Министерствообразования Российской Федерации
СаратовскийГосударственный Технический УниверситетКафедра«Приборостроения»ПОЯСНИТЕЛЬНАЯЗАПИСКА
Ккурсовому проекту по
«Теориирасчетов
ипроектированию приборов и систем»
натему:
«Модернизацияпрограммного механизма»
Выполнил:студентФЭТиП
группы ПБС-31
Акмаев А.
Проверил:
Черепанов Д.В.
Саратов 2002
Содержание
Аннотация
Введение
1. Описаниеконструкции, принципа действия и работы прибора
2. Расчети конструирование кулачкового механизма
2.1 Расчетпрофиля кулачка
2.1.1 Определениеначального радиуса кулачка
2.1.2 Определениепрофиля кулачка
2.2 Силовойрасчет кулачкового механизма
2.3 Расчетцилиндрической пружины толкателя
2.4 Расчеттолкателя
3 Расчет храповогомеханизма
3.1 Расчет храповика
3.2 Расчет храповогоколеса на прочность
3.3 Расчет толкающей собачки
3.4 Расчет стопорнойсобачки
4 Расчет червячногомеханизма
4.1 Кинематический расчетчервячной передачи
4.2 Расчет модулячервячной передачи
4.3 Расчет червячнойпередачи
4.3.1 Исходные данные
4.3.2 Расчетгеометрических параметров
4.4 Точность червячнойпередачи
4.5 Силовой расчетчервячной передачи
4.6 Расчет зубьев наконтактную прочность
4.7 Расчет зубьевчервячного колеса на изгиб
4.8 КПД зубьев червячнойпередачи
5 Расчет контактной пары
6 Расчет валов и опор
6.1 Расчет вторичноговала но прочность
6.2 Расчет первичноговала но прочность
6.3 Выбор и расчетшарикоподшипников
Выводы
Литература
Заключение
Приложение
Аннотация
В данной пояснительной записке к курсовому проекту на тему«Программный механизм» приведен расчет такого устройства, как программныймеханизм. Рассчитаны его основные узлы и конструкция прибора. Расчет велся наоснове соответствующей литературы, а также с активным применениемвычислительной техники — все численные значения, приведенные в пояснительнойзаписке, получены при использовании программного обеспечения, значительноупрощающего процесс расчета. В качестве примера в приложении приведенапрограмма расчета профиля кулачка, написанная на языке программированияПаскаль.
Основной целью данного курсового проекта является ознакомление сосновными приемами проектирования гироскопических устройств, а также, вчастности, с конструктивными особенностями, принципом работы и т.д. последних.
Введение
В системах автоматического управления часто используютсямеханизмы, которые позволяют осуществлять замыкания и размыкания различныхконтактов с заданной выдержкой времени и в определенной последовательности,соответствующей заранее установленной программе, которая по мере надобноститакже может изменяться.
Программный механизм, расчет которого приведен в пояснительнойзаписке, является основным узлом арретирующих устройств. Арретирующиеустройства обеспечивают жесткую фиксацию подвижных узлов гироприбораотносительно друг друга, а также корпуса прибора.
Поэтому все параметры, характеризующие арретирующее устройство,определяются именно программным механизмом. Такими параметрами являются:
— Время арретирования и разарретирования.
— Точность арретирования.
К этим параметрам зачастую предъявляются весьма жесткиетребования. Поэтому они являются определяющими при расчете конструкцииарретирующего устройства, и программного механизма, в частности.
Т.к. главным элементом в нашем программном механизме являетсякулачок, то по мере надобности программа может изменяться путем измененияпрофиля кулачка (для этого требуется произвести перерасчет начального радиусакулачка и всех параметров толкателя). В данных механизмах применяетсяэлектромеханический способ осуществления требуемой выдержки временисрабатывания контактов. При этом используются синхронные электродвигатели илидвигатели постоянного тока, имеющие регулятор скорости.
1. Описание конструкции, принципа действия и работы прибора
Программный механизмявляется электромеханической системой, предназначенной для обеспеченияпоступательного движения толкателя (выходного звена) по определенному закону(программе) за счет профиля кулачка, выполненного по определенной программе.
Программный механизм состоит из шагового электродвигателя, приводакинематической передачи и кулачкового механизма. Толкатель кулачковогомеханизма соединяется с исполнительным элементом системы управления движениемлетательного аппарата.
Входной величиной программного механизма является число импульсов,подаваемых на шаговый электродвигатель, выполненный из электромагнита, храповогоколеса, толкающей и стопорной собачек, а выходной — прямолинейное перемещениетолкателя по заданной программе.
При подаче импульсов на электромагнит шагового механизма, движениеот якоря, жестко связанного с толкающей собачкой, передается на храповик, затемчерез червячную передачу передается на выходной вал с кулачком и к толкателю.Стопорная собачка предохраняет храповик от поворота в обратную сторону привозвращении якоря в исходное положение (при отсутствии импульса). Пружинаобеспечивает силовое замыкание кулачка и толкателя между собой.
