1. Понятие факторного и результативного признака.Отличительная черта, свойство, качество, присущие единице совокупности и учитываемые при статистическом исследовании, называются признакомПризнаки по их значению делятся на 2 класса.1. Результативные признаки – признаки, изменяющиеся под действием других связанных с ними признаков.2. Факторные – признаки, обуславливающие изменения результативных признаков.2.Функциональная и статистическая зависимость. По характеру зависимости признаков различают функциональную (полную) связь и корреляционную (статистическую, неполную) связь. ^ Функциональная зависимость (жестоко детерминированная у=2х) – величине факторного признака строго соответствует одно или несколько значений результативного признака.Статистическая – определенному значению факторного признака соответствует лишь среднее значение результативного признака. Стат. Связь не имеет ограничений и условий как в функциональной. Корреляционная связь явл. Частным случаем стат. Связи , состоит в том, что разным значениям одной переменной соответствуют различные средние значения др.^ 3. Виды статистической связи.1. По направлению связи: Положительная (прямая) – с увеличением (уменьш) одного признака в основном увелич. (уменьш) значения другого. Отрицательная (обратная) – с увеличением (уменьш) одного признака в основном уменьшаются (увеличив) значения другого.^ 2. Относительно своей аналитической формы:Линейная – между признаками в среднем проявляются линейные соотношения.Нелинейная – выражается нелинейной функцией, а переменные связаны между собой в среднем нелинейно.^ 3. С точки зрения взаимодействующих факторов.Парная – характеризуется связь 2 признаков.Множественная – изучаются более чем 2 переменные.Также подразделяется на сильную и слабую.4. Корреляционный анализ. (корреляц. таблица, корреляц. поле). В наиболее общем виде задача статистики в области изучения взаимосвязей состоит в количественной оценке их наличия и направления, а также характеристике силы и формы влияния одних факторов на другие. Для ее решения применяются 2 группы методов, одна из которых включает в себя методы корреляционного анализа, а друга я – регрессионный анализ.^ Корреляционный анализ – измерение тесноты связи между варьирующими признаками, определение неизвестных причинных связей и оценка факторов оказывающих наибольшее влияние на результативный признак. Простейшим приемом выявления связи между 2 признаками является построение корреляционной таблицы. В основу группировки положено 2 изучаемых во взаимосвязи признака – Х и У. Частоты fijпоказывают количество соответствующих сочетаний Х и У. Если fijрасположены в таблице беспорядочно, то можно говорить об отсутствии связи между переменными. В случае образования какого-либо характерного сочетания fij допустимо утверждать о связи между Х и У. При этом если fij концентрируется около одной из двух диагоналей, имеет место прямая или обратная линейная связь. Наглядным изображением корреляционной таблице служит корреляционное поле. Оно представляет собой график, где на оси абсцисс откладывают значения Х, по оси координат – У, а точками показывается сочетание Х и У. По расположению точек, их концентрации в определенном направлении можно судить о наличии связиНезависимость Линейная зависимостьПрямая положит зависимость Прямая отриц зависимостьКриволинейная зависимость^ 5 Регрессионный анализ (эмпирическая линия регрессии). Регрессионный анализ – установление формы зависимости, определение функции регрессии, использование уравнения для оценки неизвестных значений зависимой переменной. В итогах корреляционной таблицы по строкам и столбцам приводятся 2 распределения – одно по х и другое по –У. Последовательность точек ( Х : У¯) дает график, который иллюстрирует зависимость средн. значения результ. признака У от факторного Х, - эмпирическую линию регрессии, наглядно показывающую, как изменяется Х по мере изменения Х.. По существу , и корреляционная таблица, и корреляционное поле, и эмпирич. линия регрессии предварительно уже характеризует взаимосвязь, когда факторный и результ признаки и требуется сформулировать предположения о форме и направленности связи. В то же время количественная оценка тесноты связи требует дополнительных расчетов.