ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЯ ИЗ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ План Введение 1. Технологический процесс производства порошковых изделий и области их применения 2. Технология производства металлических порошков 3. Свойства металлических порошков 4. Формование заготовок из порошковых материалов 5. Спекание и окончательная обработка порошковых изделий 6. Эффективность технологии порошковой металлургии Литература
Введение Одним из основных направлений развития технологии машиностроения в настоящее время является совершенствование существующих и разработка новых безотходных, материалосберегающих производственных процессов, т. е. таких процессов, которые обеспечивают получение заготовок с минимальными припусками под последующую механическую обработку либо вообще без них при одновременном снижении расхода дефицитных материалов. В решении этой проблемы определенная роль принадлежит порошковой металлургии.
Порошковая металлургия — это отрасль техники, включающая изготовление порошков из металлов и их сплавов и получение из них заготовок и изделий без расплавления основного компонента. Методами порошковой металлургии можно создавать материалы из различных компонентов с резко отличающимися свойствами и температурами плавления, новые материалы с разнообразным комплексом физико-механических свойств. Порошковая металлургия используется как для создания принципиально новых материалов и изделий
из них, так и для изготовления самой широкой номенклатуры конструкционных деталей общего назначения. В настоящее время расширяется сфера применения порошковой металлургии в различных областях промышленности, совершенствуется ее технология. Относительно небольшие производственные расходы на получение изделий из порошковых материалов в сочетании с возможностью придания им заданных свойств, окончательной формы и размеров практически без проведения механической обработки выдвинули порошковую металлургию в ряд
наиболее эффективных и перспективных технологий. Эта технология успешно конкурирует с литьем, обработкой давлением, резанием и другими методами обработки металлов, дополняя или заменяя их. Ежегодные темпы роста производства порошковых изделий в США, ФРГ, Японии и других странах составляют 15 20 %. Это соответствует тому, что через каждые 5 6 лет объем производства изделий из порошковых материалов
удваивается. Порошковая металлургия, относящаяся к одной из наиболее молодых отраслей современной техники, является в то же время древнейшим способом производства металлов и изделий из них. Известно, что уже в глубокой древности (до нашей эры) порошки золота, меди и бронзы использовались для декоративных целей. Способы получения температур, достаточных для расплавления чистого железа, отсутствовали, и изготовление заготовок осуществляли методом порошковой металлургии, так называемым кричным методом.
Сначала в горнах при температуре 1000 °С восстановлением окисленной железной руды углем получали крицу (пористую губку), которую затем многократно проковывали в нагретом состоянии для устранения пористости. Этим методом в Древнем Египте производили из железа разные орудия, а в Киевской Руси — оружие, предметы быта и др. С появлением доменного производства изготовление изделий методами порошковой металлургии временно прекратилось.
В 1826 г. русские ученые П. Г. Соболевский и В. В. Любарский изготовили первые промышленные изделия, применив прессование и спекание платинового порошка. Ими было организовано также производство монет из платины, тиглей и других изделий. Аналогичный способ получения компактной платины англичанин У. X. Вол-ластон предложил только спустя три года.
Именно русским ученым принадлежит заслуга возрождения порошковой металлургии и превращения ее в особый технологический метод обработки металлов. Однако развитие печной техники в начале XIX в. привело к освоению производства изделий из платины литьем и порошковая металлургия вновь незаслуженно была забыта. Лишь в начале XX в когда бурное развитие электротехники вызвало необходимость в новых материалах, получить которые известными способами было невозможно, опять обратились к технологии изготовления изделий
методами порошковой металлургии. Это привело к ее новому возрождению, дальнейшему развитию и активному внедрению в производство. В 30-х годах было начато производство магнитных и контактных материалов, самосмазывающихся подшипников, твердых сплавов и т. д. 1. Технологический процесс производства порошковых изделий и области их применения Процесс изготовления деталей из порошковых материалов заключается в получении порошка исходного материала, составлении шихты, прессовании и спекании изделий.