Контактные группы служат для выключения электромагнита приотработке программы, а также для коммутации других электрических цепейуправления.
Кинематическая схема программного механизма приведена вприложении.Исходные данные
Частота импульсов20 Гц.
Цена оборота кулачка6500 импульсов/оборот.
Ход толкателя5 мм.
Наибольшее давление на толкатель6 Н.
ПрограммаЛинейнаяУсловия эксплуатации прибора
Температурный режим ± 40°С.
Линейные перегрузки 4 ед.
Амплитуда и частота колебаний ЛА 0,02-0,04 мм, 500 Гц.
Смазка механизма — разовая, консистентными маслами.
Срок службы — не менее 2000 ч.
2. Расчет иконструирования кулачкового механизма
2.1Расчет профиля кулачка
Исходныеданные:
1.Ход толкателя – 5 мм;
/>
Рис.1Кинематическая схема кулачкового механизма.
Закондвижения функция sin для j от 00до 900.
1.1.1 Определение начальногорадиуса кулачка
Радиус-вектор,описывающий профиль кулачка, определяется по формуле: />,
где /> - начальныйминимальный радиус, который выбирается конструктивно, но от него зависит уголдавления a.
/> - законизменения хода толкателя от угла поворота толкателя j.
Т.к. в данноммеханизме необходимо обеспечить движение толкателя с постоянной скоростью(программа — линейная), то используем кулачок с профилем спирали Архимеда. Длянашего случая рабочего кулачка выбираем рабочий угол 3600, значит:
/>, [2](1)
На рис.1 /> - угол, покоторому изменяется радиус кулачка; />;
a — угол давления толкателя.
Для кулачковцентрального действия a принимаем равным />.
Так как ходтолкателя />,то значение R и /> необходимо выбирать из расчета
/>(2)
примем />мм, и угол покоторому изменяется радиус кулачка />, тогда угол давления толкателя накулачек
/>(3)
/>(4)
/>
/> условиевыполняется
1.1.2 Определение профилякулачкаРабочий угол кулачка равный /> и />.
/>(5)
/>
Далее поданным таблицы построим профиль кулачка.Таблица 1
/>
/>
/>
/>
/>
/>
/>
/> 18 95 20,01 190 21,68 285 22,73 5 18,10 100 20,11 195 21,75 290 22,76 10 18,21 105 20,21 200 21,83 295 22,8 15 18,32 110 20,3 205 21,89 300 22,82 20 18,43 115 20,4 210 21,96 305 22,85 25 18,54 120 20,5 215 22,03 310 22,88 30 18,65 125 20,59 220 22,09 315 22,9 35 18,76 130 20,68 225 22,15 320 22,92 40 18,86 135 20,77 230 22,21 325 22,94 45 18,97 140 20,86 235 22,27 330 22,95 50 19,08 145 20,95 240 22,33 335 22,97 55 19,18 150 21,04 245 22,38 340 22,98 60 19,29 155 21,12 250 22,43 345 22,98 65 19,39 160 21,21 255 22,48 350 22,99 70 19,5 165 21,29 260 22,53 355 22,99 75 19,6 170 21,37 265 22,57 360 23 80 19,71 175 21,45 270 22,61 85 19,81 180 21,53 275 22,66 90 19,91 185 21,61 280 22,69
Rmin=18мм, Rmax=26мм.
1.2 Силовойрасчет кулачкового механизма
Раскладываемсилу нормального давления P на Р1 и Р2.
Р1– направляющая по движению толкателя, Р2 – перпендикулярная Р1составляющая.
/>(6)
Р1– движущая сила, она используется для преодоления сил полезных сопротивлений; Р2– сила, изгибающая толкатель и вызывающая реакции NB и NC его направляющих.
На рис.3 Q — сила, прижимающаятолкатель к кулачку, обычно является равнодействующей сил, приведенных ктолкателю.
QПС — сила полезногосопротивления;
QПР — сила давления пружины;
QТ — сила тяжести;
РИ — сила инерции.
Q=QПС+ QПР+ QТ+ РИ, [1, с.231](7)
При выходном звене типа «толкатель-стержень»угол давления g=300. Точка О на рис.3 – это точка давлениятолкателя.
При скольжении толкателя по кулачкувозникает приведенная сила трения:
FПР=РfПР=РtgjПР.(8)
Здесь fПР=РtgjПР – приведенный коэффициент трения, jПР – приведенный угол трения.
Выбираем из пары материалов fПР=0,18 =>
jПР=arctgfПР,
jПР=arctg0,18=10,20.(9)
Полная силадавления кулачка на толкатель является равнодействующей сил РИ, FПР и равна:
/>,(10)
/>,
где Р=6 Н изТ.3
Раскладывая Рn на две составляющие получаем:
1. Рnsin(g+jПР) – силу, изгибающуютолкатель и вызывающие реакции NB и NC его направляющих, от величины которых зависятзначения сил трения FB и FC;
g=300– угол давления; jПР=10,20,
Рnsin(300+10,20)=3,9328Н.
