Реферат по предмету "Разное"


1. Классификация моделей представления знаний

1.Классификация моделей представления знаний.В настоящее время разработано множество моделей представления знаний. Имея обобщенное название, они различаются по идеям, лежащим в их основе, с точки зрения математической обоснованности. Типы моделей показаны на рисунке.Первый подход, называемый эмпирическим, основан на изучении принципов организации человеческой памяти и моделировании механизмов решения задач человеком. На основе этого подхода в настоящее время разработаны и получили наибольшую известность следующие модели: продукционные модели – модель основанная на правилах, позволяет представить знание в виде предложений типа: «ЕСЛИ условие, ТО действие». Продукционная модель обладает тем недостатком, что при накоплении достаточно большого числа (порядка нескольких сотен) продукций они начинают противоречить друг другу; сетевые модели (или семантические сети) – в инженерии знаний под ней подразумевается граф, отображающий смысл целостного образа. Узлы графа соответствуют понятиям и объектам, а дуги – отношениям между объектами. Обладает тем недостатком, что однозначного определения семантической сети в настоящее время отсутствует; фреймовая модель – основывается на таком понятии как фрейм (англ. frame – рамка, каркас). Фрейм – структура данных для представления некоторого концептуального объекта. Информация, относящаяся к фрейму, содержится в составляющих его слотах. Слоты могут быть терминальными либо являться сами фреймами, т.о. образуя целую иерархическую сеть. Более подробно эти модели рассматриваются в соответствующих статьях. Условно в группу эмпирического подхода можно включить нейронные сети и генетические алгоритмы, относящиеся к бионическому (основано на предположении о том, что если в искусственной системе воспроизвести структуры и процессы человеческого мозга, то и результаты решения задач такой системой будут подобны результатам, получаемым человеком) направлению искусственного интеллекта. Особенностью моделей этого типа является широкое использование эвристик, что в каждом случае требует доказательства правильности получаемых решений. Второй подход можно определить как теоретически обоснованный, гарантирующий правильность решений. Он в основном представлен моделями, основанными на формальной логике (исчисление высказываний, исчисление предикатов), формальных грамматиках, комбинаторными моделями, в частности моделями конечных проективных геометрий, теории графов, тензорными и алгебраическими моделями. В рамках этого подхода до настоящего времени удавалось решать только сравнительно простые задачи из узкой предметной области. ^ 28. Этапы развития научного направления “мягкие вычисления”.Термин "мягкие вычисления" введен Лофти Заде в 1994 году. Это понятие объединяет такие области как: нечеткая логика, нейронные сети, вероятностные рассуждения, сети доверия и эволюционные алгоритмы; которые дополняют друг друга и используются в различных комбинациях или самостоятельно для создания гибридных интеллектуальных систем. Поэтому создание систем работающих с неопределенностью, надо понимать как составную часть "мягких" вычислений.По существу в 1970 году Л.Заде был создан новый метод вычислительной математики, который был поддержан аппаратными средствами (нечеткими процессорами) который в ряде проблемных областей стал более эффективным, чем классические методы. Первоначально эти области входили в проблематику искусственного интеллекта. Постепенно круг этих областей существенно расширился и сформировалось направление "вычислительного интеллекта". В это направление в настоящее время входят:нечеткая логика и теория множеств;нечеткие экспертные системы;системы приближенных вычислений;теория хаоса;фрактальный анализ;нелинейные динамические системы;гибридные системы (нейронечеткие или нейрологические, генетиконейронные, нечеткогенетические или логикогенетические системы); системы, управляемые данными (нейронные сети, эволюционное вычисление).^ Постановка задачи оптимизации, теорема Вейерштрасса, понятие минимума. Пусть задана функция q(x), определенная во всех значениях x принадлежащих X. В общем случае x может быть вектором значений многопараметрической функции q(x).