--PAGE_BREAK--Предварительный подогрев необходим в первую очередь для предупреждения образования трещин и выполняется в газовых печах, нагревательных колодцах или пламенем многопламенной горелки.
Высоколегированные стали кислородной резке не поддаются из-за образования в процессе резки тугоплавких оксидов, которые с трудом удаляются из полости реза (разреза). Высокоуглеродистые, высоколегированные аустенистные, высокохромистые стали не поддаются газокислородной резке. В этом случае применяют кислородно-флюсовую или плазменно-дуговую резку.
Для резки необходим чистый кислород; даже небольшое количество примесей заметно снижает ей скорость и значительно повышает расход кислорода. В качестве горючего дл подогревающего пламени при кислородной резке можно использовать любой промышленный горючий газ, а также бензин, бензол, керосин и т.д.
Чугун не режется вследствие низкой температуры плавления и высокой температуры начала горения; он горит в кислороде в расплавленном состоянии, что исключает возможность получения качественного реза.
Цветные металлы также не поддаются процессу резки из-за высокой температуры плавления их оксидов и значительной теплопроводности.
Медь не режется вследствие высокой теплопроводности и незначительного количества теплоты, выделяющейся при её сгорании. Медь и её сплавы можно обрабатывать кислородно-флюсовой резкой.
Алюминий не режется по причине чрезмерной тугоплавкости образующегося оксида. Для алюминия и его сплавов применяют плазменную дуговую резку.
Показатели режима резки. Основными показателями режима резки являются: мощность пламени, давление режущего кислорода и скорость резки. От их выбора во многом зависят производительность и качество резки.
Мощность пламени определяется толщиной разрезаемого металла, составом и состоянием стали (прокат или поковка). При ручной резке из-за неравномерности перемещения резака обычно приходится в 1,2-2 раза увеличивать мощность пламени по сравнению с машинной. При резке литья следует повышать мощность пламени в 3-4 раза, так как поверхность отливок, как правило, покрыта песком и пригаром.
Для резки стали толщиной до 300 мм применяют нормальное пламя, а толщиной свыше 400 мм – подогревающее пламя с избытком ацетилена (науглероживающее) для увеличения длины факела и прогрева нижней части реза.
Давление режущего кислорода зависит от толщины разрезаемого металла, формы режущего сопла и чистоты кислорода. При повышении давления сверх нормативного скорость резки уменьшается, и качество поверхности реза ухудшается. Соответственно увеличивается расход кислорода.
Скорость резки должна соответствовать скорости окисления металла по толщине разрезаемого листа. Судить о правильном выборе скорости резки можно по следующим признакам. При замедленной скорости происходит оплавление верхних кромок разрезаемого листа и расплавленные шлаки (оксиды) вылетают из разреза в виде потока искр в направлении резки.
Слишком большая скорость характеризуется слабым вылетом пучка искр из разреза в сторону, обратную направлению резки, и значительным «отставанием» линий реза от вертикали. Возможно непрорезаение металла. При нормальной скорости резки поток искр и шлака с обратной стороны разрезаемого листа сравнительно небольшой и направлен почти параллельно кислородной струе.
Подготовка поверхности. Перед резкой поверхность разрезаемого металла должна быть тщательно очищена от окалины, ржавчины, краски и грязи. Для ручной резки достаточно очистить пламенем резака место реза в виде узкой полосы (30-50 мм) с последующей зачисткой металлической щеткой. Перед механизированной резкой на стационарных машинах листы обычно правят на листоправильных вальцах и очищают всю поверхность либо химическим, либо механическим (дробеструйной обработкой) путем.
Листы укладываются горизонтально на опоры. Свободное пространство под листом должно составлять половину толщины разрезаемого металла плюс 100мм.
Положение и перемещение резака в процессе резки. Перед началом резки подогревающим пламенем нагревают кромку разрезаемого металла до температуры оплавления и затем включают режущий кислород.
Положение резака в начале резки зависит от толщины разрезаемой стали. При прямолинейной резке листовой стали толщиной до 50 мм резак устанавливается вертикально, а при большой толщине листа – под углом 5о к поверхности торца листа. Затем его наклоняют на 20-30о в сторону, обратную движению резака. Такое положение резака способствует лучшему прогреву металла по толщине и повышению производительности резки. При вырезке фигурных деталей резак должен быть строго перпендикулярен к поверхности разрезаемого металла.
Дляоблегчения резки и ускорения прогрева металла целесообразно делать зарубку зубилом в начальной точке реза.
Пробивка отверстий. Техника пробивки отверстий в листовой стали имеет особенности. При небольшой толщине металла (до 20 мм) и выполнении резки вручную пробивка отверстий внутри контура листа производится резаком. После предварительного нагрева металла до температуры оплавления подогревающее пламя выключается и на время пробивки отверстия с помощью вентиля на резаке включается подача режущего кислорода, после чего пламя вновь зажигается в раскаленном металле. Такая техника пробивки отверстий исключает возможность возникновения хлопков и обратных ударов.