2. Рncos(g+jПР)- силу, движущуютолкатель, который преодолевает действие сил Q, FB и FC
Рncos(300+10,20)=4,6523 Н.
Т.к. в силу Q включены силы инерции РИ, то на основаниипринципа Даламбера система времени, действующих в механизме в любой моментвремени, должна находиться в равновесии и удовлетворять следующим тремусловиям:
/>(11)
Решая первые 2 уравнения, определим опорные реакции в направляющихтолкателя NB и NC:
/>(12)
/>(13)
Зададимся размерами толкателя.
b – расстояние от окончания толкателя до первой опоры, b=15 мм,
с — расстояние от первой до второй опор, с=25 мм,
Н – длина толкателя, Н=b+c=15+25=40 мм.
NB=6,2923 H,NC=2,3596 H.
Определим силы трения:
/>(14)
/>
Определим силу, прижимающую толкатель к кулачку Q:
/>(15)
Определим силу полного давления кулачка на толкатель:
/>(16)
/>=6,092 Н
2.3 Расчет цилиндрической пружины толкателя
Для в качестве материала выбираем проволоку II класса (по ГОСТ 9389-75)с повышенной эластичностью 60С2А (пружина ответственная). Цилиндрическиевинтовые пружины сжатия рассчитываются из условий прочности витка пружины накручение.
ПО условиям работы пружины определяем:
1.Нагрузку пружины:
· НаибольшаяРmax=6 H (из Т.3 наибольшее давление на толкатель);
· НаименьшаяРmin/>Рmax, Рmin=0,6 Рmax=3,6 Н.
· Предельнодопустимая: Рдоп/>Рmax. Рдоп=/>.
2.Рабочий ход (деформация) пружины:
H=f1-f2,(17)
h учитывается при изменении нагрузки от Рminдо Рmax. В нашем случае рабочийход пружины равен ходу толкателя, т.е. h=5 мм.
Зададимся индексом пружины: с=D/d=12.
Для выбранного нами материала предел прочности sВ=650 МПа, допускаемоенапряжение [t]=325 МПа, коэффициент, учитывающий увеличениенапряжения во внутренней стороне витка:
/>
Определим диаметр проволоки, обеспечивающей пружине с заданныминдексом с прочность:
/>(19)
Средний диаметр пружины определим по значениям с и a:
Dср=сa, Dср=8,4 мм.(20)
Dн – наружный диаметр пружины;
Dн=d(c+1),Dн=9,1 мм.(21)
Dв – внутренний диаметр пружины;
Dв=d(c-1),Dв=7,7 мм.(22)
Эластичность пружины (прогиб одного витка под нагрузкой в 1Н):
/>,(23)
где G=/>МПа – модуль сдвига.
/> мм/Н
Число рабочих витков пружины определяется как
/>(24)
где h – рабочий ход (деформация0 пружины, h=5 мм.
n=4
Жесткость пружины:
/>(25)
k=0.48 H/мм
Максимальная деформация пружины:
/>(26)
где k – жесткость пружины.
/>
Максимальная деформация одного витка пружины:
/>(27)
Полное число витков пружины N=6 витков; N=n1+n2,
n1 – число рабочих витков, n1=4
n2 — число опорных витков, n2=2.
Шаг пружины при максимальной деформации:
/>(28)
t=4.45 мм
Высота пружины при максимальной деформации:
L3=(N+1-n3)d,(29)
где n3 – число зашифрованных витков, n3 =2 мм
L3=6,03 мм.
Высота пружины в свободном состоянии:
L0=L3+l3, L0=21,03 мм.
/>
Рис.3 Цилиндрическая пружина толкателя.
2.4 Расчет толкателя
Рассчитаем момент движущих сил на валу кулачка по формуле:
/>(31)
где Rmax – максимальный радиус кулачка, fПР – приведенный моменттрения.
Rmax=23 мм, fПР=0,18.
/> Н/мм
Момент, изгибающий толкатель:
/>(32)
Диаметр стержня толкателя определим из условия прочности на изгиб:
/>(33)
/>(34)
d=3.1мм
Пусть материал толкателя: Сталь 45 (HRC 40…50).
Предел прочности sВ=120 МПа.
[sи]=19,2 МПа.
sи=18,4 МПа
Определим силу трения толкателя о поверхность кулачка:
Fтр=Qf,(35)
Fтр=0.55 H
Если Fтр/>Р1, тотолкатель не заклинит, и он будет свободно двигаться по кулачку.
Р1=Рcosa,(36)
Р1 – движущая сила, используемая для преодоления силполезных сопротивлений:
Р из Т.3=6 Н.
Р1=5,66 Н.
Fтр=0,55 H
Из этого следует, что толкатель при работе программного механизмане заклинит, и он будет двигаться по поверхности кулачка и отвечать заданнойпрограмме.
Таким образом, конструкция спроектированного кулачка и толкателясоответствует требуемым от них условиям и обеспечивает нормальную работупрограммного механизма.
