Александр Соловьев ДИСКРЕТНАЯ МАТЕМАТИКА БЕЗ ФОРМУЛ ЛИРИЧЕСКОЕ ОТСТУПЛЕНИЕ Формулы в математике были придуманы, как это не странно, чтобы облегчить занятия этой самой математикой. Школьники не могут в это поверить до сих пор.В древней, например, Индии хорошо обходились без формул: брали обезьяну, кувшин, банан, женщину и другие конкретные предметы… И, как сейчас говорят, конкретно строили логические выводы. И египтяне вместо формул, которые еще не были придуманы, высекали у себя в пустынях, на формульном безрыбьи, красивые барельефы. И арабы когда то занимались математикой без формул – в стихотворной форме они ею занимались. Сладкозвучные поэмы писали про квадрат суммы…Но потом пошло поехало…Виноват конкретно Пифагор, который сказал, что "^ ВСЕ ЕСТЬ ЧИСЛО" !… БОлшую неправду для математики трудно придумать и сегодня! Хотя к пифагоровым штанам претензий нет… Скроены на века.Сегодня математику не любят многие. Подавляющее большинство мирного населения. Не любят прежде всего из за формул. И правильно делают. Поскольку еще в школе несчастных предупредили, что математика – это формулы, так же как стихи – это рифмы. (Поэтому они не занимаются математикой, а наоборот, целыми днями шлют на радио поздравления в стихах всем своим знакомым, чтобы поразить художественными откровениями весь мир: «поздравляю желаю», «без бед – до ста лет». Не правда ли, очень удачно!?…).Каково же было мое удивление, когда, читая книги по основам (основаниям) математики, я там, практически, не обнаружил формул.Формулы, конечно, создают для математика великое облегчение, но это надо понять добровольно, а не подвергаться принудительной формулизации – истязаниям, мол, стерпится – слюбится…Все наши гуманитарные проблемы в математике не только из за тяги некоторых отморозков к абстракции. Тут есть еще более коварное слово СЕМАНТИКА , что на человеческом языке означает обычно СМЫСЛ . Так вот, прежде всего со смыслом обычно и борется математика всеми доступными ей средствами, в том числе и формулами… Разумеется, во имя достижения ^ ВЫСШЕГО СМЫСЛА . Как это всегда у нас бывает!Чем более «высшая" математика – тем меньше в ней СЕМАНТИКИ и больше СИНТАКСИСА . Синтаксис все в школе тоже проходили и он до сих пор мало кому доставляет радость!… Может и права Т. Толстая, когда в романе «КЫСЬ» называет «синтаксис» словом матерным.Но это еще пока не лекция, а лирическое отступление.П.С. В интернете, с момента его возникновения, много появляется очень умных людей, порой с законченным физ мат образованием. Это хорошо, но иногда достает… поскольку от большого ума не все сохраняют способны судить «по законам жанра". Так что к ним отдельная просьба, не подозревать автора в попытке написать учебник по „основаниям математики“, или „монографию“. А главная просьба – вообще не читать ниженаписанное. Не для вас это. Идите с миром откуда пришли…^ Лекция 1. МНОЖЕСТВА Что такое «множество» – ясно из самого слова без всякого определения. Тем более, что дать этому фундаментальному математическому понятию определение невозможно. И не пробуйте.Лучше потратить свою энергию на вечный двигатель или на что то другое конкретное…Множеством может быть множество деревьев в лесу, множество студентов в университете или даже множество бедных родственников в Америке, которые могут выслать вам приглашение… Есть, конечно, специальная очень серьезная игра под названием "АКСИОМАТИЧЕСКАЯ теория множеств" . Понять ее правила дано немногим, а найти практическое применение никому… Но это развлечение для очень замкнутого круга любителей, коль скоро и сама эта теория очень замкнута.Множество состоит из элементов – деревьев, студентов, бедных родственников… При этом никакой роли не играет, рассматриваем ли мы тех же студентов в порядке алфавита или по успеваемости.Недопустимы только двойники или студенты, у которых отсутствуют отличительные свойства. Будьте хоть китайскими студентами, но должны друг от друга отличаться… Могут даже быть множества, состоящее из чисел. Но мы, как договорились, от математики вообще, и от чисел в частности, шарахаемся, как черт от ладана… Поэтому можно и без них. Или можно с ними. Или будем использовать только те числа, которые хорошо знакомы с детства…Однако мы не будем считать множеством «множество мыслей в голове». И не из за их количества, а из за того, что эти мысли элементы невозможно четко разделить в общей каше, разложить по полочкам и разметить. Множество мыслей, разложенных по полочкам, в голове просто не поместится из за устаревшего устройства типовой головы.