Реферат по предмету "Производство"


Фрактальная размерность стримерных каналов

Балханов Василий Карлович
Бурятский НЦ СО РАН, г. Улан-Удэ
Тремя независимыми методами измерена фрактальная размерность плоскостной проекции стримерных каналов. На основе фрактального исчисления скейлинговые показатели полной длины внутри выделенной области и числа ветвлений стримерных каналов выражаются через фрактальную размерность.
Введение. В последнее время активизировалось изучение стримерных разрядов — сети каналов, возникающих при электрическом пробое в диэлектриках (воздухе, полимерных изоляторах, фотоэмульсии) [1,2]. Изучение стало особенно актуальным в связи с использование кабелей с полимерной изоляцией [2]. Однако отмечается, что количественной теории, описывающей рост ветвления электрического пробоя, до сих пор нет. В статье геометрическую конфигурацию разрядных каналов, рост числа каналов, их ветвление предложено рассматривать как фрактальные разветвленные объекты и описывать их количественно с помощью понятия фрактальной размерности [3-5]. Электрический пробой — видимый в оптическом диапазоне стримерный канал в диэлектриках, образованный локально растущим электрическим полем. Пробой возникает, когда на небольшой участок удаленной от заряженной подложки подается такое высокое напряжение, что происходит собственно электрический пробой. Под такое определение подходят разряды молний в воздухе, частичные разряды в эпоксидной смоле, плазменные структуры в фотоэмульсии. В указанном смысле  стримерные каналы относятся к классу универсальности, зависящие только от двух безразмерных величин: фрактальной размерности и размерности пространства, в котором происходит процесс. М.Д. Носковым и др. [2] прямым измерением, было определено, что фрактальная размерность D  частичных разрядов лежит в пределах 1.45 ¸ 1.55. Н.А. Поповым [1] определялась фрактальная размерность коронного разряда, им получено, что  D = 2.16 0.05. Для разряда молний также измерялась фрактальная размерность, при этом установлено, что на масштабах от десятков метров и выше D = 1. Видим существенное различие в значениях для размерности. В связи с этим в статье тремя независимыми методами измерена фрактальная размерность планового рисунка системы стримерных каналов (рис. 1) [1].
Рис. 1. Система микроразрядов, пересекающих диэлектрическую фотопластинку [1].
Используемые методы являются  результатами фрактального исчисления [6], основы последнего для связности изложения представлены в следующей части. Изложение в статье теории фрактального исчисления также связано с тем, что начиная с первых книг Б. Мандельброта и кончая научными работами последнего времени, пишут "- структуры, обладающие в том  или ином смысле пространственным самоподобием -". Мы дадим замкнутую систему аксиом фрактального исчисления, и теперь не нужно будет говорить  "- в том  или ином смысле -".
Аксиомы фрактального исчисления. Фрактальная геометрия, открытая Б. Мендельбротом 30 лет назад, основывается на экспериментальном факте, что в общем случае длина L произвольной кривой (которая может быть изломана в любой точке) степенным образом зависит от масштаба измерения d :
L = C d 1-D.                                                                     (1)
Здесь С — типичный для фрактальной геометрии размерный множитель, свой для каждой кривой, D — фрактальная размерность. Для обычных, гладких линий D = 1 и получаем «истинную» длину. Если кривая плотно заполняет всю плоскость (простой пример — броуновская траектория), то для нее D = 2. Формулу легко проверить, нарисовав синусоподобную линию и, меняя раствор циркуля, измерить длину такой линии. С появлением формулы Мандельброта (1) сразу же было осознано, что фрактальные линии масштабно — инварианты (самоподобны). Самоподобие означает, что как вся линия, так и любой ее участок обладают одной и той же размерностью. Если линию увеличить в l раз, то для измерения новой длины l L достаточно использовать масштаб, равный  ld, т.е.
l L = C(l d ) 1-D.                                                            (2)
Формулы Мандельброта и условие самоподобия в форме (2) достаточно взять в виде аксиом фрактального исчисления, тогда чисто логическим путем можно получить практически все известные на последнее время результаты. Мы их применим к «разветвленным структурам», к которым относятся и сети стримерных каналов.           
Разветвленные структуры. Для построения разветвленных структур возьмем линию и разрежем ее на множество неравнозначных отрезков. Разбросав эти отрезки по плоскости, мы как раз и получаем пример искомых структур. Проведем в (2) замену обозначений, это аналогично тому, что шестиметровую длину сначала измеряем двухметровым масштабом, укладывая ее три раза. Но можно использовать трехметровый масштаб, прикладывая ее только два раза. Итак, переобозначим l на 1/R, где R считаем линейным размером выделяемой области. Тогда из (2) получаем
L = C×d 1-D×R D. Убрав все неопределенные масштабные множители, находим:
L ~ R D.                                                           (3)
Применение формулы (3) к определению фрактальной размерности разветвленных структур состоит в следующем. На плановом рисунке стримерных каналов выделяется некоторая область (на рис. 1 это окружность радиусом R), и подсчитывается общая длина всех каналов, попадающих в рассматриваемую область. Так мы получаем первые значения L1 и R1. Далее выделяется другая область (чуть больше первоначальной), и после подсчета получаются другие значения L2 и R2. Таким образом, в итоге мы получаем набор значений L и R, по которым методом линейной регрессии строим прямую на осях Ln L и Ln R. Угловой коэффициент будет равняться фрактальной размерности D. Таким образом было установлено, что для стримерных каналов
D = 1.52 0.03.
