--PAGE_BREAK--Изотермический процесс.При изотермическом процессе (T==const) внутренняя энергия идеального газа не меняется. Все переданное газу количество теплоты идет на совершение работы: Q==A'. Если газ получает теплоту (Q>0), то он совершает положительную работу (А'>0). Если, напротив, газ отдает теплоту окружающей среде (термостату), то Q
Изобарный процесс.При изобарном процессе передаваемое газу количество теплоты идет на изменение его внутренней энергии и на совершение им работы при постоянном давлении.
Адиабатный процесс.
Процесс в теплоизолированной системе называют адиабатным. При адиабатном процессе Q=0 и согласно уравнению ∆U=А+Qизменение внутренней энергии происходит только за счет совершения работы:∆U=А
Нельзя окружить систему оболочкой, абсолютно не допускающей теплопередачу. Но в ряде случаев можно считать реальные процессы очень близкими к адиабатным. Для этого они должны протекать достаточно быстро, так, чтобы за время процесса не произошло заметного теплообмена между системой и окружающими телами.
Билет№7
Принципы действия тепловых двигателей.
Для того чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счет повышения температуры рабочего тела на сотни или тысячи градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива
Рабочим телом у всех тепловыхдвигателей является газ, который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через t1.
В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру Т1 называют температурой нагревателя.
Коэффициент полезного действия (КПД) теплового двигателя.Невозможность полного превращения внутренней энергии газа в работу тепловых двигателей обусловлена необратимостью процессов в природе. Если бы теплота могла самопроизвольно возвращаться от холодильника к нагревателю, то внутренняя энергия могла бы быть полностью превращена в полезную работу с помощью любого теплового двигателя.
Согласно закону сохранения энергии работа, совершаемая двигателем, равна:
A'=|Ql|-|Q2|
где Q1— количество теплоты, полученное от нагревателя, aQ2—количество теплоты, отданное холодильнику.
Коэффициентом полезного действия теплового двигателя называют отношение работы А', совершаемой двигателем, к количеству теплоты, полученному от нагревателя:
КПД теплового двигателя меньше единицы. При Т1—Т2=0 двигатель не может работать.
Максимальное значение КПД тепловых двигателей.Законы термодинамики позволяют вычислить максимально возможный КПД теплового двигателя, работающего с нагревателем, имеющим температуру Т1, и холодильником с температурой Т2. Впервые это сделал французский инженер и ученый Сади Карно .
Карно придумал идеальную тепловую машину с идеальным газом в качестве рабочего тела. Он получил для КПД этой машины следующее значение:
Как и следовало ожидать, КПД машины Карно прямо
пропорционален разности абсолютных температур нагревателя и холодильника.
Главное значение этой формулы состоит в том, как доказал Карно, что любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т1, и холодильником с температурой Т2 не может иметь КПД, превышающий КПД идеальной тепловой машины.
При температуре холодильника, равной абсолютному нулю, η=1
Тепловые двигатели и охрана природы.Повсеместное применение тепловых двигателей с целью получения удобной для использования энергии связано с воздействием на
окружающую среду. Согласно законам термодинамики производство электрической и механической энергии в принципе не может быть осуществлено без отвода в окружающую среду значительного количества теплоты, что должно привести к постепенному повышению средней температуры на Земле. Сейчас мощность двигателей в целом составляет около 1010 кВт. Когда эта мощность достигнет 3*1012 кВт, то средняя температура повысится примерно на один градус. Дальнейшее повышение температуры может создать угрозу таяния ледников и катастрофического повышения уровня Мирового океана. Кроме того, на Земле может возникнуть “паровой эффект”.
Применение паровых турбин на электростанциях требует больших площадей под пруды для охлаждения отработанного пара.
