Реферат по предмету "Разное"


1. Понятие о моделях и моделировании

1. Понятие о моделях и моделировании1.1. Определение понятия модель. Свойства моделей Термин модель неоднозначен и охватывает чрезвычайно широкий круг материальных и идеальных объектов. Признаком, объединяющим такие, казалось бы, несопоставимые объекты как система дифференциальных уравнений математической физики и пара дамских туфель, выставленных на витрине, является их информационная сущность. Любая модель – идеальная или материальная, используемая в научных целях, на производстве или в быту – несет информацию о свойствах и характеристиках исходного объекта (объекта - оригинала), существенных для решаемой субъектом задачи. Модели – отражение знаний об окружающем мире. Пусть имеется некоторая конкретная система. Лишь в единичных случаях мы имеем возможность провести с самой этой системой все интересующие нас исследования. С ростом сложности системы возможности натурного эксперимента резко падают. Он становится дорогим, трудоемким, длительным по времени, в слабой степени вариативным. Тогда предпочтительнее работа с моделью. В ряде же случаев мы вообще не имеем возможности наблюдать систему в интересующем нас состоянии. Например, разбор аварии на техническом объекте приходится вести по ее протокольному описанию. Специалист по электронной технике будет изучать большинство типов ЭВМ по литературе, и только часть из них опробует на практике. В этих примерах доступна лишь модель, но это не мешает нам эффективно познавать систему. Рассмотрение вместо самой системы (явления, процесса, объекта) ее модели практически всегда несет идею упрощения. Мы огрубляем представления о реальном мире, так как оперировать категорией модели экономичнее, чем действительностью. Но вопрос выделения и формальной фиксации тех особенностей, которые существенны для целей рассмотрения, весьма непрост. Известно большое количество удачных моделей, составляющих предмет гордости человеческой мысли, — от конечноэлементной модели в прикладных задачах математической физики до модели генетического кода. Однако велико количество процессов и явлений, для которых на настоящий момент нет удовлетворительного описания. Правда, в области техники положение с моделированием можно считать удовлетворительным, но и здесь имеются «узкие» места, связанные с плохо определяемыми параметрами, коэффициентами, а также слишком грубые описания.Определение. Модель в общем смысле есть создаваемый с целью получения и (или) хранения информации специфический объект (в форме мысленного образа, описания знаковыми средствами либо материальной системы), отражающий свойства, характеристики и связи объекта – оригинала произвольной природы, существенные для задачи, решаемой субъектом. Непосредственно из структуры принятого определения вытекают ряд общих свойств моделей, которые обычно принимаются во внимание в практике моделирования. 1. Модель представляет собой «четырехместную конструкцию», компонентами которой являются субъект; задача, решаемая субъектом; объект-оригинал и язык описания или способ воспроизведения модели. Особую роль в структуре обобщенной модели играет решаемая субъектом задача. Вне контекста задачи или класса задач понятие модели не имеет смысла. 2. Каждому материальному объекту, вообще говоря, соответствует бесчисленное множество в равной мере адекватных, но различных по существу моделей, связанных с разными задачами. 3. Паре задача-объект тоже соответствует множество моделей, содержащих в принципе одну и ту же информацию, но различающихся формами ее представления или воспроизведения. 4. Модель по определению всегда является лишь относительным, приближенным подобием объекта-оригинала и в информационном отношении принципиально беднее последнего. Это ее фундаментальное свойство. 5. Произвольная природа объекта-оригинала, фигурирующая в принятом определении, означает, что этот объект может быть материально-вещественным, может носить чисто информационный характер и, наконец, может представлять собой комплекс разнородных материальных и информационных компонентов. Однако независимо от природы объекта, характера решаемой задачи и способа реализации модель представляет собой информационное образование. 6. Частным, но весьма важным для развитых в теоретическом отношении научных и технических дисциплин является случай, когда роль объекта-моделирования в исследовательской или прикладной задаче играет не фрагмент реального мира, рассматриваемый непосредственно, а некий идеальный конструкт, т.