Кстати, поскольку «множество» ( set ) в русском языке как бы намекает на «много». А понятие «много» ( many ) у каждого из нас свое, то, во избежания спора между русскоязычными, мы будем слово «множество» использовать для любого количества элементов, как и англоязычный Запад. Даже для одного элемента. Даже в случаях, когда в множестве нет ни одного элемента – такое множество называется пустым! Это, в частности, позволит рассказывать своим друзьям корректный, с точки зрения теории множеств, анекдот про «множество нуждающихся ветеранов Куликовской битвы»…Кроме понятия множества есть еще лишь одно исходное базовое понятие – и все. Остальное в этой теории производно. Так вот, второе базовое понятие – это ПРИНАДЛЕЖНОСТЬ (или «отношение принадлежности»). То есть «элемент принадлежит множеству». Тут, тем более, нечего определять, имея в виду что слово «принадлежит» в обыденной речи можно заменять, с учетом контекста, многими синонимами, вроде:– Та березка «находится» в этом лесу,– Сидоров «числится» в студентах,– Мистер Х «входит» в число ваших бедных американских родственников.Примечание. Чтобы избежать синонимов, которые могут нас запутать, можно бы было ввести специальный маленький значок, напоминающий греческую букву эпсилон. Но мы этого делать не будем, поскольку от этого значка до формул уже рукой подать…Важное предостережение. Вопросы, вроде: «Принадлежит ли студент Сидоров множеству лысеющих людей?» уводят нас в сторону от теории множеств и мы такие вопросы будем просто игнорировать, справедливо считая, что классическая теория множеств лысеющими просто не занимается, коль скоро нет об'ективных оценок лысости. А значит вопрос принадлежности – непринадлежности можно утрясти неформально, например за вознаграждение. Выход здесь очень простой. Сначала определиться четко с лысиной где то в другом официальном месте, а потом привлекать теорию множеств.То есть предполагается, что мы всегда четко знаем, что принадлежит данному множеству, а что нет! Остальное считаем несуществующим вообще!!!Далее, если мы хотим сказать, что все березки (березка, не то что лысеющий человек – она и в Африке березка), находящиеся в данном лесу, принадлежат и всему лесному богатству нашей страны, а все студенты, которые числятся в университете, числятся и студентами России, то для сокращения фраз используются термины ПОДМНОЖЕСТВО или ВКЛЮЧЕНО .Здесь тоже могут быть очевидные синонимы. Но чтобы в них не запутаться и попросту не перепутать с «принадлежит», нужно помнить одну простую вещь: «принадлежит» относится к случаю, когда "ЭЛЕМЕНТ принадлежит МНОЖЕСТВУ ", а «включено» – когда "МНОЖЕСТВО включено в МНОЖЕСТВО ". Потому то второй вариант для обозначения «включено» – «подмножество» – то есть какая то часть множества.Множество студентов университета «включено» в множество студентов страны. То есть множество студентов университета «есть подмножество» множества студентов страны.Тем, кто не сломал при этом язык, ясно, что множество студентов страны «включено» во всемирное множество студентов.Можно продолжить эту цепочку включений, прихватив галактику. Но тогда следует, что множество студентов университета есть подмножество множества студентов галактики.Это свойство цепочек просто и строго(! ) доказывается прямо на основании того, как мы определили отношение включения.У отношения включения есть ряд любопытных свойств. Не нами придуманных. Они могут быть обнаружены любым исследователем, если он «поиграет» с этим отношением.Например, можно сказать, что множество студентов группы ух 001 включено в множество студентов университета, поскольку такая группа в университете числится. То, что из группы отчислены все студенты, для математики никакой роли не играет. Поскольку, НЕТ ни одного студента, числящегося в этой группе, который бы не числился в университете. Такого рода рассуждения совершенно корректно можно применить к любым пустым множества и сделать обобщающий вывод, что пустое множество включено в любое множество, в том числе и в себя.Оцените математическую красоту фразы:Любой элемент, принадлежащий множеству, не содержащему ни одного элемента, принадлежит и любому другому множеству, которое не содержит ни одного элемента.