Реферат по предмету "Транспорт"


Грузовой план морского судна

--PAGE_BREAK--
1.2. Транспортные характеристики грузов

 Удобрения– минеральные вещества, содержащие элементы питания растений. Гигроскопические, пылящие грузы. Длительное вдыхание пыли в концентрациях, превышающих допустимые, приводит к развитию хронического воспаления слизистой оболочки трахеи и бронхов, изменениям функций печени и почек. Тара: шестислойные мешки из битумированной мешочной бумаги. Вентиляции не требуют. Обладают способностью сильно слеживаться.  Минеральные удобрения нельзя смешивать, так как многие их сочетания могут самовозгораться и взрываться. При соединении с водой большинство удобрений растворяются, многие из них могут активизировать процесс коррозии корпуса, поэтому при постоянных перевозках рекомендуется использовать антикоррозионные покрытия металлических конструкций судов, а льяльные колодцы держать сухими. Принимаются счетом мест с оценкой качества тары. Поврежденные места  тарируются в запасные мешки, которые выдаются отправителям груза согласно существующим нормам. Груз в поврежденной таре принимается фактической массой, которая определяется на весах порта в присутствии представителя судна и таможни.

 Чугун– сплав, получаемый из железорудных материалов в доменных печах; основная масса перерабатывается в сталь. Нейтральный груз. Предъявляется к перевозке в чушках разнообразной формы и размеров, которые пакетируются для ускорения дальнейших перегрузочных операций. Чугун в пакетах принимается к перевозке по количеству грузовых мест. Масса груза определяется отправителем по массе, указанной на грузовых местах.

 Ткани для специальной одежды– предназначены для защиты работающих от воздействия воды, огня, кислот, щелочей и пр. В силу своих свойств, не требуют особых условий для защиты их от воздействия окружающей среды. В какой-то мере подвержены механическим повреждениям. Предъявляются к перевозке в кипах. Применяют мягкую упаковку в кипы без планок с двумя обвязками тонкой стальной лентой. Груз принимается к перевозке, а также выдается получателям по числу мест. При приеме на судно производят наружный осмотр груза, проверяя чистоту грузовых мест, наличие пломб и контрольных лент, маркировку и соответствие отправительской и транспортной маркировок с данными, указанными в грузовых документах.

 Целлюлоза– продукт тепловой, химической и механической обработки растительных волокон, древесины, соломы и др. Используется для изготовления бумаги, картона, целлофана, пленок, лаков и др. товаров. К морской перевозке предъявляется в виде пластин, упакованных в кипы. В зависимости от степени просушки целлюлоза содержит то или иное количество влаги, которую она очень легко отдает. Целлюлоза выделяет влагу не только в результате испарения, но и в результате «отжима» нижних слоев верхними, если штабель целлюлозы в трюме достаточно большой. Хотя целлюлоза является влажным грузом, нужно оберегать ее от влаги, так как она легко впитывает  избыточную влагу. Кипы при намокании разбухают и могут разорвать стягивающие ленты, что резко понижает качество груза. Пластины целлюлозы при подмочке плесневеют и загнивают. Обычно кипы целлюлозы обертывают в два слоя небеленой целлюлозой и стягивают двумя полосами стальной ленты или четырьмя поясами стальной проволоки. Прием и сдача груза производятся счетом мест. Масса целлюлозы может сильно отличаться в момент приемки и в момент сдачи груза из-за различной влажности.

 Обувь– кожаные, из кожезаменителя, войлочные, меховые и пр. изделия. Тара: ящики фанерные, причем обувь, как правило, предварительно упакована в потребительскую тару (картонные коробки). Гигроскопический груз, при повышенной влажности активизируется деятельность микроорганизмов; груз может плесневеть; при низкой относительной влажности и высокой температуре (кожаные изделия) трескается, ухудшает свои свойства и товарный вид. Некоторые изделия имеют слабовыраженный запах. Груз несовместим с пылящими, выделяющими влагу, запах, тепловыделяющими, а также иногда с восприимчивыми к посторонним запахам грузами. Не следует поверх их укладывать другие грузы (ящики, коробки, бочки), особенно, если есть вероятность вытекания из них содержимого в экстремальных ситуациях. Оптимальная относительна влажность – 65-70%. Сам по себе груз не требует вентиляции, однако при резком снижении температуры наружного воздуха вентиляция должна быть использована для предотвращения (уменьшения интенсивности) образования конденсата в грузовых помещениях во избежание подмочки тары и груза. Не допускается совместная перевозка с пищевыми грузами. Сдают и принимают груз счетом мест, тщательно осматривая каждое грузовое место.