е. по сути дела другая модель, созданная ранее и практически достоверная. Подобное вторичное, а в общем случае n-кратное моделирование может осуществляться теоретическими методами с последующей проверкой получаемых результатов по экспериментальным данным, что характерно для фундаментальных естественных наук. В менее развитых в теоретическом отношении областях знания (биология, некоторые технические дисциплины) вторичная модель обычно включает в себя эмпирическую информацию, которую не охватывают существующие теории. Свойства любой модели таковы: конечность: модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны; упрощенность: модель отображает только существенные стороны объекта; приблизительность: действительность отображается моделью грубо или приблизительно; адекватность: модель успешно описывает моделируемую систему; информативность: модель должна содержать достаточную информацию о системе - в рамках гипотез, принятых при построении модели. ^ 1.2. Классификация моделей Каждая модель характеризуется тремя признаками:принадлежностью к определённому классу задач (по классам задач)указанием класса объектов моделирования (по классам объектов)способом реализации (по форме представления и обработки информации). Рассмотрим более подробно последний вид классификации. По этому признаку модели делятся на материальные и идеальные. ^ Материальные модели:геометрически подобные масштабные, воспроизводящие пространственно- геометрические характеристики оригинала безотносительно его субстрату (макеты зданий и сооружений, учебные муляжи и др.);основанные на теории подобия субстратно подобные, воспроизводящие с масштабированием в пространстве и времени свойства и характеристики оригинала той же природы, что и модель, (гидродинамические модели судов, продувочные модели летательных аппаратов);аналоговые приборные, воспроизводящие исследуемые свойства и характеристики объекта оригинала в моделирующем объекте другой природы на основе некоторой системы прямых аналогий (разновидности электронного аналогового моделирования). Рассмотрим более подробно два последних пункта. Для парохода правильный выбор обводов, подбор гребного винта и согласование с характеристиками винта и корпуса мощности и скорости вращения вала – проблема №1. По существу речь идет о необходимости оптимизировать взаимодействие системы корпус – винт – двигатель с обтекающей судно жидкой средой по критерию максимального КПД. Решение проблемы опытным путем невозможно по очевидным экономическим соображениям, не поддается она и теоретическому решению. Выход был найден на пути синтеза теории и масштабного гидродинамического моделирования, т.е. экспериментальное исследование малых геометрически подобных моделей проектируемых судов в специальных бассейнах на основе теории подобия. Теория обеспечивала возможность достоверного переноса данных, полученных на модели, на «натуру», на свойства и характеристики реального, но еще не существующего судна. И сегодня методы масштабного физического моделирования сохраняют свое значение. Аналоговое моделирование основано на том, что свойства и характеристики некоторого объекта воспроизводятся с помощью модели иной, чем у оригинала физической природы. Целый ряд явлений и процессов существенно различной природы описывается аналогичными по структуре математическими выражениями. Описываемые аналогичными математическими структурами разнородные объекты можно рассматривать как пару моделей, которые с точностью до свойств, учитываемых в математическом описании, взаимно отображают друг друга, причем коэффициенты, связывающие соответственные (сходственные) параметры, являются в этом случае размерными величинами. 1. ¶ Т = α × ¶2 T ¶ t ¶ х2 2. ¶ С = D × ¶2 T ¶ t ¶ х2 3. ¶ u = 1 × ¶2 T ¶ t RC ¶ х2 1- уравнение теплопроводности (закон Фурье), 2- уравнение диффузии (закон Фика), 3-уравнение электропроводности (закон Ома).^ Идеальные моделинеформализованные модели, т.е. системы представлений об объекте оригинале, сложившиеся в человеческом мозгу;частично формализованные:вербальные – описание свойств и характеристик оригинала на некотором естественном языке (текстовые материалы проектной документации, словесное описание результатов технического эксперимента);графические иконические – черты, свойства и характеристики оригинала, реально или хотя бы теоретически доступные непосредственно зрительному восприятию (художественная графика, технологические карты);графические условные – данные наблюдений и экспериментальных исследований в виде графиков, диаграмм, схем;вполне формализованные (математические) модели. Основное отличие этого типа моделей от остальных состоит в вариативности — в кодировании одним знаковым описанием огромного количества конкретных вариантов поведения системы. Tак, линейные дифференциальные уравнения с постоянными коэффициентами описывают и движение массы на пружине, и изменение тока в колебательном контуре, и измерительную схему системы автоматического регулирования, и ряд других процессов. Однако еще более важно то, что в каждом из этих описаний одни и те же уравнения в буквенном (а вообще говоря, и в числовом) виде соответствуют бесконечному числу комбинаций конкретных значений параметров. Скажем, для процесса механических колебаний — это любые значения массы и жесткости пружины. В знаковых моделях возможен дедуктивный вывод свойств, количество следствий в них обычно более значительно, чем в моделях других типов. Они отличаются компактной записью удобством работы, возможностью изучения в форме, абстрагированной от конкретного содержания. Все это позволяет считать знаковые модели наивысшей ступенью и рекомендовать стремиться к такой форме моделирования. Заметим, что деление моделей на вербальные, натурные и знаковые в определенной степени условно. Так, существуют смешанные типы моделей, скажем, использующие и вербальные, и знаковые построения. Введем «прагматическое» определение математической модели, удобное для практических приложений. Для этого используем хорошо известное из кибернетики представление объекта в виде «черного ящика». Первым шагом к осознанному построению модели во всех случаях является уяснение и четкая формулировка исследования или иной задачи, ради решения которой осуществляется моделирование. Этот шаг базируется на содержательном анализе исходной проблемы, предполагает сбор и осмысление всех уже имеющихся данных, относящихся к задаче. Следующий шаг, с которого начинается процедура собственно моделирования, заключается в определении границ объекта, подлежащего модельному описанию и исследованию с целью решения задачи. Здесь возможен очень широкий диапазон различных ситуаций (зависит от характера задачи, степени сложности и изученности). Будем считать, что в соответствии с имеющейся информацией мы приняли некоторую гипотезу о границах объекта, подлежащего модельному исследованию. Исходя из принципа всеобщей взаимосвязи и взаимозависимости, можно утверждать, что в общем случае выявленный объект, с одной стороны, подвергается воздействиям со стороны окружающей среды, с другой – сам воздействует на эту среду, изменяя её состояние. Связи среда – объект будем именовать, как это принято, входными воздействиями или входами Х (часто вводят разделение входных воздействий на управления (U) и возмущения (V)), а воздействия объект – среда (Y) – выходными. Очевидно, что достаточно полный (с точки зрения решаемой задачи) учет входных и выходных связей объекта с более широкой системой (средой), компонентом которой он является, есть необходимое условие правомерности выделения объекта из среды. Каждая упущенная исследованием существенная связь создает угрозу того, что состояние и свойства выявленного объекта уже не будут соответствовать тем, которые имели место в исходной реальной системе и модель, базирующаяся на подобном представлении, окажется заведомо неадекватной. С другой стороны, по практическим соображениям в модели желательно учитывать возможно меньшее число факторов, ибо её сложность и громоздкость являются не менее серьезными недостатками, чем неполнота. Разрешение данного противоречия, т.е. выбор подлежащих учету в модели существенных входных и выходных воздействий и абстрагирование от прочих, предположительно незначимых, представляет собой весьма ответственный момент при построении любой модели, т.к. решающим образом влияет на её качество и эффективность. Здесь необходимо глубокое понимание существа решаемой задачи, тщательное изучение воспроизводимой в модели исходной реальной системы, необходим опыт и эвристические способности. Если моделируемый объект представляет собой реально существующую материальную систему, его связями, очевидно, являются также вполне реальные материальные факторы: силы различной природы, пространственные перемещения с их производными, потоки вещества, потоки энергии, а в некоторых случаях потоки информации. Все они должны быть исследованы и описаны в качественном и количественном отношении, оценены посредством «числа и меры», после чего превращаются в информационные конструкты и приобретают статус переменных модели. Использование математической модели в современном смысле слова не связано с материальным воспроизведением подлежащих исследованию свойств и характеристик объекта и не предполагает экспериментальных процедур. Объект, описанный на языке математики, представляется некоторой математической структурой (дифференциальными или конечно-разностными уравнениями, передаточной функцией, графом и т.