Тогда, в общей задаче оптимизации требуется найти вектор x=(x1,x2,...,xn) из допустимой области X, который обращает в минимум целевую функцию q(x). Если необходимо найти максимум функции, то в качестве целевой берут обратную функцию -q(x).Теорема Вейерштрасса. Непрерывная функция, определенная на непустом замкнутом ограниченном множестве, достигает своего минимума (максимума) по крайней мере в одной из точек этого множества.В общем случае глобальный минимум в точке x' области определения X характеризуется: q(x')Знак 'Сильный глобальный минимум определяется: q(x') Минимум в точке x=x' называют локальным (относительным), если найдется такая окрестность O(x') точки x', что для всех x принадлежащих O(x') имеет место q(x') ^ 27. Язык CLIPS. Основные элементы и конструкцию.CLIPS, (от англ. C Language Integrated Production System) — программная среда для разработки экспертных систем. Синтаксис и название предложены Чарльзом Форги (Charles Forgy) в OPS (Official Production System). Первые версии CLIPS разрабатывались с 1984 года в Космическом центре Джонсона (Johnson Space Center), NASA (как альтернатива существовавшей тогда системе ART*Inference), пока в начале 1990-х не было приостановлено финансирование, и NASA вынудили купить коммерческие продукты.Вероятно, CLIPS является наиболее широко используемой инструментальной средой для разработки экспертных систем благодаря своей скорости, эффективности и бесплатности. Несмотря на то, что теперь она являетсяобщественным достоянием, она до сих пор обновляется и поддерживается своим изначальным автором, Гэри Райли (Gary Riley).CLIPS включает полноценный объектно-ориентированный язык COOL для написания экспертных систем. Хотя она написана на языке Си, её интерфейс намного ближе к языку программирования LISP. Расширения можно создавать на языке Си, кроме того, можно интегрировать CLIPS в программы на языке Си. Как и другие экспертные системы, CLIPS имеет дело с правилами и фактами. Различные факты могут сделать правило применимым. Применимое правило затем допускается (assert). Факты и правила создаются предварительным объявлением, как показано в примере:(deffacts trouble_shooting (car_problem (name ignition_key) (status on)) (car_problem (name engine) (status wont_start)) (car_problem (name headlights) (status work)) )(defrule rule1 (car_problem (name ignition_key) (status on)) (car_problem (name engine) (status wont_start)) => (assert (car_problem (name starter) (status faulty)) )Потомками CLIPS являются языки программирования Jess (часть CLIPS, работающая с правилами и переписанная на Java, позже развившаяся в другом направлении), ECLiPSe, Haley Eclipse, FuzzyCLIPS (с добавлением концепции значимости relevancy в язык) и другие. Существует учебник для колледжей, Expert Systems: Principles and Programming (ISBN 0-534-95053-1) и книга по Jess, Jess in Action: Rule Based Systems in Java (ISBN 1-930110-89-8). Кроме того CLIPS содержит обширную документация прямо в поставке.Существующие верcии CLIPS для Windows (clipswin.exe) не поддерживают кириллицу (консольная версия CLIPS clipsdos.exe поддерживает только кириллицу в формате UTF-8). В сети Интернет можно найти русифицированную версию CLIPS для Windows, поддерживающую кириллицу в формате ANSI, но она распространяется без исходных кодов и имеет ряд проблем с отображением символов в Windows XP. Именно отсутствие полноценной поддержки кириллицы и является основной причиной слабого распространения CLIPS в России. При компиляции из исходников возможно пропатчить их, добавив поддержку koi8-r. ^ 26. Язык ПРОЛОГ. Основные элементы и конструкции.Пролог (фр. Programmation en Logique) — язык и система логического программирования, основанные на языке предикатов математической логики дизъюнктов Хорна, представляющей собой подмножество логики предикатов первого порядка.Основными понятиями в языке Пролог являются факты, правила логического вывода и запросы, позволяющие описывать базы знаний, процедуры логического вывода и принятия решений.Факты в языке Пролог описываются логическими предикатами с конкретными значениями. Правила в Прологе записываются в форме правил логического вывода с логическими заключениями и списком логических условий.