 Пробка– ценный наружный слой покровной ткани тропических растений (пробковый дуб, амурское дерево, бархатное дерево и пр.). Очень легкая, непроницаемая для газов, используется как изоляционный материал в промышленности, также в медицине и быту. Гигроскопический груз; при увлажнении, а тем более подмочке, плесневеет; подвержен деятельности микроорганизмов, активность которых возрастает с повышением температуры и относительной влажности; при перевозке в условиях высоких температур и низкой относительной влажности – крошится, при этом ухудшается товарный вид и снижается качество и стоимость. Оптимальная относительная влажность около 75%.Предъявляется к перевозке в кипах, обшитых паковочной тканью, стянутых металлическими лентами. Вентиляция должна быть использована для предотвращения (уменьшения интенсивности) образования конденсата и поддержания (по возможности) оптимальной относительной влажности. Груз, как правило, требует фитосанитарного (карантинного) контроля. Прием и сдача груза производятся счетом мест, при этом необходимо обращать внимание на качество упаковки кип (упаковочная ткань должна быть прочной и чистой, а металлические ленты и проволока на кипах – целыми).
 Цинк– серебристо-белый металл. На воздухе покрывается защитной пленкой оксида. Нейтральный груз. Предъявляется к перевозке в виде чушек стандартной формы, которые укладываются в пакеты способом «вперевязку» и крепят (скручивают) толстой проволокой, изготовленной из того же металла. При отгрузке на судно пакеты не взвешивают. Их отгружают по количеству мест и массе, по которой груз был принят портом от железной дороги, и эту массу и количество мест указывают в коносаменте.

Транспортные характеристики грузов представлены в табл.1.2. 
Таблица 1.2. Транспортные характеристики грузов.

Наимено-вание груза

Вид тары

Размеры грузового места, мм

Объем, м3

Коэфф. трюмной укладки

УПО, м3/т

Высота штабе— лирова-ния

Нормы расхода

длина

ширина

высота

места

удельный

сепа— рации

креп— ления

удобрения

мешки

800

400

200

0,064

1,28

1,14

1,46

7,0 м

0,003

0,003

чугун

пакеты

150

900

400

0,378

0,252

1,43

0,36

-

0,011

0,011

ткани

кипы

800

650

450

0,234

3,34

1,25

4,18

10 рядов

0,003

0,003

целлюлоза

кипы

800

600

500

0,23

1,28

1,25

1,6

9 рядов

0,003

0,003

обувь

ящики

600

400

500

0,12

2,07

1,25

2,59

4,0 м

0,003

0,003

пробка

кипы

1200

730

640

0,561

7,008

1,25

8,76

6,0 м

0,003

0,003

цинк

пакеты

840

420

600

0,212

0,177

1,41

0,25

-

0,011

0,011



При загрузке помещений и судна в целом различными грузами физико-химические свойства грузов, технические условия и правила перевозки служат основанием для их размещения на судне с точки зрения совместимости.

При  составлении таблицы  совместимости  грузов  удобно  пользоваться  следующей  кодировкой:

1 — «совместная  перевозка  на  одном  судне  запрещена»;

2 — «через  отсек от ....» — грузы должны быть разделены двумя стальными        водонепроницаемыми переборками;

3 — «в соседнем  отсеке  от ...» — грузы должны быть разделены вертикальной стальной водонепроницаемой переборкой;

4 — «в одном  отсеке, но в разных  помещенияхот…» — грузы должны быть разделены двумя стальными палубами или переборками;

      5 — «в одном  помещении, но  при  условии  разделения  грузом,  нейтральным по  отношению к двум  перевозимым»;

6 – «в одном  помещении, но с  сепарацией»;

7 – «совместное  размещение допускается  без ограничений».