Каждая из указанных операций вносит свой существенный вклад в формирование конечных свойств порошковых изделий. На практике возможны отклонения от приведенной типовой технологической схемы получения порошковых материалов, которые могут выражаться в совмещении операций прессования и спекания (горячее прессование), спекании свободно насыпанного порошка (отсутствует операция уплотнения), проведении дополнительной обработки (калибрование, механическая и химико-термическая обработка) и др.
Методами порошковой металлургии получают: твердые сплавы для изготовления режущего, бурового, волочильного инструмента, а также деталей, подвергающихся интенсивному изнашиванию; высокопористые материалы для изготовления фильтров, используемых для очистки жидкостей от твердых включений, воздуха и газа, от пыли и т. д.; антифрикционные материалы для производства подшипников скольжения, втулок, вкладышей и других деталей, работающих в тяжелых условиях эксплуатации; фрикционные материалы для получения деталей узлов
трения, сцепления и тормозных систем машин; жаропрочные и жаростойкие материалы для производства изделий, работающих в условиях высоких температур и в сильно агрессивных газовых средах; материалы сложных составов (псевдосплавы) для изготовления электрических контактов, которые получить другими способами невозможно; магнитные материалы для изготовления постоянных магнитов, магнитоэлектриков, ферритов и т. д. 2. Технология производства металлических порошков
Получение металлических порошков является важнейшей операцией технологического процесса изготовления деталей из порошковых материалов, от которой зависят их основные свойства. В настоящее время существуют различные методы изготовления порошков, каждый из которых обеспечивает определенные их характеристики. При выборе способа получения порошка учитывают достигаемый уровень его свойств и стоимость. Металлические порошки различаются как по размерам (от долей микрометра до долей
миллиметра), так и по форме и состоянию поверхности частиц. Все известные способы производства порошков условно разделяют на механические и физико-химические. Механические методы получения порошков — дробление и размол, распыление, грануляция — характеризуются переработкой материалов в порошок практически без изменения их химического состава. Физико-химические методы —восстановление, термическая диссоциация карбонильных соединений — отличаются
тем, что получаемый порошок по химическому составу существенно отличается от исходного материала. Иногда с целью повышения экономичности процесса или улучшения характеристик материала применяют комбинированные методы получения порошков. Так, при распылении расплавленный металл сначала гранулируют, а затем отжигают в защитной среде водорода. При электролизе получают плотные, но хрупкие продукты, которые затем размалывают. Наибольшее промышленное распространение получили методы изготовления порошков путем восстановления
оксидов и других соединений металлов, распыления и др. В США, Японии, Англии и Италии, являющихся крупными производителями и потребителями металлических порошков, около 55 % их производят методом восстановления, а остальную часть методом распыления. Ежегодно в мире производится примерно 600 650 тыс. т металлических порошков. Механические методы получения порошков основаны на измельчении частиц материала путем разрушения их
под действием внешних нагрузок, преодолевающих внутренние силы сцепления в материале. Механическое измельчение дроблением, размолом или истиранием целесообразно применять при производстве порошков хрупких металлов и сплавов: бериллия, сурьмы, хрома, марганца, ферросплавов и др. Размол пластичных металлов затруднен, так как под действием внешних нагрузок они в основном деформируются, а не размельчаются. Дробление металлов производят в щековых, валковых, конусных дробилках и бегунах.
Продукты дробления— частицы размером 1 10 мм. Они являются исходным материалом для последующего измельчения в шаровых вращающихся, вибрационных или планетарных центробежных, вихревых и молотковых мельницах. Шаровая мельница (рис. 1) состоит из стального барабана 1, в который загружаются размалывающие шары (стальные, чугунные или изготовленные из твердых сплавов) и обрабатываемый материал 2. Коэффициент заполнения барабана шихтой и шарами составляет 0,4 0,5.