Особую роль в интерпретаторе Пролога играют конкретные запросы к базам знаний, на которые система логического программирования генерирует ответы «истина» и «ложь». Для обобщённых запросов с переменными в качестве аргументов созданная система Пролог выводит конкретные данные в подтверждение истинности обобщённых сведений и правил вывода.Факты в базах знаний на языке Пролог представляют конкретные сведения (знания). Обобщённые сведения и знания в языке Пролог задаются правилами логического вывода (определениями) и наборами таких правил вывода (определений) над конкретными фактами и обобщёнными сведениями.Начало истории языка относится к 1970-м годам.[1] Будучи декларативным языком программирования, Пролог воспринимает в качестве программы некоторое описание задачи или баз знаний и сам производит логический вывод, а также поиск решения задач, пользуясь механизмом поиска с возвратом и унификацией. 23. Определение лингвистической переменной.Лингвистическая переменная — в теории нечетких множеств, переменная, которая может принимать значения фраз из естественного или искусственного языка. Например, лингвистическая переменная «скорость» может иметь значения «высокая», «средняя», «очень низкая» и т. д. Фразы, значение которых принимает переменная, в свою очередь являются именами нечетких переменных и описываются нечетким множеством.^ Математическое определение лингвистической переменнойЛингвистической переменной называется пятерка {x,T(x),X,G,M}, где x — имя переменной; T(x) — множество имен лингвистических значений переменной x, каждое из которых является нечеткой переменной на множестве X; G есть синтаксическое правило для образования имен значений x; M есть семантическое правило для ассоциирования каждой величины значения с ее понятием.^ Пример: Рассмотрим лингвистическую переменную, описывающую возраст человека, тогда:x: «возраст»; X: множество целых чисел из интервала [0, 120]; T(x): значения «молодой», «зрелый», «старый»; G: «очень», «не очень». Такие добавки позволяют образовывать новые значения: «очень молодой», «не очень старый» и пр. M: математическое правило, определяющее вид функции принадлежности для каждого значения из множества T.^ 20. Сетевые модели представления знаний.Сетевые моделиСпособ представления знаний в сетевых моделях наиболее близок к тому, как онипредставлены в текстах на естественном языке. В его основе лежит идея о том, что вся необ-ходимая информация может быть описана как совокупность троек (arb), где a и b - объекты,а r - бинарное отношение между ними.Формально сетевые модели могут быть заданы в видеH = ,где I - множество информационных единиц, C1,..., Cn - множество типов связей между эле-ментами I, отображение Г задает между ИЕ, входящими в I, связи из заданного набора типовсвязей {Ci}.Если в сетевой модели допускаются связи различного типа, то ее называют семанти- ческой сетью (СС).^ Нечеткие множества и операции с ними. Нечёткое  множество — понятие, введённое Лотфи Заде в 1965 г. в статье «Fuzzy Sets» (нечёткие множества) в журнале Information and Control [1]. Л. Заде расширил классическое канторовское понятие множества, допустив, что характеристическая функция (функция принадлежности элемента множеству) может принимать любые значения в интервале [0,1], а не только значения 0 или 1^ Операции над нечёткими множествами При Пересечением нечётких множеств A и B называется наибольшее нечёткое подмножество, содержащееся одновременно в A и B:Произведением нечётких множеств A и B называется нечёткое подмножество с функцией принадлежности:Объединением нечётких множеств A и B называется наименьшее нечёткое подмножество, содержащее одновременно A и B:Суммой нечётких множеств A и B называется нечёткое подмножество с функцией принадлежности:Отрицанием множества  называется множество  с функцией принадлежности:для каждого .^ 15. Данные и знания. Основные отличия.Да́нные (калька от англ. data) — это представление фактов и идей в формализованном виде, пригодном для передачи и обработки в некотором информационном процессе.Изначально — данные величины, то есть величины, заданные заранее, вместе с условием задачи. Противоположность — переменные величины.В информатике Данные — это результат фиксации, отображения информации на каком-либо материальном носителе, то есть зарегистрированное на носителе представление сведений независимо от того, дошли ли эти сведения до какого-нибудь приёмника и интересуют ли они его [1].