Для улучшения статистики нами выбирались разные формы областей разбиения — от прямоугольных до круглых, а также менялось и само число таких разбиений.
Здесь мы изложили первый из используемых методов измерения фрактальной размерности. Второй метод измерения состоит в подсчете числа N пересечений ветвлениями стримерных каналов периметра области. На рис. 1 границей выделенной области является окружность радиусом R. Легко сосчитать, что для изображенного на рисунке случая N = 53. Варьируя радиус R, находим, что N и R связаны степенным (скейлинговым) законом:
N  ~ R n,                                                 (4)
с показателем  n  = 1.012 0.05. Аппарат фрактального исчисления [6] позволяет связать n  с размерностью D, именно:
n = 2 (D -1).                                                       (5)
Качественно результат можно обосновать следующим образом.  Для обычных дифференцируемых линий число N не должно зависеть от R, т.е. при  D = 1 должно быть n  = 0. Если линия заполняет всю плоскость, т.е.  D  = 2, то  N  будет квадратично зависеть от области, т.е. n  = 2. Предполагая линейную зависимость между n  и D, приходим к результату (5). При строгом подходе необходимо использовать понятие фрактальной производной, в данном случае от степенной функции (3) с нормирующим множителем 1/R 2:
.
А это и есть формула (4) с показателем (5). Теперь находим D = 1 + n / 2 = 1.506 0.005.
   Приступим к третьему методу измерения величины D. Метод основан на анализе графика на рис. 2 [2], где представлена зависимость роста границы канальных лучей от
Рис. 2  Зависимость длины дендрита от времени роста. Сплошная кривая — эксперимент, штриховая — моделирование.
времени. Пропорционально со временем увеличивается и число ветвлений, т.е. N  ~ t и из (4) следует, что
R ~ t 1/n.                                                  (7)
На интервале времен от 1 мин до 6 мин из рис. 2 следует, что R ~ t 0.943, откуда  n = 1.06 и D = 1.53.
Обсуждение. Тремя независимыми методами получена фрактальная размерность плоскостной проекции стримерных каналов, представленных на рис. 1. Полученные значения 1.53, 1.52 и 1.52 совпадают с данными работы [2]. Согласованность значений для размерности указывает на работоспособность предложенных выше аксиом фрактального исчисления. Подобной рис. 2 имеется и результат в работе [1], где полечен следующий закон для числа ветвления: N ~ R 1.18. Из него следует, что D = 1.59, т.е. близкая к нашим значениям размерность. Из энергетических соображений Н.А. Поповым [1]  приведено D = 2.16, отличие этого значения от 1.59 указывает, что величина D = 2.16 относится только к скейлинговому показателю и еще предстоит задача связать ее с фрактальной размерностью.
Полученный в работах [1,2] и нами усредненный результат D = 1.53 указывает на выполнение закона класса универсальности для электрических разрядов в различных диэлектрических средах. Список литературы
Попов Н.А. Исследование пространственной структуры ветвящихся стримерных каналов коронного разряда // Физика плазмы, 2002, том 28, ¦ 7, с. 664-672.
Носков М.Д., Малиновский А.С., Закк М., Шваб А.Й. Моделирование роста дендритов и частичных разрядов в эпоксидной смоле // ЖТФ, 2002, том 72, вып. 2, с. 121-128.
Федер Е. Фракталы. — М.: Мир, 1991, 254 с.
Шредер М. Фракталы, хаос, степенные законы. — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001, 528 с.
Божокин С.В., Паршин Д.А. Фракталы и мультифракталы. — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001, 128 с.
Балханов В.К. Введение в теорию фрактального исчисления. — Улан-Удэ.: Изд. Бурятского гос. ун-та, 2001, 58 с.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Особенности подготовки и ведения боевых действий по овладению городами Гудермеса иШали
Реферат Hope Foundation Essay Research Paper Dear North
Реферат «Знаменитые судебные процессы в России во второй половине XIX века»
Реферат Собрание-совещание в управленческой деятельности руковолителя
Реферат Нерон. Жизнь и судьба
Реферат Происхождение автомобиля "Шкода"
Реферат Защита рабочих и служащих объектов в чрезвычайных ситуациях
Реферат Организация работы ресторана
Реферат Строение клетки
Реферат Элементарное доказательство Великой теоремы Ферма
Реферат Роль культурно-досуговой деятельности в системе социализирующих личность факторов
Реферат ЄС мета, склад, структура та механізм наднаціонального регулювання
Реферат «Системы автоматического управления» мгту им. Н. Э. Баумана
Реферат Сложное предложение с сочинительными и подчинительными союзами в английском языке
Реферат Роль финансов в экономике государства