При вращении барабана шары поднимаются в направлении этого вращения, а затем падают или скатываются вниз и дробят материал. Для облегчения размола его производят при низких температурах с введением поверхностно-активных веществ, создающих расклинивающие усилия в микротрещинах частиц. Частицы порошка, полученные размолом, имеют вид неправильных многогранников, листочков или завитков размером 0,1 3 мм. Рис. 1. Схема шаровой мельницы Разновидностью шаровых мельниц является так называемое
аттриторное устройство. Размалываемые тела загружают в емкость, внутри которой вращается мешалка. Лопасти мешалки обеспечивают циркуляцию размалываемых тел и истирание материала, а наличие рубашки охлаждения позволяет вести процесс непрерывно. В результате размола получают порошки с более равномерным распределением частиц по размерам, чем в обычных шаровых мельницах. Аттриторы весьма эффективны для приготовления ультратонкой порошковой смеси.
Вихревая мельница (рис. 2) состоит из кожуха 1, в котором с частотой 3000 об/мин вращаются в противоположных направлениях пропеллеры 2. Материал, загруженный в бункер, захватывается воздушными потоками и дробится при соударении частиц на более мелкие частицы. Процесс протекает более интенсивно, чем в шаровых мельницах. Получающиеся частицы порошка размером 50 200 мкм имеют тарельчатую форму. Рис. 2. Схема вихревой мельницы Работа вибромельницы основана на воздействии на измельчаемый материал
стальных шаров и цилиндров при совершении барабаном круговых колебаний высокой частоты. Процесс отличается большой производительностью и применяется для производстватонких порошков из малопластичных материалов (твердых сплавов, оксидов металлов и др.). Недостатками механических методов получения порошков является загрязнение последних продуктами истирания шаров и барабана, их высокая стоимость и относительно низкая производительность процессов.
Получение порошка методом распыления связано с распылением расплавленной струи металла в среде воздуха, инертных газов или при ударах лопаток вращающегося диска. Распылением получают порошки алюминия, свинца, цинка, олова, никеля, латуни, чугуна, железа и др. Метод грануляции состоит в том, что расплавленный металл льют в жидкость. Частицы порошка, полученного этим способом, имеют размер 0,05 0,35 мм и форму, близкую к сферической.
Одним из физико-химических методов получения порошков является восстановление оксидов и других соединений металлов. Под восстановлением в порошковой металлургии понимают процесс получения металлов из их химических соединений путем отнятия неметаллической составляющей (кислорода и других элементов) при помощи восстановителя. Методом восстановления получают порошки кобальта, вольфрама, молибдена, титана, меди, железа и других металлов. В качестве восстановителей применяют газы (водород, конвертерный, доменный, коксовый и др.
) или твердые вещества (углерод, магний). Получение металлических порошков восстановлением является наиболее распространенным, высокопроизводительным и экономичным из рассматриваемых методов. В нашей стране разработан метод совместного восстановления смесей оксидов с металлическими порошками гидридом кальция. Этим способом получают порошки высоколегированных сталей и сплавов, обладающие рядом уникальных и ценных для промышленности свойств. Электролиз водных растворов и расплавленных сред заключается
в разложении водных растворов соединений выделяемого металла или расплавленных солей при пропускании через них постоянного электрического тока. Этим способом получают порошки олова, серебра, меди, железа, а также порошки редких металлов (тантала, тория, ниобия, циркония и др.) с дендритной формой частиц. Порошки отличаются высокой чистотой и хорошей прес-суемостью вне зависимости от степени чистоты исходного сырья. Стоимость порошков высока из-за больших затрат электроэнергии и низкой производительности процесса.