п.) с определенными параметрами, а процесс исследования (так называемое решение математической модели) заключается в применении к этой структуре совокупности математических преобразований и операций в соответствии с некоторым алгоритмом. Результатом вычислительного процесса является новая информация об объекте, разумеется, в той части его свойств, которые нашли отражение в исходном математическом описании. Возможности современных ЭВМ и программных средств позволяют исследовать эти свойства при всевозможных вариациях параметров, входящих в исходную модель, определять присущие ей вероятностно-статистические характеристики, находить значения параметров, оптимальных по тому или иному критерию и решать множество других самых разнообразных задач. Под словами “модельное описание” или “модель” понимается мате­матически формализованное описание некоторого явления или объекта в терминах определенной группы его характеристик. Математическая модель сложных управляемых процессов содержит очень много величин различной природы. Все эти величины естественным образом можно разделить на три группы: • к первой группе относятся величины, которые принято называть эн­догенными (внутренними), или фазовыми; они являются искомыми величинами, т. е. подлежат определению, вычислению в силу связей модели; • ко второй группе относятся так называемые экзогенные (внешние) величины, они полагаются известными в рамках данной модели; • к третьей группе относятся управления — величины, находящие­ся в распоряжении органов управления, с помощью которых можно оказать влияние на течение процесса. Само слово “модель” означает совокупность связей между всеми эти­ми величинами. Если эта совокупность связей позволяет определить на данном отрезке времени все эндогенные величины при условии, что на нем заданы управления, экзогенные величины, а также начальные для этого отрезка (и, возможно, граничные – в пространственном смысле) значения фазовых переменных, то модель называется замкнутой. Разделение на внешние и внутренние величины можно выполнить не единственным образом, оно является в известной мере условным и связано со способом использования модели и целями моделирования. ^ 1.3. Классификация математических моделей по свойствамобобщенного объекта моделированияБудем предполагать, что возможно, хотя бы в принципе, установить и на некотором языке описания (например, средствами математики) охарактеризовать зависимость каждой из выходных переменных от входных. Связь между входными и выходными переменными моделируемого объекта в принципе может характеризоваться графически, аналитически, т.е. посредством некоторой формулы общего вида, или алгоритмически. Независимо от формы представления конструкта, описывающего эту связь, будем именовать его оператором вход-выход и обозначать через Â. Пусть М=М(X,Y,Z), где X - множество входов, Y - выходов, Z - состояний системы. Схематически можно это изобразить: XZY. Рассмотрим теперь наиболее существенные с точки зрения моделирования внутренние свойства объектов разного класса. При этом придется использовать понятие структура и параметры моделируемого объекта. Под структурой понимается совокупность учитываемых в модели компонентов и связей, содержащихся внутри объекта, а после формализации описания объекта – вид математического выражения, которое связывает его входные и выходные переменные (например: у=au+bv). Параметры представляют собой количественные характеристики внутренних свойств объекта, которые отражаются принятой структурой, а в формализованной математической модели они суть коэффициенты (постоянные переменные), входящие в выражения, которыми описывается структура (а и b). Первое свойство непрерывность и дискретность. Все те объекты, переменные которых (включая, при необходимости, время) могут принимать несчетное множество сколь угодно близких друг к другу значений называются непрерывными или континуальными. Подавляющее большинство реальных физических и теоретических объектов, состояние которых характеризуется только макроскопическими физическими величинами (температура, давление, скорость, ускорение, сила тока, напряженность электрического или магнитного полей и т.д.) обладают свойством непрерывности. Математические структуры, адекватно описывающие такие объекты, тоже должны быть непрерывными. Поэтому при модельном описании таких объектов используется главным образом, аппарат дифференциальных и интегро-дифференциальных уравнений. Дифференциальные уравнения как инструмент модельного описания физических и технических объектов настолько широко распространены в приложениях, что некоторые специалисты, главным образом инженеры, только их и рассматривают, как полноценные модели. Это неправильно. Объекты, переменные которых могут принимать некоторое, практически всегда конечное число наперед известных значений, называются дискретными. Примеры: релейно-контактные переключательные схемы, коммутационные системы АТС. Основой формализованного описания дискретных объектов является аппарат математической логики (логические функции, аппарат булевой алгебры, алгоритмические языки). В связи с развитием ЭВМ дискретные методы анализа получили широкое распространение также для описания и исследования непрерывных