Данные — это и текст книги или письма, и картина художника, и ДНК.Данные, являющиеся результатом фиксации некоторой информации, сами могут выступать как источник информации. Информация, извлекаемая из данных, может подвергаться обработке, и результаты обработки фиксируются в виде новых данных.Данные могут рассматриваться как записанные наблюдения, которые не используются, а пока хранятся.Информация, отображаемая данными, может быть непонятна приемнику (шифрованный текст, текст на неизвестном языке и пр.).Зна́ние — форма существования и систематизации результатов познавательной деятельности человека. Знание помогает людям рационально организовывать свою деятельность и решать различные проблемы, возникающие в её процессе.Зна́ние — в теории искусственного интеллекта и экспертных систем — совокупность информации и правил вывода (у индивидуума, общества или системы ИИ) о мире, свойствах объектов, закономерностях процессов и явлений, а также правилах использования их для принятия решений. Главное отличие знаний от данных состоит в их структурности и активности, появление в базе новых фактов или установление новых связей может стать источником изменений в принятии решений.3на́ния фиксируются в образах и знаках естественных и искусственных языков. Знание противоположно незнанию (отсутствию проверенной информации о чём-либо). Главное отличие знаний от данных состоит в их структурности и активности, появление в базе новых фактов или установление новых связей может стать источником изменений в принятии решений.^ 51. Гибридные системы.Под гибридной интеллектуальной системой принято понимать систему, в которой для решения задачи используется более одного метода имитации интеллектуальной деятельности человека. Таким образом ГИС — это совокупность: аналитических моделейэкспертных системискусственных нейронных сетейнечетких системгенетических алгоритмов имитационных статистических моделейМеждисциплинарное направление «гибридные интеллектуальные системы» объединяет ученых и специалистов, исследующих применимость не одного, а нескольких методов, как правило, из различных классов, к решению задач управления и проектирования.^ 13. Фреймы и их применение в экспертных системах.Фрейм — (англ. frame — «каркас» или «рамка») — способ представления знаний в искусственном интеллекте, представляющий собой схему действий в реальной ситуации. Первоначально термин «фрейм» ввёл Марвин Минский в 70-е годы XX века для обозначения структуры знаний для восприятия пространственных сцен. Фрейм — это модель абстрактного образа, минимально возможное описание сущности какого-либо объекта, явления, события, ситуации, процесса.Фреймы используются в системах искусственного интеллекта (например, в экспертных системах) как одна из распространенных форм представления знаний.Начиная с 1960-х годов, использовалось понятие фрейма знаний или просто фрейма. Каждый фрейм имеет своё собственное имя и набор атрибутов, или слотов которые содержат значения; например фрейм дом мог бы содержать слоты цвет, количество этажей и так далее.Использование фреймов в экспертных системах является примером объектно-ориентированного программирования с наследованием свойства, которое описывается связью «is-a» («является»). Однако в использовании связи «is-a» существовало немало противоречий: Рональд Брахман написал работу, озаглавленную «Чем является и не является IS-A», в которой были найдены 29 различных семантик связи «is-a» в проектах, чьи схемы представления знаний включали связь «is-a». Другие связи включают, например, «has-part» («имеет своей частью»).Фреймовые структуры хорошо подходят для представления знаний, представленных в виде схем и стереотипных когнитивных паттернов. Элементы подобных паттернов обладают разными весами, причем большие весы назначаются тем элементам, которые соответствуют текущей когнитивной схеме (schema). Паттерн активизируется при определённых условиях: если человек видит большую птицу, при условии что сейчас активна его «морская схема», а «земная схема» — нет, он классифицирует её скорее как морского орлана, а не сухопутного беркута.Фреймовые представления объектно-центрированы в том же смысле, что и семантическая сеть: все факты и свойства, связанные с одной концепцией, размещаются в одном месте, поэтому не требуется тратить ресурсы на поиск по базе данных.