3 Расчет храпового механизма
3.1 Расчет храповика
Храповые механизмы используются для преобразования колебательногодвижения ведущего звена во вращательное с остановками ведомого звена. Зубчатыехраповые механизмы применяются при небольших скоростях ведущего звена, т.к.включение сопровождается жесткими ударами собачки о зубья храпового колеса.
Выбираем храповое колесо с профилем нормального исполнения:
/>
Рис.4 Храповое колесо
На рис.4 g- угол впадин (g=550-600).
d — шаговый угол (это минимальный угол поворотахрапового колеса за один ход собачки).
Ход толкающей пружины: xm=5 мм (Т.3),
Наружный диаметр колеса: Dн=43,2 мм [5]
Число зубьев храпового колеса: z=72
Модуль находим по формуле:
m/>,(37)
где М – крутящий момент на валу (М=19,26)
m=0,64.
Найдем высоту зуба h храповика:
/> [2](38)
(из справочника конструктора точного приборостроения />)
h=0,804.
Наименьший угол поворота t:
t=2p/z,(39)
t=50
Шаг храпового колеса t:
/>(40)
t=2,51 мм.
Расчет храпового механизма
Ширина храпового колеса b:
b=mx,(41)
где x=1,5-4, b=2.4 мм.
Угол при головке толкателя принимаем />. Материал, из которогоизготавливается храповое колесо и собачки принимаем Ст 20Х (HRC 45…52). Допускаемоенапряжение на изгиб [s]и=80 Н/мм2.Допустимое удельное линейное давление на единичную длину контакта зуба [p]=400 Н/мм. Тогдадопустимый момент на валу храпового колеса получим из неравенства:
/>(42)
/>
Окружное усилие р:
/>(43)
р=120 Н/мм.
3.2 Расчет храпового колеса на прочность
Расчет храпового колеса на прочность заключается в проверке наизгиб осей собачек (толкающей и стопорной) и в ограничении удельного давления наповерхности контакта собачек с осью и зубьями храпового колеса.
Расчетный шаг зубьев:
tрас=р/[р],(44)
tрас=0,3 мм
Действительный шаг зубьев:
tдейс=3,2 мм.
tрас=0,3 мм/>tдейс=3,2 мм. –
условие выполняется. Таким образом, после произведенного расчетана прочность можно сделать вывод, что выбранное храповое колесо работоспособнои имеет достаточный запас прочности для заданного количества часов работы.
3.3 Расчет толкающейсобачки
Прогиб от поперечной силы =0, прогиб от деформации пружины навысоту зуба.
Момент на валу храповика складывается из 2 моментов:
Мв=Мдв+Мтр.хр,(45)/> />
где Мдв — крутящий момент, который необходимо сообщить храповику,
Мтр.хр – момент, который необходимо приложить кхраповому колесу, чтобы преодолеть силы трения в храповом колесе.
Рис.5
Мдв= Мчерв=19,26 Н (из силового расчета)
Мтр.хр= Мдвfrхр,(46)
rхр – радиус храпового колеса, rхр=Dн/2=23,04 мм,
Мтр.хр=79,87 Н,
Мв=99,13 Н.
Сила, с которой храповое колесо действует на толкающую собачку:
Fд= Мв/rхр(47)
Fд=4,2 Н.
Примем длину толкающей собачки l=25 мм, а ширину b=1,5 мм. Толщину собачкиопределяем по формуле:
/>(48)
/> - прогиб собачки, равный высотезуба храпового колеса, />=0,804 мм.
/>(49)
h=1,019 мм.
Проверим толкающую собачку на устойчивость, используя формулуЭйлера:
/>(50)
/>(51)
В нашем случае зацепление />=2, тогда
/>
Т.к. условие Fд=4,3Н
Расчет жесткости толкающей собачки:
/>(52)
k=133,319 Н/мм.3.4 Расчетстопорной собачки
Производится как расчет плоских пружин [5, c.150].
Для предварительного реверса механизма во избежание обратногоповорота храпового колеса, применяют стопорную собачку.
Пусть материал собачки Ст 20Х (HRC 42…52)
/>
Рассчитаем толщину собачки:
/>,(53)
здесь /> - прогиб, в нашем случае равенвысоте зуба храпового колеса, />=0,804 мм.
l – длина стопорной собачки, l=25 мм.
h=1,073 мм.
Момент трения, создаваемый собачкой на валу
M=Pfrхр,(54)
F=0,18- коэффициент трения
М из расчета червяка, М=Мн=1,028 Н.
Р – окружное усилие
/>(55)
Р=0,26 Н.
Ширину собачки определим по формуле:
/>(56)
b=0,048 мм.
Расчет жесткости стопорной собачки:
/>(57)
k=4,981 Н/мм.
4 Расчет червячного механизма
Применение червячной передачи в данном механизме обусловленоследующими достоинствами первой:
Возможность получения больших передаточных отношений в одной паре.
Плавность зацепления и бесшумность работы.
Высокая точность передачи.
4.1 Кинематический расчет червячной передачи
Расчет передаточного числа червячной передачи.
Отрабатываемое шаговым двигателем время:
t=6500/20=225 c.