Чуть менее красива фраза:Любое множество является собственным подмножеством.Или то же самое, но более жестоко:Любое множество включено само в себя.Действительно, группа ух 002 (в которой, вполне возможно, есть студенты) включена в группу ух 002, поскольку все студенты, которые в ней числятся по прежнему числятся в ней, даже если ее название ух 002 упоминается несколько раз.Из последнего примера можно сделать важный вывод. Если два множества (возможно на первый взгляд различные, вроде множества чиновников и множества слуг народа) включены друг в друга, то эти множества равны – то есть состоят из одних и тех же элементов.Можно сказать чуть иначе: Если два множества являются подмножествами друг друга, то они состоят из одних и тех же элементов.А как же иначе?!…Правда, есть математики диссиденты, которые это не признают. Но это скорее уже вопрос веры… другой математической конфессии…А теперь следует признать, что математики сродни той категории больных людей, которых называют «правдоискателями». Как правило искатели (социальной) правды правы. Но их правота или бессмысленна, или нереальна, а главное, никому кроме них не нужна… Так вот и в теории множеств часто можно найти правду, которая для посторонних людей может выглядеть, мягко выражаясь, странной и вредной.Например, студент Хведоров не может быть подмножеством студентов университета, поскольку он сам не множество, а элемент. Поэтому он, как элемент, может быть лишь элементом множества студентов университета. А вот группа ух 003, как множество студентов, есть полноправное подмножество множества студентов университета. Но группа ух 003 состоит всего лишь из одного неотчисленного студента. Того самого Хведорова! Вот и получается, что сам Хведоров не может быть подмножеством, но группа, состоящая из него одного, может.С другой стороны, если вдруг ректор решит рассматривать университет, как множество студенческих групп, то группа ух 003 станет элементом множества студенческих групп университета. Тут ничего страшного, если понимать, что множество студентов университета и множество студенческих групп университета – два разных множества.Впрочем, нас бюрократическими закорючками не удивишь мы и не такое в жизни видим каждый день…Но, все таки, теории множеств есть чем удивить даже нас. Это, так называемые парадоксы теории множеств – одно из потрясений первого года прошлого столетия для узкого круга людей.Поясним на знаменитом примере про брадобрея.Правитель (вроде Петра I) повелел единственному брадобрею в своем царстве государстве брить всех тех и только тех, кто не бреется сам. А наказание за ослушание – казнь. Вот брадобрей и бросился брить всех небритых. В конце концов дошло до того, что он сам зарос бородой… Он взял бритву. Но если он начнет бриться, значит он бреется сам, а таких он брить не имеет права.Отложив бритву, он понял, что он сам не бреется. Значит он должен взять бритву и… И что?! А ничего хорошего! Казнят бедолагу за нарушение приказа в любом случае!С точки зрения теории множеств брадобрей в данном случае не смог определиться с (фундаментальным!) отношением принадлежности: включать или не включать себя самого в множество тех, кто не бреется сам.То есть в основе теории множеств, которая претендует на роль фундамента ВСЕЙ математики, начальное базовое отношение принадлежности выкидывает такие фортеля, которые просто не позволяют создать некоторые из множеств!… Математики приняли единственное разумное решение: Договорились не создавать в рамках теории множеств такие множества, которые нельзя создать!То есть теория множеств оперирует со всеми множествами, кроме тех, которые нельзя создать. Все эти множества, об'единенные в одно множество, называются УНИВЕРСУМОМ .^ Лекция 2. БЕСКОНЕЧНОСТЬ БЫВАЕТ РАЗНАЯ Самое интересное в теории множеств то, что она рассматривает не только конечные множества – множества, содержащие конечное число элементов, но и бесконечные, для которых даже понятие числа бессмысленно. То есть, теория множеств может рассматривать не только множество студентов в группе и множество березок в лесу, но и множество точек на прямой, и множество звезд на небе…Основоположник теории множеств Георг Кантор именно из за бесконечности попортил себе много крови, да так крепко попортил, что пришлось подключаться врачам психиатрам. Хотя с бесконечностью математики до него уже давным давно работали. Взять то же бесконечно большое множество точек на прямой или наоборот, бесконечно малые величины из высшей математики…Но вся беда в том, что ни один живой человек не видел, не слышал, не щупал бесконечности! Поэтому до Кантора математики признавали и использовали так называемую ПОТЕНЦИАЛЬНУЮ бесконечность. Самый кондовый пример – это понятие бесконечно большого числа в высшей математике. Бесконечно большое число это число, которое больше любого наперед заданного. Если человек не понимает, о чем речь, то его просят назвать самое большое число в мире!