Скрипт — это тип фреймов, который описывает последовательность событий во времени; типичный пример — описание похода в ресторан. События здесь включают ожидание места, прочитать меню, сделать заказ, и так далее.Различные решения в зависимости от их семантической выразительности могут быть организованы в так называемый семантический спектр (англ. Semantic spectrum).^ 9. Система опровержений на основе резолюций. Резолюция - это правило вывода, используемое для построения опровержений (refutation). Важным практическим применением метода резолюции, в частности при создании систем опровержения, является современное поколение интерпретаторов языка PROLOG . Принцип резолюции (или разрешения), введенный в работе [Robinson, 1965], описывает способ обнаружения противоречий в базе данных дизъюнктивных выражений при минимальном использовании подстановок. Опровержение разрешения - это способ доказательства теоремы, основанный на формулировке обратного утверждения и добавлении отрицательного высказывания к множеству известных аксиом, которые по предположению считаются истинными. Затем правило резолюции используется для доказательства того, что такое предположение ведет к противоречию (доказательство от обратного). Поскольку в процессе доказательства теоремы показывается, что обратное утверждение несовместимо с существующим набором аксиом, исходное утверждение должно быть истинным. В этом и состоит доказательство теорем. Процесс доказательства от обратного состоит из следующих этапов.ь Предположения или аксиомы приводятся к дизъюнктивной форме (clause form) К набору аксиом добавляется отрицание доказываемого утверждения в дизъюнктивной форме. Выполняется совместное разрешение этих дизъюнктов, в результате чего получаются новые основанные на них дизъюнктивные выражения . Генерируется пустое выражение, означающее противоречие. Подстановки, использованные для получения пустого выражения, свидетельствуют о том, что отрицание отрицания - истинно.^ 5. Предикаты первого порядка. Основные определения и понятия. Предикатом называют предложение, принимающее только два значения: истина или ложь. Для обозначения предикатов применяются логические связки между высказываниями: ¬ не, или, и, если, а также квантор существования и квантор всеобщности. Допустимые выражения в исчислении предикатов называются правильно построенными формулами (ППФ), состоящими из атомных формул. Атомные формулы состоят из предикатов и термов, разделяемых круглыми, квадратными и фигурными скобками. Предикатные символы представляются в основном глагольной формой, например: ПИСАТЬ, УЧИТЬ, ПЕРЕДАТЬ, но не только глагольной формой, а формами существительных и прилагательных, например: КРАСНЫЙ, ЗНАЧЕНИЕ, ЖЕЛТЫЙ.^ Логика первого порядка (исчисление предикатов) — формальное исчисление, допускающее высказывания относительно переменных, фиксированных функций и предикатов. Расширяет логику высказываний. В свою очередь является частным случаем логики высшего порядка.^ 4. Методы структурирования и формализации знаний.При формализации качественных знаний может быть использована теория нечетких множеств [Заде, 1974], особенно те ее аспекты, которые связаны с лингенетической неопределенностью, наиболее часто возникающей при работе с экспертами на естественном языке. Под лингвистической неопределенностью подразумевается не полиморфизм слов естественного языка, который может быть преодолен на уровне понимания смысла высказываний в рамках байесовской модели [Налимов, 1974], а качественные оценки естественного языка для длины, времени, интенсивности, для целей логического вывода, принятия решений, планирования.Лингвистическая неопределенность в системах представления знаний задается с помощью лингвистических моделей основанных на теории лингвистических переменных и теории приближенных рассуждении [Kikerf 1978]. Эти теории опираются на понятие нечеткого множества, систему операций над нечеткими множествами и методы построения функций принадлежности.