^ 6. Статистическое изучение корреляционной связи.При статистическом изучении корреляционной связи определяется влияние учтенных факторных признаков при отвлечении (абстрагировании) от прочих аргументов. Применяемый таким образом способ научной абстракции хотя и ведет к некоторому упрощению (аппроксимации) реального механизма связи, но делает возможным установления закономерностей взаимодействия изучаемых показателей. Это позволяет, не прибегая к экспериментированию, получать количественные характеристики корреляционной связи. 7. Проверка первичной информации на однородность и нормальность распределения. Для оценки однородности совокупности используется коэффициент вариации по факторным признакам Совокупность считается однородной, если коэффициент вариации не превышает 33%. Проверка нормальности распределения исследуемых факторных признаков (x1, х2, х3, ... хn) проводится с помощью правила “трех сигм”. Совокупность подчиняется закону нормального распределения, если значения попадают в следующие интервалы: - 68,3 - 95,4 - 99,7 8. Установление факта наличия и направления корреляционной зависимости. Установление факта наличия и направления корреляционной зависимости между результативным (у) и факторным (х) признаками. Основным методом выявления наличия корреляционной связи является метод аналитической группировки и определения групповых средних. Он заключается в том, что все единицы совокупности разбиваются на группы по величине признака-фактора и для каждой группы определяется средняя величина результативного признака. На основе данных аналитической группировки строится график эмпирической линии связи (линии регрессии), вид которой не только позволяет судить о возможном наличии связи, но и дает некоторое представление о форме корреляционной связи. Если эмпирическая линия связи по своему виду приближается к прямой линии, то можно предположить наличие прямолинейной корреляционной связи; если эмпирическая линия приближается к какой-либо кривой, то это связано с наличием криволинейной связи.^ 10 .Коэффициент корреляцииКоэффицие́нт корреля́ции или парный коэффицие́нт корреля́ции в теории вероятностей и статистике — это мера линейной зависимости двух случайных величин.где- отклонения вариантов значений признака-фактора от их средней величины;- отклонения вариантов значений результативного признака от их средней величины;п - число единиц в совокупности; Линейный коэффициент корреляции может принимать значения в пределах от -1 до +1. Чем ближе он по абсолютной величине к 1, тем теснее связь. Знак при нем указывает направление связи: знак “+” соответствует прямой зависимости, знак “-” -обратной. Корреляционное отношение изменяется от 0 до 1: чем ближе к 1, тем связь теснее; направление связи он не показывает, оно устанавливается по данным групповой таблицы.^ 11. Эмпирическое корреляционное отношение. Теснота корреляционной связи, как и любой другой, может быть измерена эмпирическим корреляционным отношением ηэ , когда δ2 (межгрупповая дисперсия) характеризует отклонения групповых средних результативного признака от общей средней:. Оно показывает тесноту связи между группировочными и результативными признаками. Эмпирическое корреляционное отношение, как и, может принимать значения от 0 до 1. Коэффициент детерминации является наиболее конкретным показателем, так как он отвечает на вопрос о том, какая доля в общем результате зависит от фактора, положенного в основание группировки.^ 12. Коэффициент ФехнераЭлементарной характеристикой степени тесноты связи является коэффициент Фехнера. Коэффициент основан на сопоставлении знаков отклонений от средней и подсчете числа случаев совпадений и несовпадений знаков, а не на сопоставлении попарно размеров отклонений индивидуальных значений факторного и результативного признаков от средней где na - количество совпадений знаков отклонении индивидуальных величин факторного признака х и результативного признака у от их средней арифметической величины (например, “плюс” и “плюс”, “минус” и “минус”, “отсутствие отклонения” и “отсутствие отклонения”);nb - количество несовпадений знаков отклонений индивидуальных значений изучаемых признаков от значения их средней арифметической.