Высокая точность передачи. />
Скорость входного звена храповогомеханизма:ω1=20τ,
τ –наименьший угол поворота
t=2p/z, z – число зубьевхраповика, z=72.
t=50
w1=100 град/с.
Передаточноеотношение: j=w2/w1=0,01107.
Передаточноечисло i=1/j=89,93=90.
4.2Расчет модуля червячной передачи
Скоростьскольжения определяется по формуле:
/>(58)
где n1– частота вращениячервяка [об/мин].
Т1– вращающий момент на колесе [Нмм].
n1=w1=100 град/с=0,36 об/с.Будем считать, что вращающиймомент на валу колеса не превышает 150 Нмм />
/>
Материал длячервяка выбираем Ст 45с закалкой не менее 45 и последующим шлифованием, т.к. />, то материалколеса С4-21-40.
Т.к. червякрассчитан на длительную работу, то запускаемое контактное напряжение (зубьевчервяка и червячного колеса) [sн]=100 МПа.
Определяеммежосевое расстояние из условий контактной выносливости:
/>[1, c.203](59)
где q- коэффициент диаметрачервяка, который выбираем в зависимости от числового значения Т2.
И т.к. Т2
k – коэффициент нагрузки, k= kD kk.
kD – коэффициент динамическойнагрузки
kk — коэффициентконцентрации нагрузки.
Т.к. vs
/>
Модульподсчитаем по формуле:
/>(60)
m=0,27.
Принимаем поГОСТ 19672-74 m=0,3.
В связи свыбранным окончательно значением межосевого расстояния аv:
/>(61)
аv=15,9 мм.
4.3 Расчет червячной передачи
Червячные передачи применяют в приборах и машинах различногоназначения при перекрещивающихся осях ведущего и ведомого колеса валиков, когдатребуется осуществить передаточное отношение i12=7-10, редко до 360 иболее.
В основном сечении витки червяка имеют форму зубчатой рейки состандартным модулем, которая находится в зацеплении с зубчатым колесом. Длянормальной работы передачи необходимо, чтобы осевой шаг червяка и окружной шагколеса были равны: p=pm. В червячной передаче ведущим звеном обычно является червякчисло заходов которого принимают z1=1-4. Число зубьев колеса следует принимать z2>26, т.к. при z2
4.3.1 Исходные данные
Расчетный модуль червяка: m=0,3;
Передаточное число: i=90;
Число заходов червяка: z1=1
Число зубьев червячного колеса: z2=90;
Коэффициент диаметра червяка: q=16;
Межосевое расстояние: av=15,9 мм.
Вид червяка Архимеда (2А) с углом профиля в осевом сечении витка.
Исходный червяк по ГОСТ 19036-73.
Коэффициент расчетной толщины: S*=0,5p=1,57;
Коэффициент высоты головки: />;
Коэффициент радиуса кривизны переходной кривой: />;
Угол охвата: d=550.
4.3.2 Расчет геометрических параметров [5т.2с.39]
Коэффициент смещения червяка:
/>(62)
x=0
Делительный диаметр червяка:
/>(63)
d1=4,8 мм.
Делительный диаметр колеса:
/>(64)
d2=27 мм.
Начальный диаметр колеса:
/>(65)
/>
Делительный угол подъема g :
/>(66)
g=3025’.
Начальный угол подъема gw :
/>(67)
gw=3038’.
Коэффициент высоты витка:
h*=2+0,2cosg,(68)
h*=2,199.
Основной угол подъема gB :
gB=accos(cosaxcosg),(69)
gB=20023’.
Высота головки витка червяка:
ha1=ha*m,(70)
ha1=0,3 мм.
Высота витка червяка:
h1=h*m,(71)
h1=0,659 мм.
Диаметр внешних витков червяка:
da1=d1+2(ha*+x)m,(72)
da1=5,4 мм.
Диаметр вершин зубьев колеса:
da2=d2+2ha*m,(72)
da1=27,6 мм.
Наибольший диаметр червячного колеса:
/>(73)
/>
Радиус кривизны переходной кривой червяка:
/>(75)
/>
Длина нарезной части червяка:
/>(76)
/>
Ширина венца червячного колеса ba :
рекомендуется принимать ba/>
ba/> мм, таким образом, пустьba=4 мм.
Расчетный шаг червяка:
p1=pm,(77)
p1=0,942.
Ход витка:
pz1= p1z1(78)
pz1=0,942
Делительная толщина по хорде витка червяка:
/>(79)
/>
Высота до хорды витка /> :
/>(80)
/>
4.4 Точность червячной передачи
Точность изготовления червячных механизмов и их элементоврегламентирована СТ СЭВ 1513-79 (для />).
В системах управления и регулирования, в точных приборах применяютзубчатые механизмы 7-й степени точности (точные). Основными причинами,влияющими на точность кинематических цепей с червячными передачами являютсязазоры в кинематических парах, погрешности изготовления деталей и сборкимеханизма, а также силовые и температурные деформации деталей.
Произведем расчет ошибки мертвого хода.