Охрана:Необходимо повышать эффективность сооружений, препятствующих выбросу в атмосферу вредных веществ, добиваться более полного сгорания топлива в автомобильных двигателях. Уже сейчас не допускаются к эксплуатации автомобили с повышенным содержанием СО в отработанных газах. Создают электромобили, способние конкурировать с обычными, и возможность применения горючего без вредных веществ в отработанных газах, например в двигателях, работающих на смеси водорода с кислородом.
Билет№8
Электризация тел и ее применение в технике. Значительная электризация происходит при трении синтетических тканей. Снимая нейлоновую рубашку в сухом воздухе, можно слышать характерное потрескивание. Между заряженными участками трущихся поверхностей проскакивают маленькие искорки. С подобными явлениями приходится считаться на производстве. Так, нити пряжи на текстильных фабриках электризуются за счет трения, притягиваются к веретенам и роликам и рвутся. Электризация тел при тесном контакте используется в электрокопировальных установках типа «Ксерокс» и др.
Опыт с электризацией пластин доказывает, что при электризации трением происходит перераспределение имеющихся зарядов между телами, нейтральными в первый момент. Небольшая часть электронов переходит с одного тела на другое. При этом новые частицы не возникают, а существовавшие ранее не исчезают. При электризации тел выполняется закон сохранения электрического заряда. Этот закон для замкнутой системы.В замкнутой системе алгебраическая сумма зарядов всех частиц остается неизменной. Если заряды частиц обозначить через q1 ,q2и т.д., то
q1 ,+q2+
q3+…+qn= const
Справедливость закона сохранения заряда подтверждают наблюдения над огромным числом превращений элементарных частиц. Этот закон выражает одно из самых фундаментальных свойств электрического заряда. Причина сохранения заряда до сих пор неизвестна.
Закон Кулона.Опыты Кулона привели к установлению закона поразительно напоминающего закон всемирного тяготения.Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей заряда и обратно пропорциональна квадрату расстояние между ними. Эту силу называют кулоновской.
Если обозначить модули зарядов через |q1|и |q2|, а расстояние между ними через r, то закон Кулона можно записать в следующей форме:
где k—коэффициент пропорциональности, численно равный силе взаимодействия единичных зарядов на расстоянии, равном единице длины. Его значение зависит от выбора системы единиц.
Билет№9
Электрическое поле.
Электрическое поле существует реально; его свойства можно исследовать опытным путем. Неизвестно из чего оно состоит.
Дом состоит из кирпичей, плит и других материалов, которые в свою очередь состоят из молекул, молекулы — из атомов, атомы — из элементарных частиц. Более же простых образований, чем элементарные частицы, мы не знаем. Так же обстоит дело и с электрическим полем, ничего более простого, чем поле, мы не знаем. Поэтому о природе электрического поля мы можем сказать лишь следующее:
во-первых, поле материально; оно существует независимо от нас, от наших знаний о нем;
во-вторых,поле обладает определенными свойствами.
Основные свойства электрического поля.Главное свойство электрического поля — действие его на электрические заряды с некоторой силой.
Электрическое поле неподвижных зарядов называют электростатическим. Оно не меняется со временем. Электростатическое поле создается только электрическими зарядами. Напряженность электрического поля.Электрическое поле обнаруживается по силам, действующим на заряд.
Если поочередно помещать в одну и ту же точку поля небольшие заряженные тела и измерять силы, то обнаружится, что сила, действующая на заряд со стороны поля, прямо
пропорциональная этому заряду. Действительно, пусть поле создается точечным зарядом q1.Согласно закону Кулона на заряд q2действует сила, пропорциональная заряду q2.Поэтому отношение силы, действующей на помещаемый в данную точку поля заряд, к этому заряду для каждой точки поля не зависит от заряда и может рассматриваться как характеристика поля. Эту характеристику называют напряженностью электрического поля. Подобно силе, напряженность поля—векторная величина; ее обозначают буквой Е. Если помещенный в поле заряд обозначить через qвместо q2 тонапряженность будет равна:
Напряженность поля равна отношению силы, с которой поле действует на точечный заряд, к этому заряду.