… Образованный человек обычно называет число миллиардмиллиардов. А ему об'ясняют, что бесконечно большое число больше этого числа – «даже больше чем на еще миллиардмиллиардов».То есть у нас с вами всегда в запасе есть число потенциально(! ) большее, чем придумает эрудит…Кантор же позволил себе в математике АКТУАЛЬНУЮ бесконечность. То есть то, что до этого могли позволить себе лишь поэты, с которых, как известно, никто строго не спросит… «звездам числа нет, бездне дна». Поэты не любят, чтобы по крохам, по каплям… Любят, чтоб сразу! "Вот она, ВСЯ бездна вашего падения!… Дарю тебе ВСЕ звезды – такой ничтожной малости, для тебя моя, бесценная единственная, не жалко!"… То есть по Кантору бесконечность существует сразу вся. А раз бесконечные множества есть, и сразу целиком, то с ними можно производить математические манипуляции. Их даже можно сравнивать на больше меньше.Поэтому Кантор начал задавать себе «поэтические» вопросы и искать на них математические ответы. Один из ключевых вопросов: "^ БЕСКОНЕЧНО МНОГО – это всегда ОДИНАКОВО БЕСКОНЕЧНО МНОГО? Или могут быть большие и меньшие бесконечности? "Чего больше, звезд на небе или точек на прямой?…Кантор доказал великую теорему, из которой следует, что бесконечности могут быть разные по величине. Поскольку «число» и «количество» – слова в этом случае неуместные, то он ввел термин «мощность». Мощность – это то что остается, когда нас не интересует сущность элементов множества и порядок, в котором они располагаются. То есть, он определил понятие мощности строго, хотя определение и кажется на первый взгляд странным. На второй взгляд этого, обычно, так уже не кажется. От множества студентов останется только мощность, если мы перестанем их различать и будем воспринимать их вне всякого порядка (в естественных условиях).Увы, приводить примеры множеств, имеющих бесконечную мощность, используя березки и студентов, не получится вообще, а звезды далеки и видны только ночью. Поэтому обратимся для наглядности к находящимся рядом с нами числам.Пересчитывая что то мы используем целые (положительные) числа 1, 2, 3… Их еще называют «натуральными». Странные американцы любят начинать этот ряд с нуля (и заразили этим, например, всю вычислительную технику). Их не смущает, что «3 блок» на самом деле 4 ый по счету… Впрочем, нам сейчас все равно! При добавлении или удалении нуля ничего не меняется.Главное, мы знаем, что чисел нам хватит для пересчета чего угодно. Мы также знаем, что это множество бесконечное. Кантор назвал это множество СЧЕТНЫМ и его мощность – мощностью счетного множества.Мощность этого множества Кантор взял за эталон и стал сравнивать ее с мощностями других множеств.Во первых, он установил, что эта мощность больше мощности любого конечного множества (студентов, березок и т.п.).Во вторых, и это любопытно, он доказал, что многие бесконечные множества имеют ту же мощность (то же «количество» элементов), что и счетное. Один из самых поразительных примеров – это то, что множество целых положительных чисел имеет столько же элементов, сколько и множество целых четных положительных чисел! То есть они равномощны!Действительно, запишем друг под другом:1 2 3 4…2 4 6 8…Ясно, что обе последовательности имеют одинаковое количество элементов, поскольку любому числу первой, ВСЕГДА соответствует строго одно число второй последовательности. Так что вторая последовательность не может исчерпаться раньше первой. И наоборот!Следовательно, эти множества равномощны!Следовательно, здесь ^ ЧАСТЬ РАВНА ЦЕЛОМУ !!!Поскольку это доказано строго, то на последний спасительный аргумент – «так в жизни не бывает», можно еще раз, но уже более сурово ответить: «Вы просто жизни не видели! Точнее, вы никогда не видели в жизни бесконечность! И не увидите!». За свою непростую долгую жизнь человек может столкнуться даже с паровозом, а с бесконечностью – никогда! Даже в темноте.