 Данные о совместимости различных грузов представлены в табл. 1.3.

    продолжение
--PAGE_BREAK--Таблица 1.3. Совместимость грузов
Наименование грузов
Грузы, размещаемые сверху
удобрения

чугун

ткани

целлюлоза

обувь

пробка

цинк

удобрения

 

4

6

3

3

5

4

чугун

6

 

6

6

6

6

6

ткани

6

4

 

4

6

6

4

целлюлоза

3

4

6

 

3

3

4

обувь

3

4

4

3

 

3

4

пробка

4

4

4

3

3

 

4

цинк

6

6

6

6

6

6

 


1.3. Технико-эксплуатационные характеристики судна
Технико-эксплуатационные характеристики судна «Славянск» представлены в табл.1.4.
         Таблица 1.4. Технико-эксплуатационные характеристики судна «Славянск»


1.Водоизмещение судна в грузу, т

18320

2.Масса суднапорожнем, т

5430

3.Полная грузоподъемность, т

12890

4.Грузовместимостьсуднакиповая, м3

17330

5.Осадка судна в грузу, м

9,02

6.Скорость в грузу, узл

16

7.Максимальная длина, м

152,8

8.Длина между перпендикулярами, м

140

9.Высота борта, м

12

10.Ширина судна, м

20,6

11.Суточные нормы расходы (на стоянке/на ходу), т/сут
топлива воды прочих запасов


1,5/34

10

1-2

12.Суммарное количество тонн топлива, которое может быть принято на судно, т

1404

13. Суммарное количествотоннводы, которое может быть принято на судно, т

297

14.Абцисса  центра тяжести порожнего судна, м

-10.55

15. Аппликата центра тяжести порожнего судна, м

9.2

16.Количество тонн на 1см осадки, т/см

24,5

    продолжение
--PAGE_BREAK--Данные по грузовым помещениям расчетного судна представлены в табл.1.4.


Таблица 1.4. Основные характеристики грузовых помещений т/х «Славянск»

Наименование помещений

Вместимость киповая,м3

Размеры, м

Размеры люка, м

Отстояние, м

длина

ширина

высота

длина

ширина

от миделя

от киля

трюм 1

540

17,2

9,5

3,3

9,8

9,4

50,0

6,2

трюм 2

2330

21,4

16,7

6,5

14,4

11,0

31,0

4,8

трюм 3

2620

21,3

19,4

6,4

14,1

11,0

8,75

4,8

трюм 4

925

21,3

19,2

6,4

14,2

11,0

-12,6

4,8

трюм 5

945

16,5

8,0

7,0

14,6

9,4

-53,25

4,8

твиндек под баком

770

15,6

16,8

3,7





50,3

13,3

твиндек 1

1700

17,2

12,8

3,7





50,0

9,6

твиндек 2

1755

21,4

21,4

3,7





31,0

9,8

твиндек 3

1745

21,3

22,3

3,7





8,75

9,8

твиндек 4

1350

21,3

22,1

3,7





-12,6

9,8

твиндек 5

 

15,0

20,3

4,0

 

 

-53,25

10,2


2. Расчет чистой грузоподъемности судна на рейс
Согласно исходным данным трасса рейса будет иметь вид:


    продолжение
--PAGE_BREAK--                                                                                                         Хайфа
                   тропики                                                      лето
Рангун                                                                Порт-Саид                                                         Николаев



То = 8,5 м                                                       Суэцкий                                                                        Дарда-      Босфор

                                                                                                             канал                                                                            неллы
Определение чистой грузоподъемности производится в условиях получения топлива, воды и прочих запасов в начальных и конечных портах рейса.

,

где Дв – расчетный дедвейт;

      G
р
– запасы топлива, воды и прочие на рейс.

Расчетное значение дедвейта определяется с учетом ограничения осадки судна в порту отправления (То = 8,5 м):



где — дедвейт, определенный по грузовой марке (тропическая).

