явилась ее бомбардировка электронами низких энергий [28]. Глубина проникновения электронов сравнима с величиной обратного коэффициента поглощения света (~ 102 нм). Электронная бомбардировка приводит к десорбции газов с поверхности и перезарядке поверхностных и приповерхностных центров. При больших дозах облучения начинают проявляться и «допороговые» радиационные дефекты [29].
Электронная бомбардировка по-разному действует на тонкую структуру спектра фотопроводимости в кристаллах разных типов, но основным результатом является исчезновение самой тонкой структуры в кристаллах 1-го и 2-го типов и образование гладких бесструктурных кривых после небольших доз облучения (~ 1014 — 1015 эл/см2). После больших доз облучения структура может возникать вновь (рис. 5, кривая 3).
Сильное воздействие на структуру спектров фотопроводимости кристаллов CdS оказывает также интенсивное ультрафиолетовое облучение кристаллов в вакууме [28]. После УФ-облучения кристаллы 2-й группы становятся бесструктурными, а в некоторых случаях при длительном облучении на гладких кривых возникает структура, но уже 1-го типа. Аналогичное явление наблюдалось и после длительной бомбардировки электронами. Существенная трансформация спектральных кривых фотопроводимости выявлена А. С. Батыревым и др. после облучения кристаллов CdS в воде и на воздухе He-Cd-лазером.
Установлено, что результат воздействия электронной бомбардировки (см. рис. 5) и малых доз УФ-облучения обратим. После нагревания до комнатной температуры кривые фотопроводимости возвращаются к исходному виду: на гладких кривых восстанавливается первоначальная структура, причем скорость ее восстановления зависит от давления, состава газов в вакуумной камере и температуры. Поскольку экситонные спектры отражения после бомбардировки и УФ-облучения сохраняются, мы считаем, что можно предположить следующее: кардинальное изменение спектра фотопроводимости — исчезновение тонкой структуры — связано со свойствами носителей заряда в приповерхностной области. Рядом исследователей было высказано соображение, что в кристаллах 1-го типа имеет место обогащающий изгиб зон, связанный с избытком кадмия в приповерхностной области. В кристаллах 2-го типа существует сильный обедняющий изгиб зон, вызванный адсорбцией кислорода [30].
Наличие адсорбированного на поверхности CdS кислорода и влияние его на фотопроводимость было доказано многочисленными исследованиями: например, К.Райтом и К. Боэром при воздействии электронной бомбардировки [31], П. Марком при УФ-облучении [19]. Р.Шуберт и К.Боэр [32] показали, использовав масс-спектрометрический метод, что на поверхности кристаллов CdS, относящихся к разным типам, кислород адсорбирован в различных формах. К. Боэр и другие исследовали этим же методом роль нестехиометрии поверхностного слоя в формировании спектров фотопроводимости и люминесценции CdS [33, 34].
§3. Исследование экситонной структуры в спектрах фотопроводимости кристаллов CdSпутем изменения внешнего поля.
При низких температурах в спектрах ФП полупроводников в области края собственного поглощения можно наблюдать тонкую структуру (ТС) в виде максимумов (тип 1) или минимумов (тип 2), обусловленную экситонами. Наличие ТС обусловлено различием времени жизни неравновесных основных носителей в приповерхностном слое (τs) и объеме полупроводника (τv) [35]. При этом тип ТС определяется соотношением этих времен: в случае ТС типа 1 τs > τv, в случае ТС типа 2 τs τv, а при выполнении равенства τs = τv спектры ФП должны иметь бесструктурный (гладкий) вид. Воздействуя на полупроводник различными способами, можно изменять соотношение между τs и τv а, следовательно, и тип ТС, используя последнюю как индикатор изменения фоточувствительности приповерхностной области и / или объема полупроводника.
В настоящей работе исследованы низкотемпературные (T = 4 ÷77 K) спектры ФП кристаллов CdS в зависимости от электрического поля, приложенного к полупроводнику по методу ”эффекта поля”, предварительного фотовозбуждения собственным светом, подсветки ИК — светом и тянущего поля. Обнаружены характерные изменения ТС спектров и фоточувствительности в собственной и примесной областях спектра.
Приложение к полупроводнику электрического поля, создающего слой обеднения вблизи поверхности, приводит, по мере его увеличения, к обратимой трансформации ТС от типа 1 к типу 2 (рис. 6, кривые 1—3). На промежуточной стадии такой трансформации спектральная кривая ФП приобретает гладкий вид (кривая 2). При значениях потенциала на полевом электроде, соответствующих слою обогащения у поверхности, тип ТС сохраняется (кривая 4).
К обратимой трансформации ТС от типа 1 к типу 2 приводит также предварительная засветка кристалла собственным светом[1].