Коэффициент Фехнера целесообразно использовать для установления факта наличия связи при небольшом объеме исходной информации. Он изменяется в пределах - 1,0 ^ 13. Непараметрические показатели тесноты корреляционной связи.Среди непараметрических показателей тесноты связи широко используются :коэффициент корреляции знаков (коэффициент основан на сопоставлении знаков отклонений от средней и подсчете числа случаев совпадений и несовпадений знаков)коэффициент ассоциации (Для исследования степени тесноты связи между качественными признаками, каждый из которых представлен в виде альтернативных признаков, может быть использован коэффициент ассоциации Д. Юла. Расчетная таблица в этом случае состоит из четырех ячеек (таблица “четырех полей”), статистическое сказуемое которой схематически может быть представлено в следующем виде: Признаки А (да) Итого В (да) а Ь а+ b В(нет) с d c+d Итого а + с b+d П a, b. с, d — частоты взаимного сочетания (комбинации) двух альтернативныхпризнаковп - общая сумма частот.Коэффициент ассоциации исчисляется по формулевзаимной сопряженности (применяется, когда требуется установить связь между качественными признаками, каждый из которых состоит из трех и более групп. Коэффициент взаимной сопряженности определяется по формулегде φ2 - показатель средней квадратической сопряженности.Коэффициент взаимной сопряженности изменяется от 0 до 1ранговые коэффициенты корреляции (Для определения тесноты связи как между количественными, так и между качественными признаками, при условии, чтозначения этих признаков могут быть проранжированы по степени убывания или возрастания, используется коэффициент корреляции рангов Спирмэнагде di - разность между величинами рангов признака-фактора и результативного признака;п - число показателей (рангов) изучаемого ряда.Он варьирует в пределах от -1,0 до +1,0.^ 14. Коэффициент корреляции рангов Спирмена Для определения тесноты связи как между количественными, так и между качественными признаками, при условии, что значения этих признаков могут быть проранжированы по степени убывания или возрастания, используется коэффициент корреляции рангов Спирмэнагде di - разность между величинами рангов признака-фактора и результативного признака;п - число показателей (рангов) изучаемого ряда.Он варьирует в пределах от -1,0 до +1,0.^ 15. Коэффициенты ассоциации Юла и контингенции Пирсона Для исследования степени тесноты связи между качественными признаками, каждый из которых представлен в виде альтернативных признаков, может быть использован коэффициент ассоциации Д. Юла. Расчетная таблица в этом случае состоит из четырех ячеек (таблица “четырех полей”), статистическое сказуемое которой схематически может быть представлено в следующем виде: Признаки А (да) Итого В (да) а Ь а+ b В(нет) с d c+d Итого а + с b+d П a, b. с, d — частоты взаимного сочетания (комбинации) двух альтернативныхпризнаковп - общая сумма частот.Коэффициент ассоциации исчисляется по формулеКоэффициент контингенции:где а. Ь. с, d - числа в четырехклеточной таблице.Коэффициент контингенции также изменяется от -1 до +1, но всегда его величина для тех же данных меньше коэффициента ассоциации.^ 16. Коэффициент взаимной сопряженности Пирсона-Чупрова применяется, когда требуется установить связь между качественными признаками, каждый из которых состоит из трех и более групп. Коэффициент взаимной сопряженности определяется по формулегде φ2 - показатель средней квадратической сопряженности.Коэффициент взаимной сопряженности изменяется от 0 до 1^ 17. Множественный коэффициент ранговой корреляции (коэффициент конкордации)Для оценки степеней тесноты связи между несколькими признаками получил широкое распространение коэффициент конкордации, который вычисляется по формуле: Где k – количество строк, n- количество столбцов, S – сумма квадратов отклонений сумм по строкам от их общего среднего значения. Данный коэффициент изменяется в пределах от 0 до 1.