,

где — осадка судна по грузовую марку (тропическая);

      а = 24.5 т/см — количество тонн на 1см осадки;

,

где Тл = 902 см — осадка судна по летнюю грузовую марку.

см

,

где = 12890 т — полная грузоподъемностьсудна по летнюю грузовую марку;

 т

 т

,

где — ходовые запасы на переход от порта погрузки до порта выгрузки с учетом               коэффициента штормового запаса;

         — запасы на стоянку в промежуточном порту захода.

,

где L=6095 миль – расстояние перехода;
     
lo– протяженность участков, где судно следует с ограниченной скоростью:

        = 87,5 миль;

        = 9,5 миль;

       = 16,2 мили;

     = 16 узлов – скорость судна в грузу;

        — ограниченная скорость:

        узлов;

       = 10 узлов;

       мин – дополнительные затраты ходового времени (швартовка, отшвартовка,     лоцманская проводка и др.);

     = 34 т/сут –норма расхода топлива на ходу;

      = 10 т/сут – норма расхода воды на ходу;

     = 1 т/сут – норма расхода прочих запасов;

    = 1,15 – коэффициент штормового запаса.

т

,

где =950 т количество выгружаемого груза;

      — количество погружаемого груза:



       т;

      =100 т/сут – нормы грузовых работ;

      = 1,5 т/сут – норма расхода топлива на стоянке;

       = 10 т/сут – норма расхода воды на стоянке;

 т

т

 т
3. Определение загрузки судна
Одним из важных вопросов при расчете грузового плана является определение массы и объема обязательных и факультативных грузов, сепарационных и крепежных материалов для них.

Ниже приводится расчет для удобрений в мешках.

По каждому виду груза определяем массу и объем сепарационных и крепежных материалов с учетом установленных норм:

,

где  — норма сепарационных и крепежных материалов;

      — масса i-той партии груза, т;

 т

,

где =2 м3/т – удельный погрузочный объем сепарационных и крепежных материалов;

 м3

Рассчитываем массу и объем каждой партии груза с учетом сепарационных и крепежных материалов:

,

 т,

,

где — удельный погрузочный объем i-того груза, м3/т;

 м3

Определяем удельный погрузочный объем груза с учетом сепарационных, крепежных материалов:



 м3/т

Данные по остальным грузам, погружаемым в порту отправления, представлены в табл.3.1.
Таблица 3.1. Загрузка судна в порту отправления

Наименов. груза

Масса, т

Объем, м3

УПО    груза с сепарацией



груза без сепарации



сепарации



груза с сепарацией



груза без сепарации



сепарации

     

груза с сепарацией



удобрения

3150

9,45

3159,45

4599

18,9

4617,9

1,462

чугун

2200

24,2

2224,2

792

48,4

840,4

0,378

ткани

1100

8,8

1108,8

4598

17,6

4615,6

4,163

целлюлоза

950

2,85

952,85

1520

5,7

1525,7

1,601

Итого по обязат. грузам

7400

45,3

7445,3

11509

90,6

11599,6

-

пробка

574

6,38

580,38

5028,08

12,76

5040,84

8,685

цинк

2532,94

28,18

2561,12

633,2

56,36

689,56

0,269

Итого по факуль.грузам

3106,94

34,56

2141,5

5661,475

69,12

5730,4

-

Итого

10506,94

79,86

10586,8

17170,48

159,72

17330

-



После погрузки обязательных грузов определяем неиспользованные части грузоподъемности и грузовместимости, которые предназначены для факультативных грузов с учетом сепарационных и крепежных материалов:

,

 т;

,

 м3

Рассчитываем массу и объем факультативных грузов, крепежных и сепарационных материалов для них.

Определяем удельную грузовместимость для факультативных грузов:



 м3/т

Сопоставляя удельную грузовместимость для факультативных грузов с удельным погрузочным объемом факультативных грузов, получили соотношение:

,

где м3/т – удельный погрузочный объем пробки;

       м3/т – удельный погрузочный объем цинка;

т.е. один факультативный груз – «тяжелый», а другой – «легкий».