В ряде кристаллов наблюдается обратимая трансформация ТС от типа 2 к типу 1 при интенсивной инфракрасной (ИК) подсветке. Имелись образцы, в которых переход от типа 2 к типу 1 ТС происходил при увеличении тянущего поля (рис. 7). Отметим немаловажную для дальнейшего деталь, а именно: инверсия типа ТС с увеличением тянущего поля наблюдалась в образцах с линейными размерами ~ 1 mm.
Основные качественные черты изменения спектров ФП в собственной и примесной областях спектра заключаются в следующем.
В случае перехода типа 1 ТС в тип 2 фоточувствительность в собственной области спектра сильно уменьшается при относительно слабом ее изменении в примесной области максимумов ДM1 и ДM2. В результате спектры ФП приобретают характерный для кристаллов с типом 2 ТС вид кривой с доминирующим длинноволновым максимумом в примесной области спектра (рис. 6, кривые 1–3) [37].
В случае инверсии типа ТС при ИК-подсветке происходит общее гашение фоточувствительности, существенно превалирующее в спектральной области дополнительных максимумов ДM1 и ДM2. В случае инверсии типа ТС с ростом тянущего поля фоточувствительность в области ДM1 и ДM2 практически не меняется, а в собственной области спектра значительно возрастает (рис. 7). В обоих случаях фоточувствительность в области максимумов ДM1 и ДM2 относительно собственной области уменьшается, а общий вид спектральных кривых ФП приобретает черты, характерные для кристаллов с типом 1 ТС.
Трансформация спектров ФП по мере увеличения слоя обеднения у поверхности (рис. 6, кривые 1-3) объясняется уменьшением τs за счет увеличения скорости рекомбинации в области пространственного заряда по мере перехода от слабого обогащающего к истощающему приповерхностному изгибу зон [35]. Аналогично можно объяснить влияние предварительной засветки собственным светом на спектры ФП, поскольку в результате освещения возможна перезарядка поверхностных состояний за счет заполнения их электронами. Образование слоя обеднения у поверхности кристаллов CdS с типом 1 ТС, обусловленное ”прилипанием” фотоэлектронов на поверхностные состояния, обнаружено в [38] методе спектроскопии фотоотражения в области экситонных резонансов[2].
Характер действия ИК-подсветки на ТС спектров ФП указывает на изменение под ее влиянием соотношения τs τv на обратное. В то же время значительное уменьшение фототока в собственной области спектра при ИК-подсветке указывает на соответствующее уменьшение τs. Поэтому соотношение τs > τv может реализоваться при ИК-подсветке лишь в случае преимущественного уменьшения при этом τv. Это фактически и наблюдается в эксперименте в виде превалирующего ИК-гашения фототока в примесной области максимумов ДM1 и ДM2.
Селективный характер ИК-гашения ФП, с одной стороны, объясняет трансформацию ТС при ИК-подсветке, а с другой стороны указывает на объемное происхождение ДM1 и ДM2 (на это указывает также отмеченная выше их слабая чувствительность к изгибу зон у поверхности).
ИК-гашение ДM1 и ДM2 связано, на наш взгляд, с ионизацией ИК-излучением очувствляющих r-центров, с которыми непосредственно взаимодействуют соответствующие этим максимумам центры. Возможно, что r-центры входят в состав последних. Не исключено также, что центры, формирующие ДM1 и ДM2, являются двукратно ионизованными собственными акцепторными дефектами, изолированными (ДM2) [36] или возмущенными другими заряженными центрами (ДM1).
Нетривиальным представляется нам эффект влияния тянущего поля на ТС. Трансформация ТС, как и в случае ИК-подсветки, указывает на обращение неравенства τs τv с ростом тянущего поля. Однако в данном случае такое обращение связано с ростом τs при одновременном уменьшении τv, что следует из сверхлинейного роста фототока с ростом тянущего поля в собственной области и сублинейного — в примесной области (рис. 7). Подобные изменения τs и τv с ростом тянущего поля могут быть связаны с инжекцией дырок из контакта (анода) в сильных полях, легко достижимых в образцах CdS с малыми размерами [39]. Инжекция дырок может привести к сокращению τv за счет захвата инжектированных дырок r-центрами и увеличения темпа рекомбинации в объеме свободных электронов с дырками, захваченными на мелкие акцепторные центры. Рост τs с увеличением тянущего поля может быть вызван уменьшением истощающего изгиба зон вблизи поверхности в результате захвата части инжектированных дырок приповерхностным дырочным ”карманом”.
продолжение
--PAGE_BREAK--
Постановка задачи
В работе была поставлена задача экспериментального исследования изменений спектрального распределения фотопроводимости кристаллов в краевой области спектра с изменением температуры в интервале 77–300.