Методом диссоциации карбонильных соединений получают высококачественные дисперсные порошки железа, никеля, кобальта и других металлов со сферической формой частиц. Способ основан на способности металла при определенных условиях (высокое давление, повышенная температура) образовывать с оксидом углерода специфические химические соединения, называемые кар-бонилами: Fe(CO)5, Ni(CO)4 и др. Карбонилы неустойчивы при обычных условиях и легко разлагаются при нагревании
до 200 300 °С с образованием тонкого порошка металла и оксида углерода. Недостатком процесса является чрезвычайно высокая стоимость получения порошка. Метод гидрогенизации основан на свойстве металлов резко повышать свою абсорбционную активность при нагреве до высоких температур. Измельчаемый губчатый металл загружают в реактор, через который пропускают водород. При нагреве до определенной температуры (300 800 °С) происходит активное поглощение металлом
водорода, в результате чего он становится хрупким и растрескивается. Порошок получают путем размола губки одним из механических способов и подвергают дегидрогенизации в вакууме при температуре около 800 °С. Данным методом получают порошки редких металлов: титана, урана, циркония и др. Недостаток способа — высокая хрупкость и низкая пластичность частиц порошков. 3. Свойства металлических порошков Металлические порошки характеризуются технологическими, физическими
и химическими свойствами, основные из которых регламентируются ГОСТами и техническими условиями. К технологическим свойствам порошков относятся: насыпная плотность, текучесть, прессуемость и формуемость. Насыпная плотность — отношение массы свободно насыпанного порошка к занимаемому им объему. Чем крупнее частицы и правильнее их форма, тем больше насыпная плотность порошка. Текучесть порошка определяется скоростью истечения его через отверстие заданного диаметра.
Хорошая текучесть порошка необходима для быстрого и равномерного заполнения им пресс-формы. Прессуемость порошков — это способность их уплотняться при формовании изделий в зависимости от давления. Формуемость порошка характеризуется способностью заготовок сохранять заданную форму после уплотнения порошка при минимальном давлении. От технологических свойств порошков зависит их дозирование, заполняемость полостей пресс-форм, процесс прессования изделий и их усадка после спекания.
Физические свойства порошков характеризуются формой частиц, гранулометрическим составом порошков, их удельной поверхностью и микротвердостью частиц. Форма частиц в зависимости от метода получения порошка может быть сферической, губчатой, осколочной, тарельчатой, дендритной, каплевидной. Гранулометрический состав порошка отражает содержание в нем частиц определенных фракций. Удельная поверхность порошка (точнее — удельная площадь поверхности) представляет собой отношение суммарной
площади поверхности частиц порошка к его массе. Микротвердость частицы характеризует ее способность к деформированию. Физические свойства порошков существенно влияют на плотность, прочность и однородность свойств формуемых изделий, давление прессования, а также на процессы уплотнения и спекания порошковых материалов. Химический состав порошка характеризуется содержанием в нем основного металла или компонентов смеси металлов, примесей, различных механических загрязнений и газов.
Химический состав порошка зависит от метода производства и химического состава исходного сырья. 4. Формование заготовок из порошковых материалов Под формованием следует понимать процесс получения заготовок требуемых форм и размеров, а также достаточной прочности для последующего изготовления из них изделий. Формование предполагает уплотнение порошка. Процесс уплотнения порошкового материала в отличие от деформирования компактного металла сопровождается
значительным изменением объема прессуемого тела. На начальной стадии уплотнение происходит за счет относительного перемещения частиц порошка и их более плотной упаковки, на последующих этапах — в результате упругой и пластической деформации частиц или их хрупкого разрушения (в зависимости от свойств деформируемых порошков). Прочность заготовки с повышением давления прессования увеличивается и обеспечивается за счет механического сцепления частиц и сил межатомных и межмолекулярных связей.
Обычно перед формованием производят подготовку порошков, заключающуюся в их отжиге, классификации и приготовлении смесей (шихты). Отжиг применяют с целью повышения пластичности и прессу-емости порошков за счет восстановления остаточных оксидов и снятия наклепа. Классификация — разделение порошков на фракции по размерам частиц. Разделение осуществляют с помощью сит либо воздушных сепараторов.