Мертвый ход является следствием наличия зазоров в кинематических парахмеханизма и упругих деформаций его деталей (упругий мертвый ход). Он понижаетточность механизма, способствует увеличению динамических нагрузок, появлениювибрации и шума.
Мертвый ход на валу червячного колеса:
/>(81)
где R1 — радиус делительной окружности колеса;
g — угол подъема винтовой линии червяка.
/>(82)
/>наибольший вероятный боковой зазормежду зубьями колеса и витками червяка.
R2=0,5mz2,(83)
R2=13,5 мм.
Для m=0,4, межосевого расстояния av=18,8 мм, и допуска H7 выбираем по гост9178-81
/>
/>
Мертвый ход на валу червяка:
/>
/>
4.5 Силовой расчет червячной передачи
Пусть к валу колеса приложен крутящий момент.Нормальная сила N приложена в полюсе зацепления. Разложим силу N, такимобразом, чтобы получить взаимно перпендикулярные силы: окружные P12, P21, радиальные Q12, Q21 и осевые T12, T21.
Окружная сила на червяке P21 равна осевой T21 на колесе:
P21= T21=2Мк/d2,(84)
Мк — крутящий момент
P21= T21=1,426 H
Радиальные силы на червяке и колесе Q12, Q21 равны между собой, нонаправлены в противоположные стороны:
Q12=Q21= P12tga(85)
Q12=Q21=0,53 H.
a -угол профиля в осевом сечении.
Осевая сила на колесе T12 равна окружной силе на червяке P21, но направлена впротивоположную сторону:
P21= T12= P12tg(g+j)(86)
g=50, j=3,4160
T12=0,2059 H.
Нормальная сила:
/>(87)
/>
Расчетная нагрузка
При расчете зубьев колеса на прочность расчетная удельная нагрузкаопределяется по формуле:
/>(88)
kk — коэффициент концентрации нагрузки, kk=1;
kD — коэффициент динамичности нагрузки.
Т.к. vs
d2=z2m=27 мм,
d1=qm=4.8 мм,
Pp=0,267 H.
Удельная нагрузка:
p=/>(89)
p=0.267 H.
4.6 Расчет зубьев на контактную прочность
Преобразуем формулу Герца />, взяв ее затеоретическую основу, в соответствии с геометрическими особенностями червячногозацепления.
/>(90)
где /> - приведенный радиус кривизны вточке контакта, равный /> - радиусу кривизны профиля зубаколеса.
Т.о., получаем формулу для контактного напряжения:
/>(91)
E — приведенный радиус кривизны для червяка.
/>допускаемое контактное напряжение.
/> [1, с.202] с учетом материалачервяка Сталь HRC 45, тогда />
Таким образом, />
4.7 Расчет зубьев червяка на изгиб
Для этого расчета используем в качествеисходной формулу для косозубых колес с поправками:
/>(92)
y — коэффициент формы зубьев ( выбираем из таблицы 10.6 [1] с.179).
y =0.567 для z2=90.
/>
/>
Таким образом, />
4.8 КПД зацепления червячной передачи
Коэффициент полезного действия определим поформуле: [4, с.282]
/>(93)
где с — поправочный коэффициент.
/>(94)
N- нормальная сила, действующая на зуб колеса:
/>
g — угол подъема витка, g=3,4160
j — приведенный угол трения, j=50
/>
Таким образом, подсчитаем момент на валу червяка:
/>(95)
/>
5 Расчет контактной пары
Зададимся параметрами для нижней пружиныконтактной пары. Эта пружина является плоской.
Ширина пружины: b=5мм;
Контактное усилие: р=5Н;
Прогиб пружины: l=1мм;
Высота пружины: h=0,2мм;
Рис.6
/>
В качестве материала для контактной пары используем латунь: ЛАЖ Мц66-6-3-2 (по ГОСТ 11711-72) предел прочности: sB=705Н/мм2=705 МПа.
Модуль упругости: E=10,3/>Н/мм2.
Допускаемое напряжение на изгиб: [s]и=sB/k;
k-запас коэффициента прочности. Для пружин с малым радиусом изгиба k=3-4
Пусть k=3 => [s]и=235 Н/мм2.
Выберем ширину пружины: b=5мм Для большинства пружин отношение b/h=m находится в пределах10-50. Пусть примем m=10, тогда толщина пружины: h=0,5мм
Длину пружины lопрелелим из уравнения жесткости:
/>(96)
/>[1, с.342](97)
l=22 мм.
Условие прочности пружины будет выполняться, если pmax>p (p=0,4 H).
Максимальную допусимую силу, деформирующую пружину pmax найдем уравненияпрочности:
/>(98)
/>
/>
Момент трения, возникший при скольжении нижней пружины по диску:
Мтр=RfD,(99)
где R- радиус диска (Принимаем R=20 мм),
f — коэффициент трения между материалом диска и мотериалом нижнейпружины контактной пары (в нашем случае это сталь с f=0,15), т.о. получаем:
Мтр=0,3 Hмм.