Отсюда сила, действующая на заряд q со стороны электрического поля, равна:
Напряженность поля в единицах СИ можно выразить, в ньютонах на кулон (Н/Кл).
Принцип суперпозиции полей.
Если на тело действует несколько сил, то согласно законам механики результирующая сила равна геометрической сумме сил:
На электрические заряды действуют силы со стороны электрического поля. Если при наложении полей от нескольких зарядов эти поля не оказывают никакого влияния друг на друга, то результирующая сила со стороны всех полей должна быть равна геометрической сумме сил со стороны каждого поля. Опыт показывает, что именно так и происходит на самом деле. Это означает, что напряженности полей складываются геометрически.
В этом состоит принцип суперпозиции полей который формулируется так:если в данной точке пространства различные заряженные частицы создают электрические поля, напряженности которых и т. д., то результирующая напряженность поля в этой точке равна:
Билет № 10
Работа при перемещении заряда в однородном электростатическом поле.Однородное поле создают, например, большие металлические пластины, имеющие заряды противоположного знака. Это поле действует на заряд с постоянной силой F=
qE.
Пусть пластины расположены вертикально левая пластина В заряжена отрицательно,
а правая D—положительно. Вычислим работу, совершаемую полем при
перемещении положительного заряда qиз точки 1, находящейся на расстоянии d1
от пластины В, в точку 2, расположенную на расстоянии d2
d1от той же пластины.
Точки 1 и 2 лежат на одной силовой линии. На участке пути ∆
d=
d1—
d2электрическое
поле совершит положительную работу: A=
qE(
d1—
d2). Эта работа не зависит от формы
траектории.
Потенциалом электростатического поля называют отношение
потенциальной энергии заряда в поле к этому заряду.
Согласно данному определению потенциал равен:
(Разность потенциалов.Подобно потенциальной энергии, значение потенциала в данной
точке зависит от выбора нулевого уровня для отсчета потенциала. Практическое значение
имеет не сам потенциал в точке, а изменение потенциала, которое не зависит от выбора
нулевого уровня отсчета потенциала.
Так как потенциальная энергия Wp=
qφто работа равна:
Разность потенциалов равен:
Разность потенциалов (напряжение) между двумя точками равна отношению работы поля при перемещении заряда из начальной точки в конечную к этому заряду. Pазность потенциалов между двумя точками равна единице, если при перемещении заряда в 1 Кл из одной точки в другую электрическое поле совершает работу в 1 Дж. Эту единицу называют вольтом (В).
Билет №11
Электроемкость. Электроемкость физическая величина, характеризующая способность двух проводников накапливать электрический заряд. Эту величину называют.
Напряжение между двумя проводниками пропорционально электрическим зарядам, которые находятся на проводниках. Если заряды удвоить, то напряженность электрического поля станет в 2 раза больше, следовательно, в 2 раза увеличится и работа, совершаемая полем при перемещении заряда, т. е. в 2 раза увеличится напряжение. Поэтому отношение заряда одного из проводников к разности потенциалов между этим проводником и соседним не зависит от заряда. Оно определяется геометрическими размерами проводников, их формой и взаимным расположением, а также электрическими свойствами окружающей среды (диэлектрической проницаемостью ε). Это позволяет ввести понятие электроемкости двух проводников.
Электроемкостью двух проводников называют отношение заряда одного из проводников к разности потенциалов между этим проводником и соседним:
Иногда говорят об электроемкости одного проводника. Это имеет
смысл, если проводник является уединенным, т. е. расположен на большом по сравнению с его размерами расстоянии от других проводников. Так говорят, например, о емкости проводящего шара. При этом подразумевается, что роль другого проводника играют удаленные предметы, расположенные вокруг шара.
Электроемкость двух проводников равна единице, если при сообщении им зарядов ±1 Кл между ними возникает разность потенциалов 1 В. Эту единицу называют фарад (Ф);
1 Ф=1 Кл/В.