Приготовление шихты производят в мельницах, смесителях и др. Для этого дозированные порции компонентов определенного гранулометрического и химического состава смешивают в указанных устройствах, добавляя в случае необходимости различные технологические присадки: пластификаторы (стеарат цинка, парафин, олеиновую кислоту и др.), облегчающие процесс прессования; легкоплавкие присадки, улучшающие спекание; летучие вещества для получения изделий с заданной пористостью.
При смешивании порошков материалов, резко различающихся по своим свойствам (например, железа и графита), в целях получения наиболее однородной смеси применяют добавки спирта, бензина, глицерина и др. Рис. 3. Схемы прессования Прессование в стальной пресс-форме (рис. 3) является наиболее распространенным способом получения заготовок. Пуансон 1 передает давление на порошок 2, помещенный в пресс-форму 3, и порошок уплотняется.
Одним из основных недостатков формования в пресс-формах является возникновение сил трения порошка о стенку матрицы (пресс-формы). Это вызывает неравномерное распределение плотности (прочности) по высоте заготовки, особенно если высота значительно превышает ее диаметр. На практике снижение трения порошка о стенку матрицы, а следовательно, улучшение условий процесса прессования достигается применением смазки и другими технологическими приемами.
Одним из них, например, является замена одностороннего приложения давления (рис. 9.3, а) на двустороннее (рис. 9.3,6). В последнем случае два пуансона движутся навстречу друг другу. Это приводит к более равномерному распределению плотности по высоте заготовки и снижению давления прессования на 30 40 %. Поэтому изделие с более сложной конфигурацией изготавливают двусторонним прессованием. Уплотнение производят на гидравлических или механических прессах, давление прессования составляет 200 1000
МПа в зависимости от свойств порошка и назначения изделия. Детали пресс-форм выполняют из высокоуглеродистых легированных сталей (инструментальных сталей), твердых сплавов. Стойкость стальных пресс-форм составляет 1 50, пресс-форм из твердых сплавов — до 500 тыс. прессовок. Рис. 4. Схемы мундштучного прессования Мундштучное прессование применяют для получения заготовок изделий большой длины и равномерной плотности (прутки, трубы, уголки и т. п.) из труднопрессуемых порошков
вольфрама, тория, бериллия и др. Процесс получения заготовок заключается в выдавливании порошка, заключенного в полость контейнера 2 (рис. 4), пуансоном 1 через отверстие мундштука матрицы 3. Для обеспечения лучшего связывания частиц порошка и более легкого истечения смеси, через отверстие мундштука в шихту добавляют пластификатор (крахмал, парафин и т. д.). Массовая доля пластификатора в шихте обычно составляет 10 12 %.
Профиль получаемой заготовки определяется формой отверстия мундштука, полые профили получают с применением специального рассекателя (иглы). Изостатическое прессование заключается в том, что порошок, помещенный в эластичную оболочку, подвергается в камере высокого давления всестороннему сжатию. Если давление создается жидкостью (вода, масло), прессование называют гидростатическим, а если газом,— газостатическим. Порошковое тело после формования имеет практически равномерную плотность по всему
объему. В связи с этим изостатическое прессование применяют для получения заготовок сложных конфигураций и больших размеров. Недостатком способа является необходимость проведения дополнительной механической обработки заготовок для достижения их точных, заданных размеров. Прокатка порошков является экономичным и прогрессивным способом непрерывного формообразования заготовок. Ее можно производить в любом направлении. Рис.5. Схемы прокатки рошков
При прокатке в вертикальном направлении (рис. 5, а) порошок 2 непрерывно поступает из бункера / в зазор между валками 3. При вращении валков порошок обжимается и вытягивается в ленту или полосу 4 определенной толщины. Применение бункера с одной (рис. 5, б) или несколькими перегородками 5 позволяет получать двух- или многослойные заготовки из различных материалов. В настоящее время прокаткой металлических порошков получают ленты и полосы толщиной 0,025 3 мм и шириной
до 300 мм, прутки различного профиля и т. д. Технологический процесс прокатки может быть совмещен со спеканием и окончательной отделкой получаемых изделий. Непрерывность процесса обеспечивает высокую производительность и возможность его автоматизации. Шликерное литье применяют для получения изделий сложной формы (с внутренними полостями) из хрупких и твердых порошков карбидов, нитридов, силицидов и др.