объектов. Непрерывность или дискретность. Это свойство выражается в структуре множеств (совокупностей), которым принадлежат параметры состояния, параметр процесса и входы, выходы системы. Таким образом, дискретность множеств Z,Y, Т, Х ведет к модели, называемой дискретной, а их непрерывность — к модели с непрерывными свойствами. Дискретность входов (импульсы внешних сил, ступенчатость воздействий и др.) в общем случае не ведет к дискретности модели в целом. Важной характеристикой дискретной модели является конечность или бесконечность числа состояний системы и числа значений выходных характеристик. В первом случае модель называется дискретной конечной. Дискретность модели также может быть как естественным условием (система скачкообразно меняет свое состояние и выходные свойства), так и искусственно внесенной особенностью. Типичный пример последнего — замена непрерывной математической функции на набор ее значений в фиксированных точках. Следующее свойство модели — детерминированность или стохастичность. Если в модели среди величин имеются случайные, т. е. определяемые лишь некоторыми вероятностными характеристиками, то модель называется стохастической (вероятностной, случайной). В этом случае и все результаты, полученные при рассмотрении модели, имеют стохастический характер и должны быть соответственно интерпретированы. Здесь подчеркнем, что с точки зрения практики граница между детерминированными и стохастическими моделями выглядит расплывчатой. Так, в технике про любой размер или массу можно сказать, что это не точное значение, а усредненная величина типа математического ожидания, в связи с чем и результаты вычислений будут представлять собой лишь математические ожидания исследуемых величин. Однако такой взгляд представляется крайним. Удобный практический прием состоит в том, что при малых отклонениях от фиксированных значений модель считается детерминированной, а отклонение результата исследуется методами оценок или анализа ее чувствительности. При значительных же отклонениях применяется методика стохастического исследования. Свойства сосредоточенности или распределенности характеризуют объекты с точки зрения роли, которую играет в их модельном описании пространственная протяженность (на фоне скорости распространения физических процессов). Если пространственной протяженностью объекта можно пренебречь и считать, что независимой переменной является только время (протекающих в нем процессов), принято говорить об объекте с сосредоточенными параметрами. К числу таких объектов, которые описываются (в случае детерминированности и непрерывности) обыкновенными дифференциальными уравнениями, относится подавляющее большинство механизмов, машин и вообще локальных технических устройств (расстояния между компонентами практически не влияют на исследуемые свойства и характеристики). В пространственно протяженных объектах адекватное описание требует учета не только времени, но и пространственных координат. В таком случае говорят о классе объектов с распределенными параметрами. Примеры: всевозможные «длинные линии» - проводная линия связи, описываемая так называемым телеграфным уравнением, длинные трубопроводы, технологические линии в непрерывном пространстве. Электромагнитное поле с его обобщенной математической моделью – уравнениями Максвелла – представляет собой классический пример трехмерного объекта с распределенными параметрами. Непрерывные и детерминированные объекты с распределенными параметрами описываются дифференциальными уравнениями в частных производных.^ Статические и динамические модели. Статические модели относятся к объектам, практически неизменяющимся во времени или рассматриваемым в отдельные временные сечения. Динамические модели воспроизводят изменения состояний («движение») объекта с учетом как внешних, так и внутренних факторов. Для динамических моделей часто вводят понятия стационарность и нестационарность. Чаще всего стационарность выражается в неизменности во времени некоторых физических величин: стационарным является поток жидкости с постоянной скоростью, стационарна механическая система, в которой силы зависят только от координат и не зависят от времени. Под стационарным объектом, в более общем смысле, подразумевают неизменность структуры и параметров объекта. Поэтому он описывается выражением, которое включает в себе только постоянные коэффициенты. Нестационарность может иметь место относительно параметров, относительно структуры и одновременно. Чаще имеет место нестационарность относительно параметров, т.