Реферат по предмету "Транспорт"


Проектирование механизма подъема груза мостового крана

--PAGE_BREAK--

Так как длина барабана меньше трех его диаметров, то выполнение проверочного расчета на изгиб не требуется.
2.8 Определение толщины стенки барабана
Толщину стенки барабана определяют из условий сжатия, учитывая, что он нагружен равномерно распределенной нагрузкой вследствие огибания его натянутым канатом силой Fmax.
олщина стенки барабана из расчета на сжатия
                                                 (11)
где коэффициент, учитывающий влияние изгибающих напряжений, которые возникают при навивке каната,
коэффициент, отражающий влияние на нагрузку барабана деформаций стенки и каната
                                             (12)
где Ек – модуль упругости каната, для шестипрядных канатов с органическим сердечником Ек = 88260 Н/мм2,
Ак =0,4dк2 – площадь сечения всех проволок каната, мм2;
Еб – модуль упругости стенки барабана, для чугунных барабанов Еб = 98000 Н/мм2;
допускаемое напряжение сжатия, Н/мм2;
Для чугуна
                                                    (13)
где предел прочности, Н/мм2; для чугуна СЧ28 ГОСТ 1412 – 70, ;
n – запас прочности, для чугунных барабанов n = 4,0…4,25,
Тогда
,
,

Из условия технологии изготавливаемых литых барабанов толщина стенкидолжна быть не менее, м
                                          (14)
где D – диаметр барабана по дну канавки, м
                                                    (15)


Принимаем
2.9 Определение частоты вращение барабана
Частота вращения барабана
                                                      (16)
где скорость подъема груза, м/мин,
Таким образом

2.10 Определение статической мощности двигателя, выбор типового электродвигателя
 
Максимальная статическая мощность двигателя, которую должен иметь механизм в период установившегося движения при подъеме номинального груза, равна
                                                  (17)
где предварительное значение КПД механизма,

Так как крановые двигатели являются большегрузными, допускается их перегрузка до 30%, то есть

По режиму работы и мощности двигателя по таблицам приложения А выбираем электродвигатель серии MTF.
Таблица 2.3 – Основные технические данные выбранного электродвигателя     
Тип двигателя
Мощность на валу, кВт
n, об/мин
КПД
Момент инерции, кгм2
Масса
4МТН 225L6 
55 
960
87
1,02 
500
Таблица 2.4 – Основные размеры (мм) электродвигателя 4МТН 225L6
Тип двигателя
b1
b10
b11
b12
d1
d10
l1
l3
l10
l11
l12
l20
l28
l30
4МТН 225L6
18
356
435
95
70
19
140
105
356
404
92
1070
149
1220
2.11 Определение расчетной мощности редуктора и его выбор
Редукторы для механизма подъема выбирают, исходя из расчетной мощности или крутящего момента частоты вращения быстроходного вала, передаточного   числа   редуктора  и  режима   работы.   Для   горизонтальных
редукторов
                                                  (18)
где kp – коэффициент, учитывающий условия работы редуктора, для приводов механизмов подъема грузов kp = 1,

При выборе редуктора должно соблюдаться условия, касающиеся прочности, долговечности и кинематики редуктора
Первое условие – расчетная мощность редуктора на быстроходном валу не должна превышать номинальную мощность на быстроходном валу редуктора
                                                         (19)
Второе условие – передаточное число редуктора не должно отличаться от требуемого передаточного числа более чем на ±15%
                                           (20)
Требуемое число редуктора равно
                                                     (21)
где nдв – частота вращения двигателя, мин-1;
nт – частота вращения барабана, мин-1,

По таблице приложения Б[3] в соответствии с расчетной мощностью, частотой вращения быстроходного вала, режимом работы и передаточным числом выбираем редуктор Ц2 – 400.
Таблица 2.5 – Основные параметры редуктора Ц2
Тип редуктора
Режим работы
Передаточное число
Максимальная мощность на быстроходном  валу, кВт
Частота вращения быстроходного вала, об/мин
Ц2 — 400
Средний
12,41
81
1500
Проверяем второе условие
 что меньше допускаемых 15%

Таблица 2.6 – Размеры редуктора
  Типоразмер редуктора
Размеры, мм
  А
Аб
АТ
А1
С1
Н0
L1
q
L
B
H
  Ц2 — 400
400
150
250
287
150
265
640
27
805
380
505
Ц2 — 400
325
415
358
280
205
33
320
250
6
317
                 