Конденсатор.Большой электроемкостью обладают системы из двух проводников, называемые конденсаторами.Конденсатор представляет собой два проводника, разделенные слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Проводники в этом случае называются обкладками конденсатора.
Простейший плоский конденсатор состоит из двух одинаковых параллельных пластин, находящихся на малом расстоянии друг от друга. Если заряды пластин одинаковы по модулю и противоположны по знаку, то силовые линии электрического поля начинаются на положительно заряженной обкладке конденсатора и оканчиваются на отрицательно заряженной.
Поэтому почти все электрическое поле сосредоточено внутри конденсатора.
У сферического конденсатора, состоящего из двух концентрических сфер, все поле сосредоточено между ними. Электроемкость конденсатора определяется формулой
Энергия заряженного конденсатора.Для того чтобы зарядить конденсатор, нужно совершить работу по разделению положительных и отрицательных зарядов. Согласно закону
сохранения энергии эта работа равна энергии конденсатора. Энергия конденсатора превращается в другие формы: тепловую, световую.
Формула энергии плоского конденсатора.
Применение конденсаторов.Энергия конденсатора обычно не очень велика — не более сотен джоулей. К тому же она не сохраняется долго из-за неизбежной утечки заряда. Поэтому заряженные конденсаторы не могут заменить, например, аккумуляторы в качестве источников электрической энергии.
Они имеют одно и свойство: конденсаторы могут накапливать энергию более или менее длительное время, а при pазрядке через цепь малого coпpoтивления они отдают энергию почти мгновенно Именно это свойство используются широко на практике.
Лампа-вспышка, применяемая в фотографии, питается электрическим током разряда конденсатор.
Билет №12
При движении заряженных частиц в проводнике происходит перенос электрического заряда с одного места в другое. Однако если заряженные частицы совершают беспорядочное тепловое движение, как, например, свободные электроны в металле, то переноса заряда не происходит. Электрический заряд перемещается через поперечное сечение проводника лишь в том случае, если наряду с беспорядочным движением электроны участвуют в упорядоченном движении.
Электрическим током называют упорядоченное (направленное) движение заряженных частиц.
Электрический ток возникает при упорядоченном перемещении свободных электронов или ионов. Если перемещать нейтральное в целом тело, то, несмотря на упорядоченное движение огромного числа электронов и атомных ядер, электрический ток не возникнет. Полный заряд, переносимый через любое сечение проводника, будет при этом равным нулю, так как заряды разных знаков перемещаются с одинаковой средней скоростью.
Электрический ток имеет определенное направление. За направление тока принимают направление движения положительно заряженных частиц. Если ток образован движением отрицательно заряженных частиц, то направление тока считают противоположным направлению движения частиц.
Сила тока — физическая величина, определяющая величину электрического заряда, перемещаемого в единицу времени через поперечное сечение повода
Если сила тока со временем не меняется, то ток называют постоянным.
Сила тока, подобно заряду,— величина скалярная.Она может быть как положительной, так и отрицательной. Знак силы тока зависит от того, какое из направлений вдоль проводника принять за положительное. Cила тока I>0, если направление тока совпадает с условно выбранным положительным направлением вдоль проводника. В противном случае I
Сила тока зависит от заряда, переносимого каждой частицей, концентрации частиц, скорости их направленного движения и площади поперечного сечения проводника. Измеряется в (А). продолжение
--PAGE_BREAK--
Для возникновения и существования постоянного электрического тока в веществе необходимо, во-первых, наличие свободных заряженыхчастиц. Если положительные и отрицательные заряды связаны друг с другом в атомах или молекулах, то их перемещение не приведет к появлению электрического тока.
Для создания и поддержания упорядоченного движения заряженных частиц необходима, во-вторых, сила, действующая на них в определенном направлении.Если эта сила перестанет действовать, то упорядоченное движение заряженных частиц прекратится из-за сопротивления, оказываемого их движению ионами кристаллической решетки металлов или нейтральными молекулами электролитов.