Для определения массы и объемов «легкого» и «тяжелого» факультативных грузов, массы и объемов сепарации для этих грузов решаем систему уравнений:



где ,

      ,

      ,

       т,

       т;
      ,

      ,

      м3,

       м3;


 т,

 т

Сепарацию между факультативными грузами распределяем пропорционально их массе:



 т

 т

Результаты расчетов занесены в табл.3.1.

Таким образом, загрузка судна удовлетворяет условиям:



Это говорит о том, что при данной загрузке  полностью используется грузоподъемность и грузовместимость судна.
4. Определение распределенной нагрузки (массы) отсеков и грузовых помещений
Прочность корпуса, мореходные качества судна (остойчивость, дифферент) в значительной степени зависят от правильного распределения переменной нагрузки (грузов и рейсовых запасов) в горизонтальном и вертикальном направлениях.

Распределенная масса грузовых отсеков и помещений судна может быть получена расчетным или расчетно-графическим путем. Для решения задачи распределения нагрузки в горизонтальном и вертикальном направлениях необходимо использовать номограммы распределенной массы отсеков и помещений.
4.1. Распределение рейсовых запасов

Рейсовые запасы распределяются меду топливными и водяными емкостями судна, при этом считаем, что запасы принимаются на судно  в следующем соотношении:

80% — топлива;

20% — воды.

 т

 т

Результаты распределения представлены в табл.4.1.
Таблица 4.1. Распределение рейсовых запасов между емкостями

Вид рейсовых запасов

Наименование помещений

Масса, т

Отстояние Ц.Т., м

Моменты, тм

от миделя

от киля

относительно миделя

относительно киля

топливо

МДЦ 8,9

276

-12,6

0,73

-3480

201

Т.Б. 25

367

-23,2

7,63

-8510

1700

МДО 7,10

180

-11,4

0,75

-2050

135

вода

ЦПВ 33

32

-22,4

10,6

-717

339

ЦМВ 22

129

-50

3,3

-6450

425

ЦМВ 23

43,5

-53,4

3,3

-2460

172

Итого

 

1027,5





-23667

2972


4.2. Определение распределенной массы грузовых отсеков

Определяем момент оптимального дифферента.

,

где   — водоизмещение судна, т

,

     = 5430 т – масса судна порожнем,

      т;

     = -0,75 м – абсцисса центра величины груженого судна, которая определена по   кривым элементов теоретического чертежа;

    = -10,55 м – абсцисса центра тяжести порожнего судна;

              = 0 – значение оптимального дифферента, принимаем равным  нулю, поскольку осадка в порту отправления ограничена;

             — удельный дифферентующий момент, тм/см;

             = -23667 тм — момент относительно миделя, создаваемый запасами на рейс,         распределенными по j-тым отсекам судна;

 тм

Находим суммарную распределенную массу носовых отсеков:

,

где — средневзвешенные плечи носовых и кормовых отсеков



      — вместимость носовых (кормовых) трюмов, м3;

      — вместимость носовых (кормовых) твиндеков, м3;

    , — абсциссы их центров тяжести, соответственно.

 м
 м
 т

Определяем оптимальное, минимальное и максимальное значения изгибающего момента:

 ,

где = 0,7 – коэффициент общей полноты, который найден по кривым элементов теоретического чертежа;

              — коэффициент, который учитывает влияние сил поддержания на изгибающий момент;

     

                   =0,036,  = 0,0325 – коэффициенты, учитывающие дополнительный         изгибающий момент;
= 20,6 м – ширина судна;

= 140 м – длина судна между перпендикулярами;

       = 0,11 – коэффициент, учитывающий расположение машинного отделения;

 

               тм

,

,
, — численные коэффициенты, учитывающие отклонение момента     сил массы от момента сил поддержания, которые зависят от типа судна и постановки на волне;

 тм,

 тм

Распределенная масса грузовых отсеков определяется по номограмме, приведенной        на рис.4.1.
В результате проведенных построений были получены значения распределенных масс грузовых отсеков:

 т;

 т;

 т;

 т;

 т
4.3. Определение распределенной массы грузовых помещений

Определяем статический момент от грузов относительно киля:



где =8,6 м – аппликата поперечного метацентра, которая определена по кривым       элементов теоретического чертежа;

        = 1,1 м – оптимальное значение метацентрической высоты;

       = 9,2 м – аппликата центра тяжести порожнего судна;

                 = 2972 тм – момент относительно киля, создаваемый запасами на рейс,         распределенными по j-тым отсекам судна;

 тм

Определяем средневзвешенные плечи трюмов и твиндеков:



где   — вместимость  трюмов, м3;

      — вместимость твиндеков, м3;

    , — аппликаты их центров тяжести, соответственно.