Поэтому, что может быть и чего не может быть в мире бесконечностей не нам судить, основываясь лишь на житейском опыте!Из бесконечного множества звезд (мощность которого тоже счетна) мы видим лишь их ограниченное конечное множество. На нарисованном отрезке прямой, содержащем бесконечное множество точек, мы видим конечное множество зерен грифеля, которым отрезок нарисован. Кстати, мы видим все это и многое другое сетчаткой глаза, содержащей конечное число палочек колбочек. Конечным числом палочек колбочек своего глаза никогда ничего бесконечного вы не увидите!…Так что бесконечности вокруг нас существуют в «параллельном мире» по своим законам, которые теория множеств помогает изучать.Мы уже сказали «во вторых», но есть еще и «в третьих» – и это в третьих" – самое главное: великая теорема Кантора, которая уже упоминалась.Дело в том, что если построить множество всех подмножеств конкретного множества, то всегда получите множество БОЛЬШЕ исходного.Например, возьмем множество из 2 х элементов: РАЗ, ДВА (и обчелся). Подмножествами этого множества будут 4 множества(!):1) РАЗ, ДВА – (любое множество подмножество самого себя)2) РАЗ3) ДВА4) пустое – (т.е. «обчелся»).Другой пример: А И Б (сидели на трубе)Подмножествами этого множества из трех элементов будет 8 множеств:1) А, И, Б2) А, И3) А, Б4) И, Б5) А6) И7) Б8) пустоеИз четырех элементов получилось бы 16 элементов. И этот ряд можно бесконечно продолжить, как ряд степеней числа 2.Так вот, Кантор и доказал, что если взять бесконечное множества счетной мощности, например, множество целых положительных чисел и построить (разумеется, умозрительно) множество, содержащее в качестве элементов все подмножества этого множества, то получим мощность БОЛЬШУЮ , чем счетная мощность. В принципе не существует способа пересчитать (пусть в бесконечности) такое множество. В нем всегда больше элементов. Эта новая большая мощность называется мощностью КОНТИНУУМА .И снова житейский парадокс. Мощность континуума имеет, например, множество точек прямой или множество действительных чисел, что то же самое. Более того, любой отрезок числовой оси, даже такой малюсенький отрезок, как отрезок от 0 до 1, имеет мощность континуума, то есть на нем больше чисел, чем найдется чисел в счетном множестве. А раз этот отрезок имеет мощность континуума, как и вся (бесконечная) прямая и, естественно, любой ее отрезок, то можно сказать, что на отрезке от 0 до 1 ровно столько же точек, сколько на отрезке прямой от Земли до Юпитера.Здесь тоже часть равна целому, если и часть, и целое имеют мощность континуума. И все они одинаково больше числа звезд на небе или числа всевозможных алгоритмов…Для бесконечностей существует очень простая арифметика, которая логически следует из предыдущих разговоров. Сложение двух счетных мощностей дает счетную мощность, а для континуумов – мощность континуума. При вычитании из мощности континуума счетной – в остатке мощность континуума. Но вот если вычитать из континуума континуум или из счетной мощности счетную – всякое может получиться в каждом конкретном случае. Тут запросто можно напрячься и придумать свои иллюстрации.Однако, не все так просто. Бесконечность остается одной из ключевых категорий философии. И математика здесь подливает масла в огонь, показывая все новые грани этой проблемы. Тем более, если говорить не только о бесконечных, но и о бесконечных упорядоченных множествах. Впрочем, желающие могут почитать книжки об очень красивых вещах с немение красивыми романтическими названиями: «кардиналы и ординалы».^ Лекция 3. ОПЕРАЦИИ НАД МНОЖЕСТВАМИ Говорят операции НАД множествами не потому, что они расположены «над» множествами, а просто так принято. Если НАД вашими волосами колдует парикмахер, это не значит, что результат его манипуляций окажется выше вашей прически. (Но берегитесь хирурга, который проводит операции над больными).Основных операций всего три. Это меньше, чем в школьной арифметике. Хотя даже это множество операций несколько избыточное. Операции называются ОБ'ЕДИНЕНИЕ , ПЕРЕСЕЧЕНИЕ и ДОПОЛНЕНИЕ . Чем то они напоминают школьные операции сложения, умножения и изменения знака. Но эта аналогия приблизительна и опасна, на то она и аналогия.Начнем с исторической байки.