На заряженные частицы, как мы знаем, действует электрическое поле с силой F=
qE.Обычно именно электрическое поле внутри проводника служит причиной, вызывающей и поддерживающей упорядоченное движение заряженных частиц. Только в статическом случае, когда заряды покоятся, электрическое поле внутри проводника равно нулю.
Если внутри проводника имеется электрическое поле, то между концами проводника существует разность потенциалов. Когда разность потенциалов не меняется во времени, то в проводнике устанавливается постоянный электрический ток
Закон Ома.Наиболее простой вид имеет вольт-амперная характеристика металлических проводников и растворов электролитов. Впервые (для металлов) ее установил немецкий ученый Георг Ом, поэтому зависимость силы тока от напряжения носит название закона Ома.
Закон Ома для участка цепи: сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению:
Доказать экспериментально справедливость закона Ома трудно.
Сопротивление.Основная электрическая характеристика проводника — сопротивление. От этой величины зависит сила тока в проводнике при заданном напряжении. Сопротивление проводника представляет собой как бы меру противодействия проводника установлению в нем электрического тока. С помощью закона Ома можно определить сопротивление проводника:
Для этого нужно измерить напряжение и силу тока.
Сопротивление зависит от материала проводника и его геометрических размеров.Сопротивление проводника длиной lс постоянной площадью поперечного сечения Sравно:
где р — величина, зависящая от рода вещества и его состояния (от температуры в первую очередь). Величину р называют удельным сопротивлением проводника. Удельное сопротивление численно равно сопротивлению проводника, имеющего форму куба с ребром 1 м, если ток направлен вдоль нормали к двум противоположным граням куба.
Проводник имеет сопротивление1 Ом, если при разности потенциалов 1 В сила тока в нем 1 А.
Единицей удельного сопротивления является1 Ом-м.
Последовательное соединение проводников. При последовательном соединении электрическая цепь не имеет разветвлений. Все проводники включают в цепь поочередно друг за другом.
Сила тока в обоих проводниках одинакова, т.е. I1=I2=Iтак как в проводниках электрический заряд в случае постоянного тока не накапливается и через любое поперечное сечение проводника за определенное время проходит один итот же заряд.
Напряжение на концах рассматриваемого участка цепи складывается из напряжений на первом и втором проводниках: U=U1+U2
Полное сопротивление всего участка цепи при последовательном соединении равно: R=R1+ R1
Работа тока.
эта работа равна: A=IU∆t
Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого совершалась работа.
Нагревание происходит, если сопротивление провода высокое
Мощность тока.Любой электрический прибор (лампа, электродвигатель) рассчитан на потребление определенной энергии в единицу времени. Мощность тока равна отношению работы тока за время ∆tк этому интервалу времени. Согласно этому определению
Билет №13
Электродвижущая сила
Электродвижущая сила в замкнутом контуре представляет собой отношение работы сторонних сил при перемещении заряда вдоль контура к заряду:
Электродвижущую силу выражают в вольтах.
Электродвижущая сила гальванического элементаесть работа сторонних
сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому.
Сопротивление источника часто называют внутренним сопротивлением в отличие от внешнего сопротивления
Rцепи.В генераторе r—это сопротивление обмоток, а в гальваническом элементе — сопротивление раствора электролита и электродов. Закон Ома для замкнутой цепи связывает силу тока в цепи, ЭДС и полное сопротивление R+
rцепи.
Произведение силы тока и сопротивления участка цепи часто называют падением напряжения на этом участке. Таким образом, ЭДС равна сумме падений напряжений на внутреннем и внешнем участках замкнутой цепи.
Обычно закон Ома для замкнутой цепи записывают в форме
Сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению.
Сила тока зависит от трех величин: ЭДС ε, сопротивлений R и rвнешнего и внутреннего участков цепи. Внутреннее сопротивление источника тока не оказывает заметного влияния на силу тока, если оно мало по сравнению с сопротивлением внешней части цепи (R>>r). При этом напряжение на зажимах источника приблизительно равно ЭДС:
U=
IR≈
ε.