^ 18. Построение модели связи(уравнения регрессии)После установления достаточной степени тесноты связи выполняется построение модели связи (уравнения регрессии). Тип модели выбирается на основе сочетания теоретического анализа и исследования эмпирических данных посредством построения эмпирической линии регрессии. Чаще всего используются следующие типы функций: а) линейнаяб) гиперболическаяв) параболическаяг) показательнаяДля определения численных значений параметров уравнения связи (линии регрессии) используется метод наименьших квадратов и решается система нормальных уравнений.Для определения параметров а и b уравнения прямолинейной корреляционной связи система нормальных уравнений (для несгруппированных данных) следующая:Решение указанной системы уравнений дает следующие формулы для расчета параметров а и b:Для определения параметров гиперболической функции система нормальных уравнений следующая:Для проверки возможности использования линейной функции определяется разность (η2 - г2); если она менее 0,1, то считается возможным применение линейной функции. Для решенияэтой задачи можно использовать величину ω2, определяемую по формулегде т — число групп, на которое разделен диапазон значении факторного признака.Если ω2 окажется меньше табличного значения F-критерия, то нулевая гипотеза о возможности использования в качестве уравнения регрессии линейной функции не опровергается. Значение F-критерия определяется по таблице в зависимости от уровня значимости а = 0,05 (вероятность Р = 0,95) и числа степеней свободы числителя (k1 = т - 2) и знаменателя (k2= п - т) (см. приложение 5).В качестве меры достоверности уравнения корреляционной зависимости используется процентное отношение средней кварратической ошибки уравнения (Sе) к среднему уровню результативного признака (у):где у - фактические значения результативного признака;- значения результативного признака, рассчитанные по уравнению регрессии;i - число параметров в уравнении регрессии.Если это отношение не превышает 10 - 15%, то следует считать, что уравнение регрессии достаточно хорошо отображает изучаемую взаимосвязь.^ 20. Этапы исследования множественной корреляцииМножественный, или совокупный, коэффициент корреляции для случая трех признаков, один из которых — результативный (с номером 1) и два—факторных (с порядковыми номерами 2 и 3) рассчитывается по формуле (Для расчетов используется такая формула пригодная для случаев, когда число признаков, совокупное влияние которых исследуется, превосходит два. Существуют стандартные программы, вычисляющие R1(23...P)) где подстрочные индексы при r показывают номера признаков, связь между которыми оценивается этим коэффициентом корреляции.Множественный коэффициент корреляции является показателем тесноты линейной связи между результативным признаком и совокупностью факторных признаков.Множественный коэффициент корреляции изменяется в пределах от 0 до 1. Равенство его нулю говорит об отсутствии линейной связи, равенство единице—о функциональной связи. Указаний на то, является ли связь прямой или обратной, коэффициент не дает.^ 21.Ряды динамикиРяд динамики – это последовательность упорядоченных во времени числовых показателей, характеризующих уровень развития изучаемого явления. Всякий ряд динамики включает два обязательных элемента: время, конкретное значение показателя, ил уровень ряда. Уровни рядов динамики отображают количественную оценку (меру) развития во времени изучаемого явления. Они могут выражаться абсолютными,относительными или средними величинами.^ 22. Классификация рядов динамикиРяды динамики различаются по следующим признаками.По времени: - моментные ряды (если уровень ряда показывает фактическое наличие изучаемого явления в конкретный момент времени, то совокупность уровней образует моментный ряд динамики. Примерами моментных рядов могут быть последовательности показателей численности населения на начало года, величины запаса какого-либо материала на начало периода и т.д) - интервальный ряд динамики – последовательность, в которой уровень явления относится к результату, накопленному или вновь произведенному за определенный интервал времени. Таковы, например, ряды показателей объема продукции по месяцам года, количества отработанных человеко-дней по отдельным периодам.. 