 м;
 м

Распределенную массу между трюмами и твиндеками получаем графически. Для этой цели  была вычерчена номограмма распределения нагрузки по вертикали, которая представлена на рис.4.2.
В результате проведенных построений были значения суммарной распределенной массы трюмов и твиндеков:

 т;

 т

Эти значения служат для расчета коэффициентов пропорциональности распределения нагрузки между трюмами и твиндеками:



;



;



0,625 +0,375 = 1.
Распределение нагрузки по вертикали в отсеке №1 осуществляется пропорционально кубатуре:



 т;



т;



т

Значение распределенной массы любого другого грузового помещения определяется как произведение коэффициента пропорциональности на распределенную массу этого отсека:



 т

 т

Результаты расчетов по остальным отсекам приведены в табл.4.2.
Таблица 4.2. Распределенная масса грузовых помещений

Наименование судового помещения

Распределенная масса, т

отсек №1

отсек №2

отсек №3

отсек №4

отсек №5

Итого

трюм

442,1

1593,75

1406,25

1375

1088

5905,1

твиндек

630,3

956,25

843,75

825

652,8

3908,1

твиндек под баком

773,6

-

-

-

-

773,6

Всего

1846

2550

2250

2200

1740,8

10586,8

    продолжение
--PAGE_BREAK--
5. Разработка плана комплектации грузов
Комплектация грузов по судовым помещениям сопровождается многовариантностью решений и должна учитывать все факторы рациональной загрузки, сохранности груза и  безопасности судна.

Разработку плана комплектации грузов удобно проводить с помощью специальной таблицы, в строках которой указываются все грузовые помещения, а в столбцах отдельные их параметры и транспортные характеристики грузов, подлежащих к погрузке в портах захода.

Определяем значения удельной грузовместимости каждого грузового помещения по формуле:



где киповая вместимость j-того помещения, м3;

      распределенная масса j-того помещения, т;

 м3/т;

м3/т

Результаты расчетов остальных значений, а также план комплектации грузов представлены в табл.5.1.
6. Графическое изображение грузового плана
План комплектации грузов изображается на масштабной схеме диаметрального разреза судна в масштабе 1:200 по длине и 1:50 по высоте.

Для изображения размещения грузов по помещениям на масштабной схеме используем масштаб высоты и масштаб клетки.

При использовании масштаба клеток схема грузового помещения на диаметральном разрезе разбивается на n-ое количество равных клеток и определяется объем грузового помещения, приходящийся на одну клетку:



Объем, занимаемый грузом в j-том помещении на схеме грузового плана, рассчитывается по количеству занятых клеток:



где — объем i-того груза в j-том грузовом помещении.

Так для чугуна в трюме №1 эти величины составят:

  м3/клетку;

клетки.

Масштаб высоты по грузовому помещению определяется как отношение вместимости грузового помещения к его высоте, измеренной на масштабной схеме:



где — высота грузового помещения на масштабной схеме.

Высота слоя груза на масштабной схеме определяется по формуле:



Так для удобрений в трюме №1 эти величины составят:

;

 см

План комплектации грузов представлен в Приложении1.
По масштабной схеме определяем координаты центра тяжести каждой партии грузов. Результаты измерений занесены в табл.6.1.
7. Проверка и исправление дифферента
7.1. Расчет дифферента на момент отхода из порта погрузки

Определяем значение статического момента относительно миделя от суммарного воздействия всех нагрузок:

,

где — масса i-той партии груза в j-том грузовом помещении;

         — абсцисса центра тяжести  i-той партии груза в j-том грузовом помещении.