При коротком замыкании, когда R→0, сила тока в цепи определяется именно внутренним сопротивлением источника и при электродвижущей силе в несколько вольт может оказаться очень большой, если rмало (например, у аккумулятора r≈0,1—0,001 Ом). Провода могут расплавиться, а сам источник выйти из строя.
Если цепь содержит несколько
последовательно соединенных элементов с ЭДС ε1, ε2, ε3и т.д., то полная ЭДС цепи равна алгебраической сумме ЭДС отдельных элементов.
Если при обходе цепи переходят от отрицательного полюса источника к положительному, то ЭДС >0.
Билет № 13
Взаимодействия между проводниками с током, т. е. взаимодействия между движущимися электрическими зарядами, называют магнитными. Силы, с которыми проводники с током действуют друг на друга, называют магнитными силами.
Магнитное поле.Согласно теории близкодействия ток в одном из проводников не может непосредственно действовать на ток в другом проводнике.
В пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле, в пространстве, окружающем токи, возникает поле, называемое магнитным.
Электрический ток в одном из проводников создает вокруг себя магнитное поле, которое действует на ток во втором проводнике. А поле, созданное электрическим током второго проводника, действует на первый.
Магнитное поле представляет собой особую форму материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами.
Свойства магнитного поля:
1. Магнитное поле порождается электрическим током (движущимися зарядами).
2. Магнитное поле обнаруживается по действию на электрический ток (движущиеся заряды).
Подобно электрическому полю, магнитное поле существует реально, независимо от нас, от наших знаний о нем.
Магнитная индукция – способность магнитного поля оказывать силовое действие на проводник с током (векторная величина). Измеряется в Тл.
За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле. Это направление совпадает с направлением положительной нормали к замкнутому контуру с током.
Направление вектора магнитной индукции устанавливают с помощью правиле буравчика:
если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции.
Линии магнитнойиндукции.
Линия, в любой точке которой вектор магнитной индукции направлен по касательной – линии магнитной индукции. Однородное поле – параллельные линии, неоднородное поле – кривыми линиями. Чем больше линий, тем больше сила этого поля. Поля с замкнутыми силовыми линиями называют вихревыми. Магнитное поле — вихревое поле.
Магнитный поток. –величина равная произведению модуля вектора магнитной индукции на площадь и на косинус угла между вектором и нормалью к поверхности.
Сила Ампера равна произведения вектора магнитной индукции на силу тока, длину участка проводника и на синус угла между магнитной индукцией и участком проводника.
Силу, действующую на движущуюся заряженную частицу со стороны магнитного поля, называю силой Лоренца.Эту силу можно найти с помощью закона Ампера.
Модуль силы Лоренца равен отношению модуля силы F, действующей на участок проводника длиной êl, к числу N заряженных частиц, упорядочение движущихся на этом участке проводника:
Направление с помощью правила левой руки:Если левую руку расположить так, чтобы составляющая магнитной индукции В, перпендикулярная скорости заряда, входила в ладонь, а четыре пальца были направлены по движению положительного заряда (против движения отрицательного), то отогнутый на 90° большой палец покажет направление действующей на заряд силы Лоренца.
Так как сила Лоренца перпендикулярна скорости частицы, то. она не совершает работу.
Силу Ампера применяют в громкоговарителях, динамиках.
Принцип работы: По катушке протекает переменный электрический ток с частотой, равной звуковой частоте от микрофона или с выхода радиоприемника. Под действием силы Ампера катушка колеблется вдоль оси громкоговорителя в такт с колебаниями тока. Эти колебания передаются диафрагме, и поверхность диафрагмы излучает звуковые волны.
Силу Лоренца применяют в телевизорах, масс-спектограф.