2. По форме представления уровней: - ряды абсолютных величин - ряды относительных величин - ряды средних величинПо расстоянию между датами или интервалами времени: - полные хронологические ряды ( имеют место, когда даты регистрации или окончания периодов следуют друг за другом с равными интервалами. Это равностоящие ряды динамики) - неполные хронологические ряды – когда принцип равных интервалов не соблюдаетсяПо числу показателей: - изолированные ряды динамики ( если ведется анализ во времени одного показателя) - комплексные ряды динамики ( получается в том случае, когда в хронологической последовательности дается система показателей, связанных между собой единством процесса или явления)^ 23. Сопоставимость и смыкание рядов динамикиВажнейшим условием правильного построения ряда динамики является сопоставимость всех входящих в него входящих в него уровней. Данное условие решается либо в процессе сбора и обработки данных, либо путем их пересчета. Несопоставимость уровней ряда может возникнуть вследствие изменения единиц измерения или единиц счета. На сопоставимость уровней ряда динамики непосредственно влияет методология учета или расчета показателей. Условием сопоставимости уровней ряда динамики является периодизация динамики. В процессе развития во времени прежде всего приосходят количественные изменения явлений, а затем на определенных ступенях совершаются качественные скачки, приводящие к изменению закономерности явления. Поэтому научный подход к изучению рядов динамики заключается в том, чтобы ряды, охватывающие большие периоды времени, расчленять на такие, которые бы объединяли лишь однокачественные периоды развития совокупности, характеризующейся одной закономерностью развития. Процесс выделения однородных этапов развития носит название периодизации динамики. Важно также, чтобы в ряду динамики интервалы или моменты, по которым определены уровни, имели одинаковый экономический смысл.. Уровни ряда динамики могут оказаться несопоставимыми по кругу охватываемых объектов вследствие перехода ряда объектов из одного подчинения в другое. Для того чтобы привести уровни ряда динамики к сопоставимому виду, иногда приходится прибегать к приему, который называется «смыкание рядов динамики». Под смыканием понимают объединение в один ряд (более длинный) двух или нескольких рядов динамики, уровни которых исчислены по разной методологии или разным территориальным границам. Для осуществления смыкания необходимо, чтобы для одного из периодов (переходного) имелись данные, исчисленные по разной методологии (или в разных границах).^ 24. Требования, предъявляемые к рядам динамики 1. Сопоставимость статистических данных. Основным условием для получения правильных выводов при анализе рядов динамики является сопоставимость его элементов.2. Величины временных интервалов должны соответствовать интенсивности изучаемых процессов. Чем больше вариация уровней во времени, тем чаще следует делать замеры. Соответственно для стабильных процессов интервалы можно увеличить.3. Числовые уровни рядов динамики должны быть упорядоченными во времени. Не допускается анализ рядов с пропусками отдельных уровней, если же такие пропуски неизбежны, то их восполняют условными расчетными значениями.^ 25. Показатели ряда динамики.Цепные и базисные показатели:1. Абсолютные приросты.Абсолютный прирост определяется как разность между двумя уровнями динамического ряда и показывает на сколько данный уровень ряда превышает уровень, принятый за базу сравнения:= yi- yi-1, или = yi- y0где - абсолютный прирост; yi - уровень сравниваемого периода;где yi-1 - уровень непосредственно предшествующего периода.y0 - уровень базисного периода.^ 2,Коэффициент роста (снижения) показывает, во сколько раз сравниваемый уровень больше уровня, с которым производится сравнение (если этот коэффициент больше единицы) или какую часть уровня, с которым производится сравнение, составляет сравниваемый уровень (если он меньше единицы).При сравнении с постоянной базой Ki= yi/ y0При сравнении с переменной базой Ki= yi/ yi-1^ 3. Темп ростаЕсли коэффициенты роста выражают в процентах, то их называют темпами роста: Тр = К*100%.Темп роста всегда представляет собой положительное число.^ 4. Темп прироста.Темп прироста (сокращения) показывает на сколько процентов сравниваемый уровень больше или меньше уровня, принятого за базу сравнения и вычисляется как отношение абсолютного прироста к абсолютному уровню, принятому за базу сравнения.