При этом 40 70 %-ю водную суспензию порошка (шликер) заливают в пористую гипсовую или керамическую форму. Жидкость впитывается стенками формы, внутри формы образуется заготовка, связь частиц порошка в которой обеспечивается их Механическим сцеплением. Подсушенную заготовку извлекают, разрушая стенки формы, окончательно сушат и затем спекают. Горячее прессование характеризуется совмещением процессов прессования и спекания заготовок.
При температурах, близких к температуре спекания, повышается пластичность частиц порошка, более интенсивно протекают процессы уплотнения порошков по сравнению с обычным прессованием. Горячим прессованием (а им может быть любой из известных способов формования) получают изделия из труднодеформируемых порошковых материалов. Динамическое прессование —это формование заготовок с использованием импульсных нагрузок, отличающееся высокой скоростью их приложения.
В качестве источника энергии используют: взрыв заряда взрывчатых веществ, импульсное магнитное поле, сжатый газ и т. д. Высокоскоростное прессование в настоящее время используется при изготовлении высокоплотных крупногабаритных заготовок из труднодеформируемых металлических порошков и порошков керамических материалов. 5. Спекание и окончательная обработка порошковых изделий Только прессованием порошка получить изделие достаточной прочности невозможно.
На поверхности частиц порошка образуются оксиды и всегда есть загрязнения, препятствующие возникновению металлических контактов. В силу упругих свойств частиц порошка велико их сопротивление деформированию. Поэтому для повышения прочности и твердости изделий заготовки подвергают спеканию. Операция спекания состоит в нагреве и выдержке заготовок при температуре, составляющей 0,7 0,8 от абсолютной температуры плавления основного компонента спекаемой композиции.
Средняя продолжительность выдержки составляет 1 2 ч. При спекании заготовок протекают такие сложные физико-химические процессы, как диффузия, восстановление поверхностных оксидов, рекристаллизация. Между частицами порошка возникают металлические контакты, а прочность их сцепления иногда достигает прочности сцепления кристаллов компактных металлов. Спекание сопровождается обычно некоторым уплотнением заготовок — усадкой, которая зависит от дисперсности
исходного порошка, температуры и продолжительности спекания. При спекании снимаются остаточные напряжения в заготовках, изменяются их физические свойства и улучшаются механические характеристики. Для пред отвращения окисления частиц порошка спекание проводят в вакууме или в защитной атмосфере (водорода, оксида азота, генераторного газа и др.). Различают спекание в твердой и жидкой фазах. Спекание в твердой фазе производится при температуре,
меньшей температуры плавления компонентов смеси, при спекании же в жидкой фазе — при температуре, превышающей температуру плавления одного или нескольких компонентов исходного материала. Спекание в жидкой фазе позволяет получать более плотные изделия за счет активизации капиллярных явлений, приводящих к закрытию пор. Процесс спекания заготовок в зависимости от температурного режима условно делят на три этапа. На первом этапе (до 150 °С) наблюдается некоторое увеличение прочности и незначительная
усадка заготовки, что объясняется испарением адсорбированной воды с поверхности частиц. Происходит увеличение электросопротивления и интенсивная релаксация остаточных напряжений в заготовке. Второй этап (до 0,5ТПЛ) характеризуется дальнейшей релаксацией упругих напряжений, что вызывает изменение площади контактов и уменьшение плотности заготовок. На третьем этапе (при температурах, несколько больших температур рекристаллизации для данного металла)
происходит сглаживание свободных и контактных поверхностей частиц, контакты между сросшимися зернами расширяются и становятся металлическими вследствие высоких скоростей диффузии и окончательного восстановления оксидов. Нагрев заготовок при спекании осуществляют в печах различного типа, работающих периодически или непрерывно. Печи периодического действия применяют при небольшом выпуске порошковых изделий. Они бывают колокольного типа, муфельные и шахтные.