                   а)                                                        б)

Рисунок 2.8 –  Общий вид концов валов редуктора Ц2, а – тихоходного; б – быстроходного
Таблица 2.7 – Геометрические параметры концов валов редуктора Ц2
Типоразмер редуктора
d8
d9
d10
D
l7
l8
l9
l10
l11
B3
d5
b3
l3
l5
 Ц2 — 400
 110
100 
140 
252
69 
30 
60 
 255
 65
205 
95 
28
170 
138 
2.12 Определение статического момента на валу двигателя при подъеме груза
Момент статического сопротивления на валу двигателя в период пуска при подъеме груза, Нм
                                             (22)
где Fmax – усилие в канате, набегающем на барабан, Н;
Z – число полиспастов;
Up – передаточное число редуктора (привода);
 КПД барабана, на подшипниках качения
 КПД привода,

2.13 Определение расчетного момента и выбор муфты
По кинематической схеме, представленной на рисунке 1, установлены две муфты. Одна муфта с тормозным шкивом установлена между двигателем и редуктором, вторая соединяет тихоходный вал редуктора с валом барабана.
Расчетный момент для выбора муфты с тормозным шкивом, Нм
                                                 (23)
 
где Тмн – номинальный момент муфты, Нм. Принимается равным Тс;
k1 – коэффициент, учитывающий степень ответственности механизма, k1=1,3;
k2 – коэффициент, учитывающий режим работы механизма, по таблице 5.1[3] при среднем режиме k2 = 1,2. 

Из таблицы В.3[3] выбирается муфта упругая втулочно-пальцевая с тормозным шкивом. 

Рисунок 2.9 – Муфта упругая втулочно-пальцевая и тормозным шкивом
Таблица 2.8 – Основные размеры и параметры втулочно-пальцевых муфт с тормозными шкивами 
Номинальный тормозной момент МК, Нм
d(Н7)
d1(Н9)
D

D1
D2
d2
d3
d4
d5
Число пальцев, n
мм
1000
60-70 
50-70 
220
300
170 
275 
120 
18
36 
М12 
10 
Продолжение таблицы 2.8
Номинальный вращающий момент М, Нм
l
l1
l2
S

b
Допустимое смещение валов
Тормозной момент М, Нм
Момент инерции, кгм2
Масса, кг, не более
мм
радиальное
угловое
1000
110
140
107
22
150
1-6
0,4

420
1,5
43
2.14 Определение номинального момента на валу двигателя
Номинальный момент на валу двигателя, Нм
                                                 (24)
где Р – мощность электродвигателя, кВт;
n – число оборотов электродвигателя, мин-1.

2.15 Определение среднего пускового момента
Для двигателя с короткозамкнутым ротором можно принимать
                                            (25)
где Тmax – максимальный момент двигателя, Нм.
                                                (26)
где  максимальная кратность пускового момента,


Принимаем Тср.п. = 820 Нм.
2.16 Определение времени пуска двигателя при подъеме груза
Время пуска при подъеме груза, с
                                    (27)
где Imax – суммарный момент инерции ротора двигателя и муфты, кгм2.
                                                  (28)
где Ip – момент инерции ротора двигателя, кгм2;
Iм – момент инерции муфты, кгм2.

nдв – частота вращения вала электродвигателя, мин-1;
Vф – фактическая скорость подъема груза, м/с, Vф = 0,71м/с (см пункт 2.18);
КПД механизма,  
Тср.п. – средний пусковой момент двигателя, Нм;
Тс – момент статического сопротивления на валу двигателя, Нм.

2.17 Определение фактической частоты вращения барабана
Фактическая частота вращения барабана, мин-1
                                                       (29)

2.18 Определение фактической скорости подъема груза
Фактическая скорость подъема груза
                                                 (30)

2.19 Определение максимального ускорения при подъеме груза
Максимальное ускорение при подъеме груза, м/с2
                                                         (31)

2.20 Определение тормозного момента и выбор тормоза
Момент статического сопротивления на валу электродвигателя при торможении механизма, Нм
                                            (32)

Тормоз выбирается по расчетному тормозному моменту, Нм
                                                  (33)
где kT – коэффициент запаса торможения, по таблице 5.3[3] для среднего режима kТ = 1,75.