Глава №2. Экспериментальная установка и методика эксперимента.§1. Экспериментальная установка.
Рис. 8. Блок – схема экспериментальной установки для измерения спектров фотопроводимости
На рис. 8. 1) – источник питания; 2) – светоизмерительная лампа накаливания ленточного типа (СИ10 – 300У); 3) - объективы; 4) – светофильтр (СЗС – 24); 5) – монохроматор МДР – 3; 6) – поляризатор; 7) – оптический криостат с исследуемым образцом CdSи термопарой; 8) – вольтметр постоянного тока В2-36; 9) – источник питания типа Б5 – 50; 10) – электрометрический усилитель типа У5-9; 11) – согласующий блок; 12) – самопишущий потенциометр КСП – 4.
Оптическая система установки состоит из источника света (2), объективов (3), светофильтра (4), монохроматора (5), поляризатора (6) и исследуемого образца (7). Электрическая система включает в себя источник питания (9), образец (7), усилитель (10) и самописец (12).
В качестве источника возбуждения в данной установке применяется светоизмерительная лампа СИ10 – 300У (2), с ленточным (вольфрамовым) телом накала и с увиолевым окошком, которое предназначено для пропускания широкого спектра излучения. Максимальная мощность лампы 300 Вт. Изменение яркости свечения лампы (2) осуществляется с помощью источника питания (1). Для поглощения инфракрасного света из спектра излучения лампы (2) на оптической скамье, поле объектива (3) устанавливается адсорбционный светофильтр СЗС – 24, область пропускания которого лежит в пределах от 300 до 700 нм. Для выделения монохроматического излучения и его развертки по спектру применяется монохроматор МДР – 3, диспергирующим элементом которого является дифракционная решетка (600 шт/мм, обратная линейная дисперсия 20 Å/мм). Для поляризации монохроматического излучения в установке используется поляризатор (6), плоскость поляризации которого может изменятся относительно оптической оси кристалла С. Исследуемый образец устанавливается в ячейку, которая помещается в оптический криостат с жидким азотом. Источник питания (9) предназначен для приложения тянущего напряжения к исследуемому полупроводнику через омические электроды. Возникающий в цепи фототок, регистрируется электрометрическим усилителем (10). Через согласующий блок (11), представляющий собой цепь сопротивлений с различными номиналами, далее сигнал регистрируется самопишущим потенциометром (12). Регистрация данных эксперимента производится на диаграммной ленте самописца (12).
Измерение температуры производилось термопарой, установленной на одном уровне с образцом в 1 – 2 мм от него. Измерение термоЭДС осуществлялось вольтметром (8). При изменении температуры от 77 до 300 К значения термоЭДС находились в интервале — 6,5 – 0 мВ.
§2. Методика проведения эксперимента
Измерение спектров краевой фотопроводимости кристаллов CdS производилось в режиме стационарного возбуждения в температурном интервале 77 – 300 К. Спектральный интервал, в пределах которого исследовалась фотопроводимость кристаллов, находилась в области 470 – 530 нм, т. к. край поглощения исследуемого кристалла при исследуемых температурах находится в пределах указанной области. Для наблюдения тонкой структуры важным фактором является спектральный интервал Δλ монохроматического излучения. Вследствие этого ширина входной и выходной щели монохроматора устанавливалась не шире 0,4 мм, что соответствует спектральному разрешению не хуже 8 Å/мм. Скорость развертки монохроматора составляла величину 8 нм/мин.
При измерении фотопроводимости спектры регистрировались как при движении в коротковолновую, так и в длинноволновую стороны. Для разрешения всех оптических переходов поляризация возбуждающего фотопроводимость излучения устанавливалась в состояние , где С – оптическая ось кристалла.
Увеличение температуры достигалось постепенным выкипанием жидкого азота.
Электроды для подведения тока к полупроводнику создавались механическим нанесением In– Ga-вой пасты на поверхность полупроводника.
Величина тянущего электрического поля варьировалась в интервале от 1 до 300 В. При возбуждении фотопроводимости, зондирующий луч света падал на кристалл, не освещая контакты. В зависимости от цели эксперимента, геометрия освещения кристалла также могла изменяться. В ряде случаев зондирующий луч света фокусировался в центр образца или же расфокусировался до ширины пучка в 2 – 3 мм.
В эксперименте исследовались образцы, которые не легировались в процессе выращивания. Толщина кристаллов составляла около нескольких десятых долей мм и имели плоскую зеркальную поверхность. Темновое сопротивление исследуемых кристаллов достигало значений в несколько ГОм. Длина применяемых в экспериментах кристаллов варьировалась от 2 до 4 мм.
продолжение
--PAGE_BREAK--