Принцип работы: Вакуумная камера прибора помещена в магнитное поле. Ускоренные электрическим полем заряженные частицы (электроны или ионы), описав дугу, попадают на фотопластинку, где оставляют след, позволяющий с большой точностью измерить радиус траектории. По этому радиусу определяется удельный заряд иона. Зная же заряд иона, легко определить его массу.
Билет № 15
Экспериментальное доказательство существования свободных электронов в металлах.Экспериментальное доказательство того, что проводимость металлов обусловлена движением свободных электронов, было дано в опытах Л. И. Мандельштама и Н. Д. Папалекси .
На катушку наматывают проволоку, концы которой припаивают к двум металлическим дискам, изолированным друг от друга. К концам дисков при помощи скользящих контактов присоединяют гальванометр.
Катушку приводят в быстрое движение, а затем резко останавливают. После резкой остановки катушки свободные заряженные частицы некоторое время движутся относительно проводника по инерции, и, следовательно, в катушке возникнет электрический ток. Ток существует незначительное время, так как из-за сопротивления проводника заряженные частицы тормозятся и упорядоченное движение частиц, образующее ток, прекращается.
Направление тока говорит о том, что он создается движением отрицательно заряженных частиц.
Если пропустить ток от аккумулятора через стальную спираль, а затем начать нагревать ее в пламени горелки, то амперметр покажет уменьшение силы тока. Это означает, что с изменением температуры сопротивление проводника меняется.
Если при температуре, равной 0° С, сопротивление проводника равно Ro,а при температуре tоно равно R, то относительное изменение сопротивления, как показывает опыт, прямо пропорционально изменению температуры t:
Коэффициент пропорциональности αназывают температурным коэффициентом сопротивления. Он характеризует зависимость сопротивления вещества от температуры. Температурный коэффициент сопротивления численно равен относительному изменению сопротивления проводника при нагревании на 1 К. Для всех металлических проводников α>0 и незначительно меняется с изменением температуры. У чистых металлов .
У растворов электролитов сопротивление с ростом температуры не увеличивается, а уменьшается. Зависимость удельного сопротивления от от температуры:
В1911 г. голландский физик Камерлинг-Оннес открыл замечательное явление — сверхпроводимость. Он обнаружил, что при охлаждении ртути в жидком гелии ее сопротивление сначала меняется постепенно, а затем при температуре 4,1 К очень резко падает до нуля. Это явление было названо сверхпроводимостью.
Сверхпроводимость наблюдается при очень низких температурах — около 25 К.
Если в кольцевом проводнике, находящемся в сверхпроводящем состоянии, создать ток, а затем устранить источник электрического тока, то сила этого тока не меняется сколь угодно долго. В обычном же несверхпроводящем проводнике электрический ток в этом случае прекращается.
Сверхпроводники находят широкое применение. Так, сооружают мощные электромагниты со сверхпроводящей обмоткой, которые создают магнитное поле на протяжении длительных интервалов времени без затрат энергии. Ведь выделения теплоты в сверхпроводящей обмотке не происходит.
Однако получить сколь угодно сильное магнитное поле с помощью сверхпроводящего магнита нельзя. Очень сильное магнитное поле разрушает сверхпроводящее состояние. Такое поле может быть создано током в самом сверхпроводнике. Поэтому для каждого проводника в сверхпроводящем состоянии существует критическое значение силы тока, превзойти которое, не нарушая сверхпроводящего состояния, нельзя.
Билет №16
Жидкости, как и твердые тела, могут быть диэлектриками, проводниками и полупроводниками. К числу диэлектриков относится дистиллированная вода, к проводникам — растворы и расплавы электролитов: кислот, щелочей и солей. Жидкими полупроводниками являются расплавленный селен, расплавы сульфидов и др.
Электролитическая диссоциация.
При растворении электролитов под влиянием электрического поля полярных молекул воды происходит распад молекул электролитов на ионы. Этот процесс называется электролитической диссоциацией.