При выборе типоразмера тормоза проверяем условие: номинальный тормозной момент должен быть не меньше расчетного
                                                       (34)

Выбираем  колодочный тормоз с приводом от электрогидравлических толкателей.
Таблица 2.9 – Техническая характеристика и основные размеры тормоза ТКГ
Тип тормоза
Тормозной момент
Тип толкателя
Масса тормоза
мм 
Диаметр шкива
L
l
l1
В
b1
ТКГ — 300
800
ТГМ – 50
80
300
772
275
421
232
120
Продолжение таблицы 2.9
Тип тормоза
b2
H
h
A
a
a1

d
t
t1
ТКГ — 300
140
550
240
500
150
80
8
22
50
30

Рисунок 2.10 – Тормоз колодочный ТКГ – 300

2.21 Определение времени торможения при опускании груза
Время торможения при отпускании груза, с
                                 (35)
 Что допустимо.
2.22 Определение пути торможения
Путь торможения механизма подъема груза, м
                                                     (36)
где ks – коэффициент, учитывающий режим работы механизма, по таблице 6.3[3] ks = 1,7.

2.23 Определение максимального времени торможения
Время торможения в предположении, что скорости подъема и опускания груза одинаковы, с
                                                       (37)

2.24 Определение замедления при торможении
Замедление при торможении, м/с2
                                             (38)
где [aT] – допускаемое замедление для кранов, работающих с лесоматериалами и с сыпучими материалами, [aT] = (0,6…0,9)м/с2.

2.25 Расчет оси барабана

Рисунок 2.11 – Расчетная схема оси барабана со сдвоенным полиспастом
В нашей конструкции установки барабана механизма подъема кранов общего назначения, соединение оси барабана с тихоходным валом редуктора осуществляется с помощью специальной зубчатой муфты (см. рисунок 2.7).
При этом конец вала редуктора выполняют в виде зубчатой   шестерни, которая входит в зацепление с венцом, закрепленным на барабане. Крутящий омент от вала редуктора передается через зубчатое зацепление на венец- ступицу и далее через болты на обечайку барабана.
Ось барабана испытывает напряжение изгиба от действия усилий двух ветвей каната при сдвоенном полиспасте, а также от собственного веса барабана (при расчете, обычно, весом барабана пренебрегают). При сдвоенном полиспасте положение равнодействующей натяжений каната  относительно опор оси остается неизменным.
Величина этой равнодействующей, Н
R = 2Fmax,                                                   (39)
R =
 венец- ступицу и далее через болты на обечайку барабана
Нагрузка, Н на опору 1 оси при положении равнодействующей, указанном на рисунке 2.11
                                              (40)
где l – расстояние между опорами оси, мм;
l5 – расстояние от места приложения равнодействующей R до середины ступицы С, мм;
l2 – расстояние от центра ступицы барабана С до опоры 2, l2 = 200мм.
Для определения расстояний используем следующие соотношения


Нагрузка на опору 2, Н
R2 = R – R1,                                                (41)
R2 = 34722  –  19848 = 14874 Н.
Нагрузка на ступицу барабана А (1)
                                                    (42)
где l4 – расстояние между центрами ступиц барабана А и С, мм;
По рисунку 2.11
l4 = l3 + l5 – l1,
где l1 – расстояние от центра ступицы барабана А до опоры 1, l1 = 120мм.
l4 = 1196 – 120 = 1076 мм.

Нагрузка на ступицу С (2)
P2 = R – P1,                                                 (43)
P2 = 34722 – 19297 = 15425 Н.
Расчет оси барабана сводят к определению диаметра ступицы из условия работы оси на изгиб в симметричном цикле
,                                            (44)
где Ми – изгибающий момент в расчетном сечении, Нм;
W – момент сопротивления расчетного сечения при изгибе, мм3;
допускаемое напряжение изгиба при симметричном цикле изменения напряжений, Н/мм2.
Допускаемое напряжение при симметричном цикле, Н/мм2
                                                 (45)
где k0– коэффициент, конструкцию детали, для осей k0= 2,0…2,8, принимаем k0= 2,0;
предел выносливости стали, для углеродистых сталей  
где предел прочности стали, = 1000 Н/мм2;

[n] – допускаемый коэффициент запаса прочности, для среднего режима [n] = 1,4.

Изгибающие моменты: наибольший изгибающий момент под правой ступицей барабана в точке С
                                                   (46)

в точке А
                                                    (47)

Момент сопротивления сечения оси под ступицей, мм3
                                                    (48)
де d – диаметр оси под ступицей барабана С, d = 45мм (см. пункт 2.26).

    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.