При массовом производстве изделий используют методические печи непрерывного действия: конвейерные, рольганговые, с шагающим подом, толкательные. При необходимости порошковые изделия подвергают отделочным операциям: калиброванию, обработке резанием, термической и химико-термической обработке, повторному спеканию, повторному прессованию. Калиброванием можно получать изделия с погрешностью размеров 0,0005 0,01 мм. Порошковое изделие продавливают через отверстие в стальных пресс-формах специальной конструкции.
При этом происходит не только уточнение размеров, но и уплотнение и полировка поверхностного слоя изделий, повышается их износостойкость. Обработку резанием (точение, сверление, фрезерование и т. д.) применяют в тех случаях, когда прессованием нельзя получить детали заданных форм и размеров, для нарезания внутренних и наружных резьб, получения узких, но глубоких отверстий и т. д. При обработке резанием используют хорошо заточенный и доведенный инструмент, оснащенный пластинками
из твердого сплава или алмаза. Термическую и химико-термическую обработку порошковых изделий (азотирование, хромирование и т. д.) проводят так же, как и для компактных металлов. Некоторой особенностью термической обработки порошковых изделий является необходимость нагрева их и переноса в закалочную ванну в защитной атмосфере, так как они отличаются склонностью к окислению. Повторное прессование применяют при получении изделий сложной формы, когда при первом прессовании обеспечиваются
лишь приближенные их форма и размеры. 6. Эффективность технологии порошковой металлургии Применение методов порошковой металлургии для изготовления изделий позволяет достигать высокой производительности труда и значительной экономии средств в народном хозяйстве страны. Экономия достигается за счет получения изделий высокой прочности, рационального использования металла, снижения его потерь, повышения качества изделий, создания новых прогрессивных деталей и др.
Если обычное изготовление деталей на металлорежущих станках сопровождается потерями до 20 80% металла, связано с необходимостью выполнения большого числа технологических операций и значительными трудозатратами, то получение изделий методами порошковой металлургии отличается тем, что при числе операций 3 5 отходы металла составляют всего 5 10%. Кроме того, производство порошковых изделий сосредоточено в основном на одном предприятии, не требует большого станочного парка и высокой квалификации рабочих.
Изготовление деталей обычного состава методами порошковой металлургии дает возможность уменьшить по сравнению с обработкой резанием удельный расход металла в 3 5 раз, трудозатраты — в 2 8 раз, себестоимость изготовления деталей — в 1.5 3 раза и повысить производительность труда в 1,5 2 раза. Образующиеся на машиностроительных заводах при обработке деталей из различных металлов резанием отходы в виде стружки и шлама представляют собой хорошее сырье для производства различных деталей машин и приборов.
В основном около 50 % стружки, спрессованной в брикеты или пакеты, используется в сталеплавильном производстве. Часть стружки перерабатывается в порошок. В нашей стране разработана технология измельчения стружки путем размола ее в мельницах в среде жидкого азота. Изделия, изготовленные из отходов методами порошковой металлургии, обладают в ряде случаев более высокой стойкостью, чем детали, полученные по обычной технологии.
Шлам, получающийся в результате отделочной обработки заготовок, является также ценным сырьем для порошковой металлур-гии. Так, отходы шлифования деталей шарикоподшипникового производства после их сушки и просева составляют основу для изготовления фрикционных дисков, работающих в условиях тяжелых нагрузок. Порошок, полученный из отходов после опиловки и обкатки подшипниковых шариков, может быть использован для изготовления конструкционных деталей общего назначения и т. д.