е. рассматривается объект с переменными коэффициентами, что усложняет исследование. Общей теории и специального математического аппарата для описания существенно нестационарных объектов переменной структуры еще не существует. Исследование таких объектов проводится на основе некоторых методов прикладного системного анализа, которые сочетают формализованные математические процедуры с эвристикой и здравым смыслом, а также широко используют прием декомпозиции и последующего объединения частных решений. С точки зрения общности методов анализа, возможностей математического аппарата и трудоемкости исследования чрезвычайно существенно деление объектов на линейные и нелинейные. Для первых справедлив принцип суперпозиций, когда каждый из выходов объекта характеризуется некоторой линейной формулой, связывающих его со значениями соответственных входных переменных. С точки зрения математического аппарата линейность объекта относительно переменных означает, что среди коэффициентов, входящих в его математическое описание, отсутствуют величины, зависящие от переменных, их производных и интегралов. Если коэффициенты не зависят и от времени, то это самый благоприятный и наиболее распространенный в технических приложениях случай: описание объекта в классе линейных стационарных моделей. Линейность (нелинейность) обычно расшифровывается как линейная (нелинейная) зависимость от входов операторов состояний или выходов. Линейность может являться как естественным, хорошо соответствующим природе, так и искусственным (вводимым для целей упрощения) свойством модели. ^ 1.4. Адекватность и эффективность математических моделейВопрос о необходимой и достаточной степени соответствия объекту – оригиналу или адекватности модели относится к числу важнейших в сфере модельной методологии. Под эффективностью понимают практическую полезность. Процесс моделирования неизбежно протекает в условиях диалектического взаимодействия двух противостоящих друг другу тенденций. С одной стороны, исследователь всегда стремиться к возможно более полному и точному воспроизведению в модели свойств и характеристик объекта. Неизбежным следствием такого подхода является рост сложности, которая проявляется в числе переменных, числе учитываемых связей и влияний, повышении требования к точности исходных данных и т.д. Именно эта сторона дела – требование полноты соответствия модели объекту – оригиналу акцентируется в большинстве философских работ и даже рассматривается некоторыми авторами как мера совершенства модели. Однако практика показала неопровержимо: эффективность модели находится в обратной зависимости от её сложности, быстро убывая с ростом последней. Определить математическим путем наилучшее сочетание полноты-точности создаваемой модели с одной стороны и простоты с другой, практически никогда не удается из-за неформализуемости и неоднозначности большей части подлежащих учету факторов. Пара задача-объект в основном определяет номенклатуру подлежащих учету переменных объекта; параметры, входящие в модель, число и характер связей между ними, требования к точности данных и ряд других важнейших характеристик модели. Решающим фактором эффективности сейчас оказывается математический аппарат. Эффективность модели зависит и от такого субъективного момента, как профессиональные качества и уровень подготовки исследователя – исполнителя. Таким образом, можно сделать заключение: наилучшее в практическом отношении качество или эффективность любой модели достигается как разумный компромисс между близостью модели к оригиналу (адекватностью) и простотой, обеспечивающей возможность и удобство использования модели по её прямому назначению; чрезмерная точность модели на практике не менее вредна, чем её неполнота и грубость. Математическая модель изучаемого про­цесса или объекта является основой, фундаментом всего исследования. Тем не менее на сегодняшний день не существует и, по-видимому, не мо­жет существовать науки о моделировании реальных процессов и явле­ний окружающего мира — точно так же, как не существует науки о том, как совершать открытия, изобретения, создавать новые методы научного поиска. Даже математика — одна из наук, которая в большей, чем другие науки, степени использует дедукцию, своему прогрессу обя­зана в громадной степени таким “ненаучным” приемам, как интуиция, догадка, фантазия, т. е. индуктивному способу мышления. Моделиро­вание объектов и явлений реальности (на сегодняшний день) в большой степени представляет искусство, а искусству учат на опыте. Челове­чество обладает таким опытом. Это опыт классиков естествознания, опыт представителей естественных наук, эксплуатирующих для своих целей математический аппарат, и т. д.