Т.к. в нашем механизме две контактные пары, то общий моменттрения, создаваемый контактными парами:
Мтр2=2 Мтр=0,6 Hмм.
Рассчитаем жесткость пружины контактной пары по формуле:
/>(100)
k=0,0967/>Н/мм
6 Расчет валов и опор
6.1 Расчет вторичного вала/> />
Рассмотрим вал с управляющими кулачками. Представимвал в виде балки, расположенных на двух неподвижных опорах в точках А и В.
Рис.7 Силовая схема вала
На рис.10 POX, POY — составляющие нормальной реакции кулачка;
PAX, PY, PBX, PBY – составляющие реакции опор А и В.
Мкр — крутящий момент на валу, Мкр=19,26Нмм.
Произведем расчет вала на кручение и изгиб.
Проекция сил на плоскость YOZ :
/>(101)
POY=Q12=0,53 H,
RBY=(a+b) POY/b(102)
RBY=0,759 H
RAY= POY — RBY,(103)
RAY=-0,229 H.
В плоскости XOY:
/>(104)
POX=T21=0,2059 H,
RBX=0,3088 H
RAX= POX — RBX,(105)
RAX=-0,10295 H.
Реакция опор:
/>(106)
/>
/>(107)
/>
Максимальный изгибающий момент в плоскости YOZ:
МиBY=POXa,(109)
МиBY=26,04Нмм,
Максимальный изгибающий момент в плоскости XOY:
Ми BX=POXa,(109)
Ми BX=10,11 Нмм., тогда
Ми B=/>(110)
Ми B=27,93 Hм.
Расчет на прочность вала ведется из условийпрочности на кручение по заданному крутящему моменту.
Из этих условий выбирают диаметр вала:
/>(111)
В качестве допускаемого напряжения принимают пониженноедопускаемое напряжение на кручение:[t]=20-30 МПа
Крутящий момент вала определяется как:
Мкр= Мкул+ Мтр.к+ Ми,
где Мкул — момент кулачка, М=19,26 Нмм.,
Мтр.к. — момент трения контактной пары, Мтр.к.=0,3Нмм,
Ми — момент червячной пары, Ми=1,028 Нмм.
Тогда: Мкр=20,588 Нмм.
d=1,602 мм.
По ГОСТ 6636-69 принимаем диаметр вала равным 3 мм.
Расчет вала на жесткость проводим дляограничения деформаций изгиба и кручения.
Если дан прогиб /> (112)
где l– максимальное расстояние между опорами вала, l=60 мм, то
/>
/>(113)
6.2 Расчетпервичного вала на прочность
Расчет первичного валаведется из условий прочности на кручение по заданному крутящему моменту
Из этих условий выбирают диаметр вала:
В качестве допускаемого напряжения принимаем пониженноедопускаемое напряжение на кручение: :[t]=20-30 МПа
Крутящий момент Мк вала определяется как:
Мк=Ми+Мх.к.,(114)
где Ми –момент червяка, Ми=1,028 Нмм.
Мх.к. – момент на храповом колесе.
Мх.к.=19,26 Нмм
d=1,594 мм.
По ГОСТ 6636-69 принимаем диаметр вала, равным4,5 мм.
d=4,5 мм.
6.3 Выбор и расчет шарикоподшипников
Выберем для выходного вала по ГОСТ 8338-75 шариковые радиальныеоднорядные подшипники сверхлегкой серии диаметров 9 следующих типов:
Для правой опоры — 1000098 со следующими параметрам:
— внутренний диаметр d=8 мм.
— наружный диаметр D=19 мм.
— ширина колец b=6 мм.
— диаметр шариков dw=3 мм.
— статическаягрузоподъемность С0=885 Н.
Для левой опоры — 1000093 со следующими параметрам:
1. внутреннийдиаметр d=3мм;
2. наружныйдиаметр D=8мм;
3. ширинуколес b=3мм;
4. диаметршариков dw=1,59 мм;
5. числошариков z=6.
Т.к. вал вращается со скоростью 1 оборот за 233 с, следовательнодостаточно провести расчет на статическую грузоподъемность:
C0=fSP0,(115)
где fS — коэффициент надежности при статическом нагружении, fS=1
P0 — эквивалентная статическая нагрузка.
C0=P0
Рассчитаем эквивалентную статическую нагрузку:
P01=X0Fr+Y0FA,(116)
P02=Fr,(117)
Р0определяется как наибольшая из равенств Р01и Р02, где:
X0 — коэффициент радиальной статической нагрузки,
Y0 — коэффициент осевой статической нагрузки,
Fr — радиальная сила, действующая на подшипник,
FA — осевая сила, действующая на подшипник.
X0=0,5;Y0=0,43;
Fr=Q21=0,53 H;
FA=T21=1,426 H.
Р01=0,878 H;
Р02=0,53 H.
Следовательно, Р0=0,878 Н,
Тогда С0= Р0=0,878 Н.