Тn= Тp- 100%^ 5. Коэффициенты опережения (отстаивания).При сопоставлении динамики развития двух явлений можно использовать показатели, представляющие собой отношения темпов роста или темпов прироста за одинаковые отрезки времени по двум динамическим рядам Эти показатели называют коэффициентами опережения.KOn= Tp' / Tp''илиKOn= Tn' / Tn''где Tp', Tp'' и Tn', Tn'' - соответственно темпы роста и темпы прироста сравниваемых динамических рядов.6.Абсолютное значение одного процента прироста. Аi рассчитывают как отношение абсолютного прироста к темпу прироста (в %) за тот же период времени.Ai= (yi- уi-1) / Tni / i-1.7. Пункты роста (отстаивания).^ 26. Изучение тенденции развития рядов динамики.Всякий ряд динамики теоретически м.б представлен в виде след составляющих:Тренд – основная тенденция развития динамическогоряда(к увеличению либо снижению его уровней)Циклические (периодические) колебания, в том числе сезонные.Случайные колебания.Изучение тренда включает 2 основных этапа:ряд динамики проверяется на наличие тренда.Производится выравнивание временного ряда и непосредственное выделение тренда с экстраполяцией полученных результатов.^ 27. Методы выявления тенденции в целом, методы выявления тенденции по видам.Методы выявления тенденции в целом, в рядах динамики.Кумулятивный Т-критерий.С помощью данного метода выявляется не только сама тенденция, но и её математическое выражение – тренд. Выдвигается гипотеза об отсутствии тенденции в исходном ряду динамики. Гипотеза проверяется на основе кумулятивного Т-критерия, расчетное значение которого определяется по формуле следующего вида аааааааааааааааZn-накопленный итог отклонений эмпирических значений признака от среднего уровня исходного ряда динамики.Если Т расчетное больше Т критического (a,n) то гипотеза об отсутствии тенденции отвергается, следовательно ряду динамики существует тенденция, сл-но существует и тренд. Т.к Т расчетное больше Т критического, то гипотеза об отсутствии тенденции в исходном ряду динамики отвергается, сл-но, тенденция существует, сл-но, существует тренд.^ Методы выявления тенденции по видам.В прогностики различают тенденцию 3-х видов:1. Тенденцию среднего уровня аналитически выражается в виде некоторой функции вокруг которой варьируют эмпирические значения признака.2. Тенденцию дисперсии – это изменение отклонений эмпирических значений признакаот среднего уровня исходного ряда динамики.3.Тенденцию автокорреляции – это изменение корреляционной зависимости между последовательными уровнями исходного ряда динамики. ^ Методы определения основного направления развития явления. Весь исходный ряд динамики разбивается на 2, примерно равные части, каждая их кот-х рассматривается как самостоятельная независимая нормально распределенная совокупность. Если исходный ряд имеет тенденцию, то средние вычисленные для 2-х совокупностей должны существенно и значимо различаться между собой. Если расхождение между средними не значимо и случайно, то в ряду динамики отсутствует тенденция среднего уровня. Выдвигается гипотеза ррррррррррррррррто о равенстве средних двух нормально распределенных совокупностей. Проверка гипотезы осуществляется на основе расчета и анализа t-критерия Стьюдента, расчетное значение которого осуществляется по формуле:Если t расчетное больше t критического, то гипотеза о равенстве средних двух нормально распределенных совокупностей отвергается, сл-но, средние различаются существенно, сл-но сущ тенденция средней, и сл-но сущ тренд. С помощью данного метода проверяется гипотеза Н о равенстве дисперсий 2-х нормально распределенных совокупностей. Данная гипотеза означает, что если дисперсии, вычисленные для двух совокупностей существенно различаются между собой, то в целом в ряду динамики сущ тенденция дисперсии и сл-но, сущ тренд. Проверка гипотезы осущ на основе F-критерия Фишера, расчетное значение которого определяется по формуле.Если Fрасчетное больше F критического, то гипотеза о равенстве дисперсий 2-х нормально распределенных совокупностей отвергается, сл-но в ряду динамики сущ тенденция дисперсии,сл-но сущ тренд.