Одним из основных понятий, используемых в лингвистических моделях, является понятие лингвистической переменной. Значениями лингвистических переменных являются не числа, а слова или предложения некоторого искусственного либо естественного языка. Например, числовая переменная "возраст" принимает дискретные значения между нулем и сотней, а целое число является значением переменной. Лингвистическая переменная "возраст" может принимать значения: молодой, старый, довольно старый, очень молодой и т. д. Эти термы-лингвистические значения переменной. На это множество (как и на числа) также налагаются ограничения. Множество допустимых значений лингвистической переменной называется терм-множеством.При вводе в ЭВМ информации о лингвистических переменных и терм-множестве ее необходимо представить в форме, пригодной для работы на ЭВМ. Лингвистическая переменная задается набором из пяти компонентов: , где Л-имя лингвистической переменной; Г (Л)-ее терм-множество;^ U- область, на которой определены значения лингвистической переменной; 6 описывает операции по порождению производных значений лингвистической переменной на основе тех значений, которые входят в терм-множество. С помощью правил из О можно расширить число значений лингвистической переменной, т. е. расширить ее терм-множество. Каждому значению а лингвистической переменной Л соответствует нечеткое множествоХа, являющееся подмножеством V. По аналогии с формальными системами правила из G часто называют синтаксическими Наконец, компонент М образует набор семантических правил. С их помощью происходит отображение значений лингвистической переменной а в нечеткие множества Ха и выполняются обратные преобразования. Именно эти правила обеспечивают формализацию качественных утверждений экспертов при формировании проблемной области в памяти ИС. Одним из перспективных методов структурирования знаний является  так называемый объектно  ориентированный анализ. Общая методология ООА и  основные принципы  с точки зрения философии могут быть представлены как сплав всех трех направлений  - Структурализма, Семиотики и Синергетики, с концентрированные на языке логико-математических абстракций. ^ 29. Генетические алгоритмы.Генети́ческий алгори́тм (англ. genetic algorithm) — это эвристический алгоритм поиска, используемый для решения задач оптимизации и моделирования путём случайного подбора, комбинирования и вариации искомых параметров с использованием механизмов, напоминающих биологическую эволюцию. Является разновидностью эволюционных вычислений. Отличительной особенностью генетического алгоритма является акцент на использование оператора «скрещивания», который производит операцию рекомбинации решений-кандидатов, роль которой аналогична роли скрещивания в живой природе.^ Применение генетических алгоритмов Генетические алгоритмы применяются для решения следующих задач:Оптимизация функцийОптимизация запросов в базах данныхРазнообразные задачи на графах (задача коммивояжера, раскраска, нахождение паросочетаний)Настройка и обучение искусственной нейронной сетиЗадачи компоновкиСоставление расписанийИгровые стратегииТеория приближенийИскусственная жизньБиоинформатика (фолдинг белков)^ 6. Модели представления знаний. Историческая справка.Модели представления знании делятся на детерминированные (жесткие) и мягкие. Детерминированные модели включают в себя фреймы, логико-алгебраические модели, семантические сети и продукционные модели. Мягкие модели включают в себя нечеткие системы, нейронные сети, эво-люционные модели, гибридные системы. Одним из основателей теории искусственного интеллекта считается известный английский ученый Алан Тьюринг, который в 1950 году опубликовал статью «Вычислительные машины и разум» . А. Ньюэлл, Дж. Шоу и Г. Саймон создали программу для игры в шахматы на основе метода, предложенного в 1950 году К. Шенноном, формализованного А. Тьюрингом и промоделированного им же вручную.В 1960 год была написана программа GPS универсальный решатель задач. Первые нейросети появились в конце 50-х годов.Первая международная конференция по искусственному интеллек-ту (IJCAI) состоялась в 1969 году в Вашингтоне. 1973 году был создан язык логического программирования Prolog. Первая экспертная система была создана Э. Фейгенбаумом в 1965 году.^ 33. Искусственные нейронные сети: алгоритмы обучения (алгоритм обучения по дельта правилу) tml> где- количество обработанных НС примеров;- реальный выход НС;- желаемый (идеальный) выход НС; Процедура обучения НС сводится к процедуре коррекции весов связей HC. Целью процедуры коррекции весов есть минимизация функции ошибки . Общая схема обучения с учителем выглядит так : 1.      