Из справочника конструктора-машиностроителя [5] [С0]=196Н для данного подшипника. Таким образом, С0
Как видно, статическая нагрузка не превышает статической грузоподъемности,из чего делаем вывод о том, что подшипники выбраны верно.
Выводы
1.Конструкция спроектированного механизма с параметрами,соответствующими условиям геометрических расчетов, обеспечивает нормальнуюработу механизма в целом.
2.Передаточное отношение червячной передачи j=0,01107 обеспечиваетудовлетворение требованием кинематики работы кулачкового и храповогомеханизмов.
3.Приведенные в записке расчеты усилий, моментов, действующих наэлементы механизмов, а также расчеты напряжений деталей в критических сечениях,указывают на работоспособность спроектированного механизма с точки зрениядинамики.
Список используемой литературы
1. ПервицкийЮ.Д. Расчет и конструирование точных механизмов. -Л.: «Машиностроение». 1976.—-- 456 с.
2. ВопилкинЕ.А. Расчет и конструирование механизмов, приборов и систем. — М.: ВысшаяШкола. 1980.-463с.
3. ТищенкоО.Ф. и др. Элементы приборных устройств. Курсовое проектирование. В 2х частях.Под ред. Тищенко О.Ф. — М.: Высшая Школа. 1978. 41 -328 с. и 42 -232 с.
4. КрасковскийЕ.А., Дружинин Ю.А. и др. Расчет и конструирование механизмов приборов ивычислительных систем –М.: Высшая Школа. 1983.-431с.
5. АндреевВ.И. Справочник конструктора-машиностроителя – М.: «Машиностроение».1978.Т1,2,3 – 728с., — 559с., — 557с.
6. Машиностроительныематериалы (краткий справочник) / под ред. Раскатова В.М. – М.: «Машиностроение»1980. –511с.
7. ЗаплетохинВ.А. Конструирование деталей механических устройств. — Л.: «Машиностроение».1990.-672с.
8. Подшипникикачения: Справочник-каталог/ Под ред. В.Н. Нарышкина и Р.В. Коросташевского.-М.: Машиностроение, 1984. -280 с.
9. ГОСТ2.703-68 Правила выполнения кинематических схем.
10. С.А.Попов, Г.А. Тимофеев Курсовое проектирование по теории механизмов и механикемашин. – М.: Высшая школа.2002.-411с.
11. Подредакцией О.А. Ряховского. Детали машин. Том-8. М.: Издательство МГТУ имениН.Э. Баумана. 2002.-543с.
Заключение
Данная пояснительная записка дает достаточно полное представлениео конструкции, принципе действия, а также о методике расчета основных узловпрограммного механизма. В результате проделанных вычислений были рассчитаны:кулачек с профилем спирали Архимеда с ходом толкателя 5 мм минимальным имаксимальным радиусами 18 и 23 мм соответственно; пружина цилиндрическая сдиаметром проволоки 0,9 мм числом витков рабочих и опорных 4 и 2соответственно; толкатель с диаметром 3,1 мм; храповой механизм с наружнымдиаметром 42,3 мм, числом зубьев 72 и модулем 0,64; стопорная и толкающаясобачки с длинной 25 мм шириной 1,5 мм; червячная передача с модулем 0,3,числом зубьев червячного колеса 90 и числом заходов червяка равным 1;контактная пара а также первичный и вторичный валы. Расчет велся на основесоответствующей литературы, а также с активным применением вычислительнойтехники.
Основной целью данного курсового проекта является ознакомление сосновными приемами проектирования гироскопических устройств, а также вчастности, с конструктивными особенностями, принципом работы и т.д. последних.
Приложение
Программа расчета формы профиля кулачка. Язык программирования:Паскаль.
program fist;
uses Crt;
vargm,smax,alpha,gamma,q,rmin,rminr,r,step,stepst,phi,phistireal;
i: integer;
begin
ClrScr;
write ('Введите ход толкателя Smax:'):readln(smax);
write ('Введите угол давления alpha:');readln(alpha);
write ('Введите минимальный радиус Rmin:'); read(rmin);
rmmr:=:q*cos(alpha/l 80*pi)/sin(alpha/l 80*pi);
f rmin
else writeln (' Rmin выоран верно.'),
write ('Введите рабочий угол gamma:');readln(gamma); gm:=gamma/180*pi; q:=smax/(gm);
write ('Введите шаг step:'):readln(step);
r:=rmin;
ClrScr;
Writeln( Угол',' ': 14,'Радиус R');
stepst:=step/180*pi;
phi:=0; phist:=0;i:=0;
repeat
writeln (phi:9:l," :9,r:9:l);
phi:=phi+step; phist:=phist+stepst;
r:=rmin+q*phist;
i:=i+l; if i=20 then begin readln; ClrScr; i:=0; end;
until phi>gamma; q:=smax/(2*pi-gm-stepst);
phist:=0; repeat
phi:=phi+step; phist:=phist+stepst;
r:=rmin+smax-q*phist;
writeln (phi:9:1.":9,r:9:b;
i:=i+l; if i=20 then begin readln; ClrScr; i:=0; end;
until phi>359;
readln
end.