Метод Фостера-Стюарта. С помощью данного метода можно определить наличие тенденции средней и дисперсии в исходном ряду динамики. В основе реализации метода лежит принцип сравнения каждого след значения исходного ряда динамики со значением всех предыд уровней. Рассчитываются 2 величины: Ut и et. Величина Ut принимает значение 1, если значение каждого след уровня ряда динамики больше всех предыдущих значений и 0 во всех остальных случаях. Величина et. Принимает значение 1, если значение каждого след уровня меньше значения всех предыд и 0 во всех остальных случаях. На основе этих величин определяется их сумма S и разность D. С помощью S проверяется гипотеза об отсутствии тенденции в дисперсиях, а D – об отсутствии тенденции средней. Проверка гипотезы осущ на основе расчета и анализа t- критерия Стьюдента, расчетное значение которого определяется по формулам:Где математическое ожидание Среднеквадратическая ошибка величины S -среднеквадратическая ошибка величины D -табличные числа.^ 28. Непосредственное выделение средней.1. Укрупнение интервалов. Ряд динамики разделяют на некоторое достаточно большое число равных интервалов. Если средние уровни по интервалам не позволяют увидеть тенденцию развития явления, переходят к расчету уровней за большие промежутки времени, увеличивая длину аждого интервала (одновременно уменьшается кол-во интервалов).2. Скользящая средняя. В этом методе исходные уровни ряда заменяются средними величинами, которые получают из данного уровня и нескольких симметрично его окружающих. Целое число уровней, по которым рассчитывается среднее значение, называют интервалом сглаживания. Интервал может быть нечетным (3, 5 точек) или четным. При нечетном сглаживании полученное среднее арифмет значение закрепляют за серединой расчетного интервала, при четном этого делать нельзя. Поэтому при обработке ряда четными интервалами их искусственно делают нечетными, для чего образуют ближайший большой нечетный интервал, но из крайних его уровней берут только 50%. Недостаток методики сглаживания скользящими средними состоит в условности определения сглаженных уровней для точек в начале и конце ряда. Получают их спец приемами –расчетом средн арифм взвешенной.3.Аналитическое выравнивание. Под эти понимают определение основной проявляющейся во времени тенденции развития изучаемого явления. Развитие предстает перед исследователем как бы в зависимости только от течения времени. В итоге выравнивания временного ряда получают наибольший суммарный проявляющийся во времени результат действия все причинных факторов. Отклонение конкретных уровней ряда от уровней соответствующих общей тенденции, объясняют действием факторов, проявляющихся случайно или циклически. В результате приходят к трендовой модели. Целью аналитического выравнивания динамического ряда является определение аналитической или графической зависимости ft. На практике по имеющемуся временному ряду задают вид и находят параметры функции ft, а затем анализируют поведение отклонений от тенденции. Функцию ft выбирают таким образом, чтобы она давала содержательное объяснение изучаемого процесса. ^ 30. Сглаживание динамического ряда методом скользящей средней Скользящая средняя - это такая динамическая средняя, которая последовательно рассчитывается при передвижении на один интервал при заданной продолжительности периода. Если, предположим, продолжительность периода равна 3, то скользящие средние рассчитываются следующим образом:^ 43 Исходные данные для статистического анализа и прогнозирования Статистический анализ исследуемого явления или процесса всегда опирается на исходные статистические данные. Выводы статистического анализа составляют существенный компонент системы поддержки принятия стратегических решения. Форма и содержание исходных статистических данных зависят от конечных прикладных целей исследования и используемых источников. В частности, конечные прикладные цели статистического анализа механизма функционирования фирм (предприятий) и связанных с этим задач прогнозирования обусловливают состав и структуру показателей (так называемое фазовое пространство), наблюдение за которыми и образует массив исходных статистических данных.