Перед началом обучения весовые коэффициенты НС устанавливаются некоторым образом, на пример - случайно. 2.      На первом этапе на вход НС в определенном порядке подаются учебные примеры. На каждой итерации вычисляется ошибка для учебного примера (ошибка обучения) и по определенному алгоритму производится коррекция весов НС. Целью процедуры коррекции весов есть минимизация ошибки . 3.      На втором этапе обучения производится проверка правильности работы НС. На вход НС в определенном порядке подаются контрольные примеры. На каждой итерации вычисляется ошибка для контрольного примера (ошибка обобщения). Если результат неудовлетворительный то, производится модификация множества учебных примеров1 и повторение цикла обучения НС. Если после нескольких итераций алгоритма обучения ошибка обучения падает почти до нуля, в то время как ошибка обобщения в начале спадает а затем начинает расти, то это признак эффекта переобучения. В этом случае обучение необходимо прекратить. В случае однослойной сети алгоритм обучения с учителем - прост. Желаемые выходные значения нейронов единственного слоя заведомо известны, и подстройка весов синаптических связей идет в направлении, минимизирующем ошибку на выходе сети. По этому принципу строится алгоритм обучения однослойного персептрона [1].^ 2 Метод Розенблатта Данный метод был предложен Ф.Розенблаттом в 1959 г. для НС, названной персептрон (perceptron) [^ 1]. Персептрон имеет пороговую функцию активации2; его схема представлена на рис.1. Рисунок: однослойный персептрон Процедуру обучения Розенблатта для однослойного персептрона можно представить так [4] : (1) где- -тый вход НС- желаемый (идеальный) -тый выход НС- коэффициент (скорость обучения)  Весовые коэффициенты меняются только в том случае, если реальное выходное значение не совпадает идеальным выходным значением.Полный алгоритм обучения Розенблатта строится следующим образом: весовые коэффициенты НС инициализируются малыми случайными значениями. подать на вход НС очередной учебный пример.если выход НС не совпадает с идеальным выходом то происходит модификация весов по (1)цикл с п.2 пока не или весовые коэф. перестанут меняться^ 3 Метод Видроу-Хоффа Персептрон Розенблатта ограничивается бинарными выходами. Видроу и Хофф изменили модель Розенблатта. Их первая модель - ADALINE (Adaptive Linear Element) имела один выходной нейрон3 и непрерывную линейную функцию активации нейронов[3].   (2) Метод обучения Видроу-Хоффа известен еще как дельта-правило (delta-rule). Этот метод ставит своей целью минимизацию функции ошибки в пространстве весовых коэффициентов.   (3) где- количество обработанных НС примеров- ошибка для -го примера- реальный выход НС для -го примера- желаемый (идеальный) выход НС для -го примера Минимизация осуществляется методом градиентного спускагдеТаким образом весовые коэффициенты изменяются по правилу (4) Полный алгоритм обучения методом Видроу-Хоффа строится следующим образом: задать скорость обучения () задать минимальную ошибку сети ; весовые коэффициенты НС инициализируются малыми случайными значениями. подать на вход НС очередной учебный пример рассчитать выход НС скорректировать веса по (4)цикл с п.2 пока (где - суммарная среднеквадратичная ошибка НС) 38. Продукционные модели представления знаний.Продукционная модель знания — модель основанная на правилах, позволяет представить знание в виде предложений типа «Если (условие), то (действие)».Продукционная модель — фрагменты Семантической сети, основанные на временных отношениях между состояниями объектов.Продукционная модель обладает тем недостатком, что при накоплении достаточно большого числа (порядка нескольких сотен) продукций они начинают противоречить друг другу.В общем случае продукционную модель можно представить в следующем виде:, где:  — описание класса ситуаций;  — условие, при котором продукция активизируется;  — ядро продукции;  — постусловие продукционного правила. [править]Модификации продукционной модели Продукционная модель часто дополняется определённым порядком, вводимым на множестве продукций, что упрощает механизм логического вывода. Порядок может выражаться в том, что отдельная следующая по порядку продукция может применяться только после попыток применения предшествующих ей продукций. Примерно похожее влияние на продукционную модель может оказать использование приоритетов продукций, означающее, что в первую очередь должна применяться продукция, имеющая наивысший приоритет.