Многие изделия, изготовленные методами порошковой металлургии, обладают более высокими качествами, чем изделия, полученные традиционными методами. Так, стойкость инструмента из порошка быстрорежущей стали в 3 4 раза больше стойкости инструмента из литой стали. Новые инструментальные материалы на основе системы SisN4 — A12O3 по стойкости во многих случаях превосходят вольфрамо-титановые твердые сплавы.
Важной технологической операцией в производстве синтетических волокон является процесс фильтрации прядильного расплава непосредственно перед формованием волокон или нитей. Для предотвращения попадания в расплав различных инородных тел и других включений расплав перед формованием нитей подвергают фильтрации. Основные требования к фильтрующим материалам — достаточный срок их службы и качество фильтрации. Фильтрация расплава производится, как правило, с помощью металлической сетки
и кварцевого песка. Но использование сеток гарантирует отделение лишь крупных примесей, а пыль, содержащаяся в кварцевом песке, засоряет капилляры фильер. Это приводит к необходимости останова машины и замены фильерного комплекта через каждые 100 120 ч работы. Замена металлических фильтров пористыми из порошковых материалов обеспечивает повышение срока службы фильерных комплектов в 2 2,5 раза, а трудозатраты при перезарядке фильерных комплектов сокращаются вдвое.
Рост скоростей движения механизмов и нагрузок на детали и узлы современных машин обусловливает повышение требований, предъявляемых к материалам. Так, для торможения современного самолета в течение 30 с необходимо свыше 400 МВт энергии, а для остановки за 10 с автомобиля массой 2,5 т, движущегося со скоростью 180 км/ч,— более 220 кВт энергии. При этом теплота, выделяющаяся в тормозных узлах, должна рассеиваться до очередного торможения, в противном случае нарушается нормальный режим работы тормозов.
Традиционные фрикционные материалы в подобных случаях не могут обеспечить требуемый режим работы узлов трения. Использование же порошковых фрикционных накладок в тормозных системах самолетов позволяет значительно уменьшить длину посадочных полос аэродромов, что обеспечивает получение большого экономического эффекта. Порошковые антифрикционные материалы предназначены в основном для замены традиционных подшипниковых материалов и создания новых, не имеющих аналогов. Применение таких материалов позволяет увеличить в 1,5 3
раза срок службы узлов трения, достичь экономии материалов за счет полной или частичной ликвидации механической обработки при изготовлении деталей, снижения массы изделия и трудоемкости его изготовления. Наиболее эффективна замена литых цветных металлов материалами на основе железного порошка. Таким образом, порошковая металлургия позволяет решать вопросы, связанные с изготовлением материалов и изделий как с обычными, так и особыми свойствами.
Эффективность порошковой металлургии повышается в условиях массового производства изделий. Так, в массовом производстве при изготовлении 1 тыс. т деталей методами порошковой металлургии экономится свыше 2000 т стали, высвобождается более 200 рабочих и 50 металлорежущих станков. С увеличением объема выпуска изделий себестоимость изготовления порошковых деталей снижается по сравнению с себестоимостью литых заготовок. Предполагается дальнейшее развитие теории и практическое применение
методов порошковой металлургии. Литература 1. Кипарисов С. С Либенсон Г. А. Порошковая металлургия.— М.: Металлургия, 1980—496 с. 2. Либенсон Г. А. Основы порошковой металлургии.— М.: Металлургия, 1975.— 198 с. 3. Технология важнейших отраслей промышленности / Под ред. А. М. Гинберга, Б. А. Хохлова.— М.: Высш. шк 1985.—495 с.
! |
Как писать рефераты Практические рекомендации по написанию студенческих рефератов. |
! | План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом. |
! | Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач. |
! | Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты. |
! | Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ. |
→ | Виды рефератов Какими бывают рефераты по своему назначению и структуре. |