Прогнозирование заключается в основанном на соответствующем статистическом анализе описании состояния изучаемой системы или процесса через один, два или большее число тактов времени по отношению к текущему моменту времени, т.е. к настоящему. Следует отличать прогноз от предсказания. Прогноз обладает свойством научного результата. Другими словами, в его основе лежит научное обоснование, которое может быть воспроизведено и без автора прогноза. Предсказание же порождается другими инструментами - интуицией, экстрасенсорными способностями, магией, наконец. Оно воспринимается на веру, как данность. Экспертная оценка, т.е. прогноз специалиста в данной конкретной области, представляет собой некоторый промежуточный (между прогнозированием и предсказанием) вариант подхода к формированию представления о будущем. С одной стороны, эта оценка основана на субъективном представлении эксперта о возможном развитии прогнозируемого процесса, с другой, - она учитывает многие факторы, если и не поддающиеся непосредственному измерению и формализации, то допускающие объективную интерпретацию в рамках научного обоснования эксперта. Поэтому организацию и статистический анализ экспертных оценок обычно включают в состав математического инструментария прогнозирования.Требования, предъявляемые к исходным статистическим данным. Формируя массив исходных статистических данных из первичных или вторичных источников, следует помнить об основных требованиях к качеству этих данных.^ S Релевантность. Это свойство означает, что используемые данные (т.е. выбранные для анализа переменные, методология и время их измерения) должны отражать именно анализируемые стороны деловой деятельности и должны быть «привязаны» к нужным объектам и соответствующим моментам времени.^ S Надежность и точность. Это свойство исходных данных достигается с помощью различных (прямых и косвенных) методов проверки надежности используемых источников, соблюдения принятой методологии измерений, достоверности ответов респондентов, вылавливания сбоев и опечаток в их записи.^ S Сопоставимость. Сами данные должны сопровождаться такими комментариями и пояснениями, касающимися смысла анализируемых показателей и методологии их измерения, которые позволили бы сохранить возможность их сопоставления (во времени и пространстве) и «приведения к общему знаменателю» в ситуациях, характеризующихся изменениями в методологии измерений и корректировкой состава анализируемых переменных.^ S Представительность (репрезентативность). Соблюдение этого свойства достигается таким способом организации выборки, при котором она полно и адекватно представляет изучаемые свойства всей анализируемой совокупности (т.е. той совокупности, от которой эта выборка отбиралась). Наиболее распространенными способами отбора респондентов в выборку, обеспечивающими ее репрезентативность, являются простой случайный, расслоенный случайный, систематический, одноступенчатый гнездовой и др. Так, если нас интересует распределение потенциальных клиентов по величине среднедушевого дохода, то мы должны обеспечить наличие в контрольной выборке пропорционального представительства всех социально-экономических слоев населения анализируемого региона, что будет достигнуто с помощью правильно организованного расслоенного случайного отбора. К сожалению, приходится достаточно часто сталкиваться с нарушениями этого важнейшего требования даже в традиционной практике выборочных обследований Госкомстата РФ.^ 44. Основные этапы прогнозирования и типы прогнозов Прогноз - это результат процесса прогнозирования, выраженный в словесной, математической, графической или другой форме суждения о возможном состоянии объекта (в частности предприятия) и его среды в будущий период времени. Выделяются различные признаки классификации прогнозов. Мы воспользуемся подходом, разработанным в Финансовой академии при Правительстве РФ и на его основе составим следующую классификационную таблицу. . Таблица 1. Виды прогнозов________________________________________________________________ № п/п Признаки классификации прогнозов ^ Виды прогнозов 1 1 Временной охват (горизонт прогнозирования) краткосрочные, среднесрочные, долгосрочные 2 Типы прогнозирования поисковые, нормативные, основанные на творческом видении Степень вероятнос