Аксель Иванович Берг – адмирал и академик, человек со взрывным характером, был одним из первых пропагандистов кибернетики в СССР, когда она еще официально считалась «продажной девкой капитализма». Дискретную математику тогда в технических вузах не изучали из за полной ее практической бесполезности, а кибернетика уже начинала ею робко пользоваться.Во время беседы с одним «журналистом по научной тематике», который утверждал, что теория множеств не только не нужна, но и не понятна простому советскому инженеру, Берг прервал беседу и приказал своему шоферу отвести их в ближайший детский садик.В детском садике дети играли в большом песочнике. Других развлечений в послевоенных садиках было мало. Берг нарисовал в песочнике два больших частично пересекавшихся круга, как это делают со свадебными кольцами на открытках и машинах. (Для тех, кто со свадьбами в жизни не сталкивался, скажем, что с похожим перехлестом рисуют олимпийские кольца).Далее он сказал: «Пусть в левый круг встанут все, кто любит манную кашу, а в правый – все, кто любит сливовый кисель!». Дети были горазды поесть (послевоенное время голодное), поэтому никто не остался равнодушно стоять в стороне и все забежали в нарисованные круги. Об'единение всех этих маленьких сладкоежек и есть операция об'единения теории множеств.Но, поскольку почти все дети встали в то место, где круги наложились друг на друга, из за любви к каше и киселю одновременно, то тем самым продемонстрировали понимание физического смысла операции пересечения двух множеств.«Ну вот! Не знаю как инженеры, а дети понимают смысл операций над множествами!»,– сказал Берг…Кстати, здесь роль универсума играл весь песочник.То, что нарисовал на песке Берг, называют сейчас диаграммами Эйлера Венна. А то, что находилось на песке за пределами каждого из кругов, было дополнением соответствующего множества, то есть множеством элементов универсума, не принадлежащих к числу любителей данного кушанья (там находились Берг с журналистом).Если рассмотреть внимательно студенческую группу ух 004, то об'единение множества отличников и спортсменов даст множество под названием «слава группы ух 004». Принципиальное отличие об'единения множеств от школьного сложения не только в том, что студенты – это не числа и мы их не пересчитываем(! ), но и в том, что студенты, которые одновременно отличники и спортсмены, будут учтены один раз. Так что запросто может оказаться, что отличников четыре, а спортсменов двадцать, но их об'единение под названием «слава группы ух 004» будет содержать всего двадцать два студента.Ясно, что пересечение этих множеств даст двух студентов, которые одновременно и отличники и спортсмены. Они, скорее всего, девушки, да еще и красавицы, но красота не использовалась здесь в качестве характеристики, по которой выделялись элементы этих множеств…Когда у математиков появляются в руках об'екты, а у нас здесь раздолье – любые об'екты можно брать, и операции – а мы основную тройку тоже обозначили, то математики начинают говорить об АЛГЕБРЕ .Алгебра множеств как небо и земля отличается от школьной, хотя есть некоторые аналогии. В алгебре множеств есть те же названия законов: КОММУТАТИВНЫЙ , АССОЦИАТИВНЫЙ и ДИСТРИБУТИВНЫЙ (перестановочный, сочетательный и распределительный). Первые два похожи как две капли воды, упавшие с неба на землю. А вот дистрибутивный закон имеет и аналог в школьной алгебре (выражаясь «по школьному» произведение суммы есть сумма произведений), но имеет и уникальную версию. В теории множеств, если тоже сказать кратко, то пересечение с об'единением равно об'единению пересечений и (! ) об'единение с пересечением равно пересечению об'единений. Второе не имеет аналогии в школьной алгебре:"Сумма с произведением не равна произведению сумм".Проиллюстрируем сказанное:Коммутативный закон: Об'единение (пересечение) отличников и спортсменов равно об'единеию (пересечению) спортсменов и отличников.Ассоциативный закон: От изменения порядка об'единения (пересечения) спортсменов, отличников и красавцев результат не меняется.Дистрибутивный закон (только экзотическая версия): Об'единение красавцев с пересечением спортсменов и отличников равно множеству, в котором пересекаются об'единения красавцев и спортсменов с об'единеием красавцев с отличниками. (В условных обозначениях это было бы гораздо короче и нагляднее, но мы зареклись насчет формул).