В каждом конкретном случае качество модели во многом зависит от способностей исследователя понять существо, физику изучаемого про­цесса и создать его адекватное математическое описание. Математику привлекают, когда сложен изучаемый или управляемый процесс. Слож­ность обычно состоит в огромном числе характеристик, его описыва­ющих, и большом числе связей между ними. И задача заключается не только в том, чтобы создать адекватное математическое описание изу­чаемого процесса, т. е. его модель, но и разработать методику работы с нею. С громоздкими многопараметрическими моделями трудно прово­дить исследования, поэтому математики вынуждены были при форма­лизации реального процесса отбрасывать многие, на их взгляд менее су­щественные связи, загрублять математическое описание. Необходимо обладать незаурядной интуицией для определения, что важно с точки зрения интересующих исследователя вопросов, что — нет. Однако при решении серьезных практических задач невозможно полагаться лишь на интуицию и опыт небольшой группы исследователей, необходима методика, позволяющая с большой степенью достоверности определить адекватность модели и реальности, ею описываемой, область возмож­ного ее применения и круг вопросов, для исследования которых они пригодны. Необходима “система знаний”, которая позволила бы, ис­пользуя накопленный опыт и определенные принципы, выработанные на его основе, а также доказанные или установленные на их базе поло­жения, создавать модели изучаемых процессов, проводить их анализ и определять пути их дальнейшего использования.^ 1.5. Методы построения моделей1.5.1. Общая логика построения моделейМодельное исследование, как любой другой вид осознанной целенаправленной деятельности начинается с возникновения проблемы – потребности изменить в лучшую сторону существующее либо ожидаемое положение вещей в той или иной области. Источник проблемы – предшествующее развитие данной области или же внешние факторы. Осмысление или конкретизация проблемы приводит к формулировке цели или системы целей как желательного результата будущей деятельности по решению проблемы. Поставленная цель должна быть соотнесена с реальными возможностями её достижения, т.е. с ресурсами (материальными и другими). Сопоставление целей с ресурсными ограничениями приводит к формулировке задачи исследования, которая помимо непротиворечивой системы конкретных целей, учитывающих ресурсные возможности, включает в себя объект моделирования. Задача и объект моделирования должны рассматриваться совместно. Данные о целях исследования, а также исходная информация об объекте моделирования служат для определения критерия качества создаваемой модели – количественной меры степени её совершенства. В случае вполне формализованной оптимизационной постановки (например, на основе аппарата линейного программирования) критерий приобретает вид некоторого функционала от переменных и параметров модели, значение которого достигает экстремума при оптимальных её характеристиках. Следующим шагом в построении модели является основанный на априорных данных содержательный анализ системы задача-объект и выбор класса или, точнее, способа формирования модели. Если объект не слишком сложен, достаточно изучен и комплекс подлежащих модельному исследованию свойств и характеристик объекта может быть выявлен на основе теоретических представлений и данных (дополняемых необходимым объемом эмпирической информации), целесообразно избрать аналитический путь построения модели. Часто из-за сложности, слабой изученности объекта или отсутствия соответствующих теоретических разработок этот путь не может быть реализован. Альтернативным является путь идентификации объекта, т.е. экспериментального определения существенных для решаемой задачи свойств и характеристик объекта, специально ради построения его модели. Эксперимент осуществляется в соответствии со специально разрабатываемым оптимальным планом, данные эксперимента обрабатываются и становятся основой для формализованного описания объекта в виде математической модели вход-выход. Формализованная модель, построенная теоретическим путем или идентифицированная, оценивается в соответствии с выбранным ранее критерием и либо признается удовлетворительной (принимается), либо отвергается как недостаточно совершенная. В последнем случае возникает необходимость в её корректировке и итеративном обращении к ранее выполненным этапам. Решение о принятии модели (в общем случае после i-того итеративного цикла) влечет за собой переход к следующему этапу – опытной проверке непосредственно в условиях той задачи, для решения которой она построена. При этом возникают нередко дополнительные требования (например, связанные с удобством использования модели) и необходимость её дополнительной корректировки. Наконец, следует заключительный этап процесса - использование модели по прямому назначению для решения исследовательской или иной задачи, причем и на этом этапе возможны дальнейшие уточнения и корректировки. Построение модели представляет собой не однократный акт, а процесс последовательных приближений, в основе которого лежит самообучение исследов


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.