 тм

Результаты расчетов нагрузок и суммарных статических моментов от постоянных и переменных нагрузок относительно миделя и киля представлены в табл. 7.1.
Для полученного варианта грузового плана определяем абсциссу центра тяжести груженого судна:



 м

Рассчитываем плечо дифферентующей пары сил:



 м

Вычисляем дифферентующий момент:



 тм

Рассчитываем дифферент судна в начальном порту отхода при данном варианте загрузки:



= 194,3 тм/см;

 см

Таким образом, , т.е. необходимо удифферентовать судно, что обеспечить нулевой дифферент, принятый за оптимальный.
7.2. Удифферентовка судна

Определяем отклонение начального дифферента от оптимального:



 м

 Рассчитываем величину изменения дифферентующего момента,  соответствующую отклонению дифферента:



 тм

Исправление дифферента на требуемую величину можно получить при помощи переноса груза. Поэтому определяем грузы, которые будут обменены местами и расстояние переноса:

,

где = 49,8 м — абсцисса центра тяжести пробки в твиндеке №1;

      =-52,1 м — абсцисса центра тяжести  удобрений в трюме №5 ;

      — расстояние переноса из отсека №5 в отсек №1;

 м

Определяем массу партии груза, при переносе которой обеспечивается изменение дифферента на требуемую величину:



 т

Производим равнообъемный обмен тканей («легкий» груз) и удобрений («тяжелый» груз). Для этого решаем систему уравнений:





 т

 т

Определяем исправленный суммарный статический момент относительно миделя:



 тм



 м



 м

 тм

Таким образом, , т.е. судно удифферентовано.
7.3. Проверка дифферента в порту назначения

Рассчитываем водоизмещение по израсходованию рейсовых запасов:



 т

Новому значению водоизмещения соответствуют новые значения абсциссы центра величины и удельного дифферентующего момента, которые определяем по кривым элементов теоретического чертежа:

 м;

 тм/см

Уточняем значение статического момента от всех нагрузок относительно миделя после расхода запасов:



тм

По уточненному значению статического момента определяем абсциссу центра тяжести:



 м
Рассчитываем плечо дифферентующей пары сил:



 м

Вычисляем дифферентующий момент:



 тм

Рассчитываем дифферент судна после расхода запасов:



 см

Таким образом, дифферент после расхода запасов – величина положительная. Это связано с тем, что порту отхода нами был принят нулевой дифферент из-за ограниченной осадки.
8. Проверка и исправление остойчивости
Остойчивость судна считается удовлетворительной, если в допускаемых пределах находятся значения метацентрической высоты – hи статических (предельных) моментов — . Если эти требования не удовлетворяются, то необходимо перераспределить нагрузку по вертикали между трюмами и твиндеками.
8.1 Оценка остойчивости в порту отправления

Рассчитываем статический момент нагрузок относительно киля:

,

где — масса i-той партии груза в j-том грузовом помещении;

         — аппликата центра тяжести  i-той партии груза в j-том грузовом помещении.

 тм  (см. табл.7.1)

Определяем аппликату  центра тяжести груженого судна для порта отправления:



 м

Определяем метацентрическую высоту судна  в порту отправления:



 м

Таким образом, , т.е. необходимо перераспределить груз в вертикальном направлении между трюмами и твиндеками.
8.2. Исправление остойчивости

Определяем отклонение полученного значения метацентрической высоты от оптимального (=1,1):



 м

 Рассчитываем дополнительный восстанавливающий момент:



 тм

Исправление остойчивости на требуемую величину можно получить при помощи переноса груза в вертикальном направлении. Однако полученное значение момента слишком велико, т.е. в грузовых помещениях нет партий груза достаточной массы, потому принимаем в качестве расчетной величину   тм. Определяем грузы, которые будут обменены местами и плечо переноса:

,

где = 2,175 м – аппликата  центра тяжести чугуна в трюме №5;

      =-53,1 м – аппликата центра тяжести  удобрений в твиндеке №5;

      — расстояние переноса из трюма №5 в твиндек  №5;

 м

Определяем массу партии груза, при переносе которой обеспечивается изменение остойчивости  на требуемую величину:



 т

Производим равнообъемный обмен удобрений («легкий» груз) и чугуна («тяжелый» груз). Для этого решаем систему уравнений:





 т

 т

Определяем исправленный суммарный статический момент относительно киля :



 тм

Определяем аппликату  центра тяжести:



 м

Определяем метацентрическую высоту:



 м
8.3 Определение метацентрической высоты в порту назначения

Уточняем значение статического момента от всех нагрузок относительно киля после расхода запасов:



тм

По уточненному значению статического момента определяем аппликату центра тяжести:



 м

Новому значению водоизмещения соответствуют новые значения возвышения поперечного метацентра, которое определяем по кривым элементов теоретического чертежа:

 м;
Рассчитываем  метацентрическую высоту на порт прихода:



 м

Таким образом, величина метацентрической высоты находится в допустимых пределах.
8.4. Проверка остойчивости по диаграмме предельных моментов

Метацентрическая высота не является достаточным условием остойчивости судна, поэтому кроме метацентрической высоты необходимо проверить остойчивость по диаграмме предельных  моментов. Диаграмма допускаемых статических (предельных) моментов построена  относительно условной расчетной плоскости, возвышающейся над килем на величину z
= 8 м.

Производим пересчет моментов от всех нагрузок (массы судна порожнем, грузов и запасов) относительно киля, к моменту относительно условной расчетной плоскости:



 тм

По диаграмме предельных моментов определяем значение допустимого момента:  тм

Таким образом, , т.е. судно удовлетворяет нормам остойчивости.
9. Проверка прочности судна
Проверка продольной прочности судна является одним из важных факторов обеспечения безопасного плавания. Оценка продольной прочности необходима, так как загрузка судна в реальных условиях существенно отличается от проектных вариантов. Оценить необходимо общую прочность корпуса судна и местную прочность судовых конструкций.
9.1. Проверка общей прочности

Критерием оптимальной загрузки с точки зрения общей прочности, является отношение фактической полусуммы моментов сил дедвейта без учета знака к его оптимальному значению, обеспечивающему минимальное значение момента:





Таким образом, можно сказать, что судно удовлетворяет условиям сохранения общей прочности.
9.2. Проверка местной прочности

Численное значение технически допустимой нагрузки  на верхнюю палубу и крышки люков – 1,6 т/м2; на палубу 1,2,3 и 4 твиндеков – 3,0 т/м2; 5 твиндека – 3,9 т/м2; на палубы трюмов  — 9,5 т/м2

Для помещений, загруженных однородным грузом либо при послойной загрузке, фактическая нагрузка на один квадратный метр площади определяется как отношение массы груза в данном помещении ()  к площади помещения ():



Так для твиндека №1 эта величина составит:

т/м2

При композитной загрузке, а также для концевых помещений, если в разных частях помещения находятся различные грузы, фактическую нагрузку можно определить как сумму нагрузок от всех грузов, расположенных по вертикали с учетом высоты слоя груза и удельного погрузочного объема груза:



где — высота слоя груза, м;

       — удельный погрузочный объем груза с учетом сепарации, м3/т

Для трюма №1 эта величина составит:

т/м2


Критерий оценки рациональной загрузки с точки зрения местной прочности – это отношение фактической нагрузки к технически допустимой:



Например, для трюма №1 он будет следующим:



Данные по остальным всем грузовым помещениям представлены в табл. 9.1.
Таблица 9.1. Оценка местной прочности

Наименование судового помещения

Технически допустимая нагрузка, т/м2

Фактическая нагрузка, т/м2

Критерий оценки рациональной загрузки

трюм 1

9,5

3,24

0,341

твиндек 1

3

2,86

0,953

твиндек под баком

3

2,95

0,983

трюм 2

9,5

4,46

0,469

твиндек 2

3

3

1,0

трюм 3

9,5

3,065

0,323

твиндек 3

3

2,67

0,890

трюм 4

9,5

5,71

0,601

твиндек 4

3

1,75

0,583

трюм 5

9,5

8,22

0,865

твиндек 5

3,9

1,937

0,497

Таким образом, местная прочность судовых конструкций не нарушается, т.е. загрузка судна проведена верно.    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.