Сложновато воспринимается на слух закон поглощения, который, однако, в ряде случаев позволяет упрощать теоретико множественные конструкции. Пересечение отличников с об'единением отличников и спортсменов дает множество отличников. Или второй вариант. Об'единение отличников с пересечением отличников и спортсменов дает множество отличников. Тем не мение, если обдумать сказанное, и поразмахивать руками, то справедливость результатов очевидна.Есть еще закон, название которого почему то студентов забавляет – он им, видимо, что то напоминает. А закон этот смело можно отнести к самым важным законам (свойствам). Это закон ИДЕМПОТЕНТНОСТИ . Об'единение (пересечение) множества спортсменов с множеством спортсменов дает множество спортсменов.Очень по французски звучит ^ ЗАКОН Де Моргана : Дополнение об'единения отличников со спортсменами равно пересечению дополнения множества спортсменов с дополнением множества отличников. И второй вариант. Дополнение пересечения отличников со спортсменами равно об'единению дополнения множества спортсменов с дополнением множества отличников. За универсум (для дополнения) можно взять множество студентов группы (или университета, или мира – роли не играет). Возьмите реальных спортсменов с отличниками и убедитесь в справедливости закона.Очень прост закон ^ ДВОЙНОГО ДОПОЛНЕНИЯ . Дополнение дополнения множества спортсменов есть само множество спортсменов. Персонально для тех, кто успешно продирается через всю нашу словесную казуистику, можем сформулировать ближайшее следствие из этого закона. Дополнение дополнения дополнения множества спортсменов есть дополнение множества спортсменов.Самыми экзотическими являются два закона: ПРОТИВОРЕЧИЯ и ^ ИСКЛЮЧЕННОГО ТРЕТЬЕГО .Противоречия: Пересечение множества спортсменов с дополнением множества спортсменов пусто. Действительно, коль скоро в дополнение множества спортсменов входят все остальные студенты неспортсмены, то у этого пересечения не может быть общих элементов.Исключенного третьего: Об'единение множества спортсменов с дополнением множества спортсменов совпадает с рассматриваемым универсумом. Действительно, коль скоро в дополнение множества спортсменов входят все остальные студенты неспортсмены из универсума, то это об'единение как раз и составляет весь универсум.Остается только высказать сожаление, что не все математики согласны с этими законами. Еще большее сожаление вызывает то, что у них на это есть весьма веские основания… Не менее веские, чем у сторонников законов.Несогласные себя называют КОНСТРУКТИВИСТАМИ или ИНТУИЦИОНИСТАМИ .Согласным же ничего не осталось, как назвать самих себя КЛАССИКАМИ … С чем не согласны несогласные.^ Лекция 4. СООТВЕТСТВИЯ, ОТОБРАЖЕНИЯ, ОТНОШЕНИЯ Алгеброй далеко не исчерпывается все то, что можно сделать с множествами…В математике, как и в жизни, различные об'екты могут чему то соответствовать или не соответствовать. Находиться меж собой в определенных отношениях или наоборот – не находится. И основой формализации, если угодно – математизации, здесь также служат множества.То есть между множествами могут устанавливаться различные СООТВЕТСТВИЯ и ОТНОШЕНИЯ . Более того (а серьезные математики может быть даже сказали бы «прежде всего»), множества нередко могут ОТОБРАЖАТЬСЯ друг в друг друга и даже в самих себя…Человек может соответствовать профессии, зарплата соответствовать должности, наказание – преступлению, оценка – знаниям.Глядя на многочисленные примеры вокруг мы замечаем, что для определения конкретного соответствия надо определить два множества: множество (область) определения и множество (область) значений. А также определить «пары соответствий». Например, область определения – группа ух 005, сдающая экзамен; область значений – отл, хор, уд, неуд – множество оценок. И множество пар Иванов – отл, Петров – хор, Сидоров – отл. А Хведоров – не явился. Вот вам и готовое соответствие.Соответствия обладают свойствами.1. В данном случае соответствие НЕ ВСЮДУ ОПРЕДЕЛЕННОЕ , поскольку для Хведорова в этом соответствии нет пары. (Даже если бы мы написали в ведомости Хведоров – н/я, то это все равно бы не попало в соответствие, поскольку «н/я» нет в множестве допустимых значений!). Если бы деканат своевременно исключил из ведомости Хведорова, как отчисленного, то это соответствие стало бы ВСЮДУ ОПРЕДЕЛЕННЫМ 2. Соответствие ФУНКЦИОНАЛЬНО , поскольку каждому студенту соответствует не более одной оценки. Такое соответствие называют по простому, ФУНКЦИЕЙ . В данном случае из за Хведорова это не всюду определенная функция. Никакой разницы со школьной функцией кроме той принципиальной, что здесь аргументами и значениями могут быть не только числа, а любые об'екты. Кстати, не всем математикам нравится такое определение функции, хотя оно абсолютно строгое. Просто сказывается ревность к множествам с позиций некоторых других разделов математики.