Дослідження характеристик стійкості в системі популяційної динаміки
із запізненням
1. Вступ
У багатьох застосуваннях припускається, що на поведінку піддослідної системи не впливає жодна затримка в часі, тобто майбутній стан системи не залежить від попередніх станів і визначається лише теперішнім. У таких випадках динамічна система переважно моделюється звичайними диференціальними рівняннями. Однак при глибшому вивченні виявляється, що такий погляд – це лише перше наближення до дійсного стану і реальніша модель повинна включати минулі стани системи.
Крім того, деякі задачі повністю втрачають свій зміст без розгляду “попередньої історії”. Ці положення були відомі й раніше, але теорія систем з післядією інтенсивно розвивається лише протягом останніх 50 років. Досягнення в галузі обчислювальної техніки є дуже важливими, оскільки теорія інтегрування, тобто аналітичного розв’язування, для систем з післядією не настільки успішна.
Перші системи, з якими зіткнулися дослідники, були біологічними. При дослідженні динаміки популяцій двох антагоністичних видів [7] використовувалися системи із запізненням. Р.Беллман [3] вивчав наслідки введення у кров хімічного розчину. Зауважимо, що рівняння, які описують цей процес, не є звичайними диференціальними рівняннями, оскільки повна циркуляція крові триває близько двох хвилин.
Мета цієї праці – проаналізувати систему імунного захисту організму, враховуючи запізнення в часі. Вперше модель імунного захисту людського організму була розроблена групою математиків і лікарів на чолі з Г.І.Марчуком. Як зазначає Г.І.Марчук [1], модель дала непогані результати при використанні її для лікування пневмонії та вірусного гепатиту.
2. Асимптотична стійкість
2.1. Головні результати теорії стійкості
Широке коло задач пов’язано з дослідженнями динаміки об’єктів, що описуються диференціальними рівняннями із запізненням:
Тут
Одним із найзагальніших методів дослідження стійкості таких задач є прямий метод Ляпунова. Використання такої методики для систем із післядією пов’язано з двома напрямками. Перший ґрунтується на скінченно-вимірних функціях Ляпунова і використовує теореми Б.С.Разуміхіна. Однак цей підхід має недолік: не доведено необхідності цих умов стійкості. Сенс диференціально-різницевих рівнянь полягає в нескінченно-вимірних просторах. Використання скінченно-вимірних функцій Ляпунова призводить до зайвих достатніх умов.
З цієї причини М.М.Красовський [8] запропонував підійти до вивчення стійкості з точки зору дослідження процесів у функціональних просторах. Як точку простору він запропонував розглядати не вектор
Теорема 2.1. Нехай існують
Тоді незбурений роз’язок
2.2. Один загальний випадок нелінійної системи третього порядку із запізненням
Розглянемо систему диференціальних рівнянь із запізненням:
Тут
де
Теорема 2.2. Нехай умови (2.3) виконані.
Тоді незбурений розв’язок
Доведення. Нехай
Тоді:
Розглянемо функціонал, що відображає
Повна похідна функціоналу вздовж першого рівняння з (2.2) має вигляд:
Згідно з умовами (3), існує
у сфері:
Функціонал
при досить великому N.
Нехай
Розглянемо інтервал
Оскільки мають місце (2.5), (2.6), (2.7), то, як випливає з теореми 2 (див. [10], стор.145), розв’язок першого рівняння з (2.2) – експоненціально x-стійкий, тобто:
Уявимо функцію
Оскільки
Застосовуючи до останньої нерівності лему Гронуола-Беллмана, отримуємо:
Виберемо
Звідси при
Нехай
3. Система імунного захисту
Наша подальша мета – отримати достатні умови стійкості в явному вигляді для наступної нелінійної системи:
Тут
Нехай:
Теорема 3.1. Нехай існують додатні константи
Тоді тривіальний розв’язок (22 ) є асимптотично стійким.
Доведення. Використаємо квадратичний функціонал вигляду:
що є додатньо-означеним на розв’язках системи (22). Обчислимо повну похідну функціоналу
Зробимо перетворення в усіх складових порядку, відмінного від двох. Тут береться до уваги додатність траєкторії системи. Маємо:
Ми отримали нерівність, де в правій частині є квадратична форма, що відповідає вектору:
Маємо:
Тут:
Взявши до уваги вигляд матриці
Література
Нисевич Н.И., Марчук Г.И. Математическое моделирование вирусного гепатита. – М.: Наука, 1981.
Hale J. Theory of Functional-Differential Equations. Springer. – Berlin, 1977.
Bellman R., Jacques J., Kalaba R. Some mathematical aspects of chemoterapy. I: one-organ models // Bull. Math. Biophys. – 1960. – Р. 181-198.
Marzeniuk V.P. On Construction of Exponential Estimates for Linear Systems with Delay. – Advances in Difference Equations. – Gordon and Breach Science Publishers. – 1997. – Р.439-445.
Хусаинов Д.Я., Марценюк В.П. Оптимизационный метод исследования устойчивости линейных систем с запаздыванием // Кибернетика и системный аналіз. – 1996. – №4. – С. 88-93.
Хусаинов Д.Я., Марценюк В.П. Двусторонние оценки решений линейных систем с запаздыванием // Доклады НАН Украины.– 1996. – №8. – С. 8-13.
Volterra V. Sur la theorie mathmatique des phenomenes hereditaires. J. Math. Pures Appl. – 7 (1928). – Р. 249-298.
Красовский Н.Н. Некоторые задачи теории устойчивости движения. – М.: Физматгиз, 1959.
Малкин И.Г. Теория устойчивости движения. – М.: Наука, 1951.
Эльсгольц Л.Э., Норкин С.Б. Введение в теорию дифференциальных уравнений с отклоняющимся аргументом. – М.: Наука, 1971.
Колмановский В.Б., Носов В.Р. Устойчивость и периодические режимы регулируемых систем с постедействием. – М.: Наука, 1981. – 448 с.
! |
Как писать рефераты Практические рекомендации по написанию студенческих рефератов. |
! | План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом. |
! | Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач. |
! | Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты. |
! | Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ. |
→ | Виды рефератов Какими бывают рефераты по своему назначению и структуре. |