Степень диссоциации,т. е. доля молекул в растворенном веществе, распавшихся на ионы, зависит от температуры, концентрации раствора и диэлектрической проницаемости е растворителя. С увеличением температуры степень диссоциации возрастает и, следовательно, увеличивается концентрация положительно и отрицательно заряженных ионов.
Ионы разных знаков при встрече могут снова объединиться в нейтральные молекулы — рекомбинировать. При неизменных условиях в растворе устанавливается динамическое равновесие, при котором число молекул, распадающихся за секунду на ионы, равно числу пар ионов, которые за то же время вновь объединяются в нейтральные молекулы.
Ионная проводимость.Носителями заряда в водных растворах или расплавах электролитов являются положительно и отрицательно заряженные ионы.
Если сосуд с раствором электролита включить в электрическую цепь, то отрицательные ионы начнут двигаться к положительному электроду — аноду, а положительные — к отрицательному — катоду. В результате установится электрический ток. Поскольку перенос заряда в водных растворах или расплавах электролитов осуществляется ионами, такую проводимость называют ионной.
Электролиз.При ионной проводимости прохождение тока связано с переносом вещества. На электродах происходит выделение веществ, входящих в состав электролитов. На аноде отрицательно заряженные ионы отдают свои лишние электроны, а на катоде положительные ионы получают недостающие электроны. Процесс выделения на электроде вещества, связанный с окислительно-восстановительными реакциями, называют электролизом.
Очевидно, что масса выделившегося вещества равна произведению массы одного иона mjна число ионов Nj, достигших электрода за время Δt: m= mjNj. Масса иона
где М — молярная (или атомная) масса вещества, а
Число ионов, достигших электрода, равно:
Закона электролиза Фарадея. масса вещества выделившегося на электроде за.время Δ
tпри прохождении электрического тока, пропорциональна силе тока и времени.
Применения электролиза.
Электролитическим путем покрывают поверхность одного металла тонким слоем другого {никелирование, хромирование, омеднение и т. п.). Это прочное покрытие защищает поверхность от коррозии.
В полиграфической промышленности такие копии (стереотипы) получают с матриц (оттиск набора на пластичном материале), для чего осаждают на матрицах толстый слои железа или другого материала. Это позволяет воспроизвести набор в нужном количестве экземпляров.
При помощи электролиза осуществляют очистку металлов от примесей.Так, полученную из руды неочищенную медь отливают в форме толстых листов, которые затем помещают в ванну в качестве анодов. При электролизе медь анода растворяется, примеси, содержащие ценные и редкие металлы, выпадают на дно, а на катоде оседает чистая медь.
Билет№17
Наиболее отчетливо полупроводники отличаются от проводников характером зависимости электропроводимости от температуры. Измерения показывают, что у ряда элементов (кремний, германий, селен и др.) удельное сопротивление с увеличением температуры не растет, как у металлов, а наоборот, чрезвычайно резко уменьшается. Такие вещества и называют полупроводниками.
Дырочная проводимость.При разрыве связи образуется вакантное место с недостающим электроном. Его называют дыркой. В дырке имеется избыточный положительный заряд по сравнению с остальными. Один из электронов, обеспечивающих связь
атомов, перескакивает на место образовавшейся дырки и восстанавливает здесь парноэлектронную связь, а там, откуда перескочил этот электрон, образуется новая дырка. Таким образом, дырка может перемещаться по всему кристаллу.
Полупроводники обладают не только электронной, но и дырочной проводимостью-
собственной проводимостью полупроводников.
Собственная проводимость полупроводников обычно невелика, так как мало число свободных электронов. Число свободных электронов составляет примерно о у десятимиллиардную часть от общего числа атомов.
Существенная особенность полупроводников состоит в том, что в них при наличии примесей наряду с собственной проводимостью возникает дополнительная — примесная проводимость. Изменяя концентрацию примеси, можно значительно изменять число носителей заряда того или иного знака. Благодаря этому можно создавать полупроводники с преимущественной концентрацией либо отрицательно, либо положительно заряженных носителей.
Применение:
продолжение
--PAGE_BREAK--