Рост противоречивости продукционной модели может быть ограничен путём введения механизмов исключений и возвратов. ^ Механизм исключений означает, что вводятся специальные правила-исключения. Их отличает большая конкретность в сравнении с обобщёнными правилами. При наличии исключения основное правило не применяется. Механизм возвратов же означает, что логический вывод может продолжаться в том случае, если на каком-то этапе вывод привёл к противоречию. Просто необходимо отказаться от одного из принятых ранее утверждений и осуществить возврат к предыдущему состоянию.Противоречия в базах знаний на языке Пролог выявляются автоматически за счет использования автоматического доказательства теорем со встроенным в систему Пролог механизмами перебора с возвратами, организующего поиск информации в базах знаний и выводом найденной информации в качестве результатов информационного поиска.^ 48. и 47. Практические методы извлечения знаний.Извлечение информации (англ. information extraction) — в области обработки естественного языка, это разновидность информационного поиска, при которой из неструктурированного машинно-читаемого текста (то естьэлектронных документов) выделяется некая структурированная информация, то есть категоризированные, семантически значимые данные по какой-либо проблеме или вопросу. Примером извлечения информации может послужить выискивание случаев деловых визитов — формально это записывается так: НанеслиВизит(Компания-Кто, Компания-Кому, ДатаВизита), — из новостных лент, таких как: «Вчера, 1 апреля 2007 года, представители корпорации Пепелац Интернэшнл посетили офис компании Гравицап Продакшнз». Главная цель такого преобразования — возможность анализа изначально «хаотичной» информации с помощью стандартных методов обработки данных.[1] Более узкой целью может служить, например, задача выявить логические закономерности в описанных в тексте событиях.[2]В современных информационных технологиях роль такой процедуры, как извлечение информации, всё больше возрастает — из-за стремительного увеличения количества неструктурированной (без метаданных) информации, в частности, в Интернете. Эта информация может быть сделана более структурированной посредством преобразования в реляционную форму или добавлением XML разметки.[3] При мониторинге новостных лент с помощьюинтеллектуальных агентов как раз и потребуются методы извлечения информации и преобразования её в такую форму, с которой будет удобнее работать позже.Типичная задача извлечения информации: просканировать набор документов, написанных на естественном языке, и наполнить базу данных выделенной полезной информацией. Современные подходы извлечения информации используют методы обработки естественного языка, направленные лишь на очень ограниченный набор тем (вопросов, проблем) — часто только на одну тему. Например, «Конференция по Пониманию сообщений» (en:Message Understanding Conference, MUC) — это конференция соревновательного характера и в прошлом она фокусировалась на таких вопросах: MUC-1 (1987), MUC-2 (1989): Военно-морские операции.MUC-3 (1991), MUC-4 (1992): Терроризм в латиноамериканских странах.MUC-5 (1993): Венчурные операции в области микроэлектроники.MUC-6 (1995): Новостные статьи об изменениях в управляющих процессах. MUC-7 (1998): Отчёты о запусках спутников.Тексты на естественном языке могут потребовать некоего предварительного упрощения, для создания текста, который будет лучше «пониматься» компьютером.Типичные подзадачи извлечения информации: Распознавание именованных элементов: распознавание имён людей, названий организаций, мест, временны́х обозначений и некоторых типов численных выражений.Ссылки: выделение словесных оборотов, ссылающихся на один и тот же объект. Типичный случай таких ссылок — анафора и использование местоимений. Выделение терминологии: нахождение для данного текста ключевых слов.43. Основные напреавления современного генетического моделирования.Эволюционное моделирование это уже доста


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.