Если бы за один экзамен студенты могли получать несколько оценок, то соответствие было бы НЕФУНКЦИОНАЛЬНЫМ . То есть не было бы функцией. (Оно было бы «многозначной [недетерминированной] функцией», но это уже другая математика). Да и в жизни так не бывает.3. Данное соответствие НЕИН'ЕКТИВНО , поскольку отл получил более, чем один студент. Если бы Сидоров, из за фатальной предрасположенности к несчастьям, получил не отл, а уд (или неуд), то соответствие было бы ИН'ЕКТИВНЫМ … Получение студентами олимпийских медалей за победу в беге на 100 метров было бы примером ин'ективного соответствия.4. Данное соответствие НЕСЮР'ЕКТИВНО , поскольку на экзамене были использованы не все возможные оценки. На реальных экзаменах обычно бывает задействован весь возможный спектр оценок, поэтому это соответствие бывает «по жизни» СЮР'ЕКТИВНЫМ . Естественно, сюр'ективно в даный момент приобретение билетов на Витаса.5. Соответствие, которое одновременно ВСЮДУ ОПРЕДЕЛЕНО , ФУНКЦИОНАЛЬНО , ИН'ЕКТИВНО и СЮР'ЕКТИВНО называется БИЕКТИВНЫМ . Еще его называют ВЗАИМНО ОДНОЗНАЧНЫМ , но так звучит менее красиво. Говорят, что самый убедительный пример биективного соответствия головы на плечах. Возьмите множество голов, множество плеч и убедитесь во всех четырех свойствах. Криминальные варианты не предлагать!Выделение соответствий в отдельную категорию предложили европейцы, а точнее французы, а еще точнее, Николя Бурбаки (это французский Козьма Прутков, состоявший из математиков интеллектуалов). Американская школа считает соответствия частным случаем отношений. А у нас разговор про отношения отдельный – так легче разложить все по полочкам. Так что пришла пора поговорить об отношениях.В математике, как и в жизни, различные об'екты могут иметь какое то отношение к другим об'ектам или не иметь.Родственные отношения, дружеские отношения, дипломатические отношения, равноправные отношения.Глядя на многочисленные примеры вокруг, мы замечаем, что отношения отличаются от соответствий тем, что определяются на одном множестве. Бессмысленно бы было говорить об отношениях между студентами и оценками. О дипломатических, родственных или любых других отношениях между должностью и зарплатой. Для определения конкретного отношения надо определить множество, и пары, для которых имеет место данное отношение.Например, на множестве людей отношения «быть братом», «учиться в одной группе» или «быть выше ростом».Отношения, в силу специфики, характеризуются иным перечнем свойств, нежели соответствия.1. РЕФЛЕКСИВНОСТЬ . Это когда отношение обращено на себя. Ранее уже рассматривалось отношение включения. Поскольку любое множество включено само в себя, то отношение включения обладает свойством рефлексивности. Если верить народной мудрости, то и отношение «спасения» на множестве утопающих – рефлексивно.2. АНИТИРЕФЛЕКСИВНОСТЬ . Это когда отношение к самому об'екту (всегда) неприменимо. Например, «перпендикулярность» на множестве прямых. Прямая не может быть перпендикулярна самой себе.3. СИММЕТРИЧНОСТЬ . Если Иванов «учится в одной группе» с Петровым, то и обратное справедливо. Если прямая А «перпендикулярна» прямой B, то и обратное справедливо.4. АНТИСИММЕТРИЧНОСТЬ . Если тысячу рублей можно «разменять» сотнями, то обратное не под силу даже фокуснику. Мрачноватый, но очень точный пример: «носить траур по кому то»…5. ПОЛНОТА . Это самое сложное свойство, поскольку, в отличие от всех остальных, оно прежде всего «направлено» на само множество. Полнотой обладает отношение, которое для любой пары разных элементов данного множества выполнимо хотя бы «в одну сторону». Например, полнотой обладает отношение «больше» для множества действительных чисел, ибо для двух разных действительных чисел одно обязательно больше другого. Но если мы к действительным числам добавим комплексные, то свойство полноты исчезнет. Если хотя бы одно из сравниваемых чисел будет комплексным, сравнение на «больше» "меньше" теряет смысл.6. ТРАНЗИТИВНОСТЬ . Если Иванов «учится в одной гру