При пробивке отверстий в металле толщиной от 20 до 50 мм лист следует устанавливать в наклонном положении или вертикально для облегчения стекания образующегося шлака.
При пробивке отверстий в металле толщиной более 50мм вначале сверлением выполняется небольшое отверстие.
Машинная резка допускает возможность пробивки отверстий резаками в металле толщиной до 100мм. Для этого после нагрева места пробивки до температуры оплавления медленно увеличивают давление режущего кислорода до требуемого значения с одновременным включением резака (машины), скорость которого должна составлять 150-600 мм/мин. Благодаря такому приёму брызги металла не попадают на торец резака, уменьшается вероятность хлопков и обратных ударов. Отверстия можно пробивать как с контура, так и вблизи его.
В процессе резки расстояние от торца мундштука до металла следует поддерживать постоянным. При ручной резке это достигается использованием специальных тележек, прикрепляемых к головке резака, а при машинной – укладкой листа в строго горизонтальное положение и применением суппортов с плавающей кареткой (обработка листов, не подвергавшихся правке).
В случае резки листов толщиной до 100 мм расстояние от торца мундштука до поверхности разрезаемого металла должно быть на 2 мм больше длины ядра пламени. Прирезке стали толщиной более 100 мм и работе на газах-заменителях ацетилена указанное расстояние увеличивают на 30-40% во избежание перегрева мундштука.
Ручная разделительная кислородная резка.
Резка листов. Ручная разделительная резка применяется для резки листов, поковок профильного проката и скрапа. При резке в качестве горючего газа используется как ацетилен, так и газы-заменители ацетилена (пропан-бутан, природный газ и др.). В последнем случае увеличивается время предварительного подогрева металла до начала процесса резки, поэтому предпочтительнее использовать ацетилен (где это возможно). Резка скрапа преимущественно производится с применением жидкого горючего (керосин, бензин и их смеси).
Для резки листов толщиной от 3 до 300 мм используются универсальные ручные резаки Р2А-01, РЗП-01, а до 800 мм – специализированные резаки типа РЗР-2.
Резка стали малой толщины сопровождается значительным перегревом, оплавлением кромок и короблением разрезаемого металла. При этом на резаках устанавливается внутренний мундштук №0 с минимальным отверстием для режущего кислорода и наружный мундштук №1. Лучшие результаты даёт резка с последовательным расположением подогревающего пламени и режущего кислорода. Резку ведут с максимальной скоростью и минимальной мощностью подогревающего пламени. Мундштук резака наклоняют под углом 15-40о к поверхности реза в сторону, обратную направлению резки.
Перед началом резки нужно положить лист на опоры, очистить место реза и установить на резаке мундштуки в зависимости от толщины разрезаемой стали. Мощность пламени и давления газов (кислорода и горючего) регулируют при открытом вентиле режущего кислорода. Подогрев листа начинается с кромки и длится обычно 3-10 с. Если резку начинают с середины листа, продолжительность подогрева увеличивается в 3-4 раза.
Точность и качество ручной резки зависят от правильного выбора режимов и квалификации резчика. Чтобы повысить точность, резку выполняют по разметке и направляющим (при прямолинейной резке). Качество резки в значительной степени зависит от своевременного пуска режущего кислорода, равномерного перемещения резака и поддержания постоянного расстояния между резаком и поверхностью листа. Для этого используют простейшие приспособления: циркуль для вырезки фланцев и отверстий, тележку для поддержания постоянного расстояния между резаком и поверхностью листа; направляющую линейку или уголок для прямолинейных резов и т. д.
Существуют особые технологические приемы повышения качества ручной резки. К ним относятся, например, безгратовая и пакетная резка.
Безгратовая резка применяется для получения поверхности реза без грата на нижних кромках. При этом используют кислород чистотой не ниже 99.5 и сопло режущего кислорода с расширением на выходе (для резки металла толщиной более 12 мм).
Пакетная резка позволяет получать качественный рез тонких листов (толщиной 1,5-2 мм). Листы складываются в пакет и стягиваются струбцинами. Максимальная толщина каждого листа 8-10 мм, а общая толщина пакета – не более 100 мм. Режимы резки устанавливаются по суммарной толщине пакета, однако скорость ей должна быть несколько ниже, чем для однослойной стали той же толщины.
Пакетную резку можно производить без плотного прилегания листов (с зазорами между ними до 3-4 мм). В этом случае пакет закрепляют с одной стороны и выполняют резку кислородом низкого давления (0,3-0,5 МПа) с рассверливанием горлового канала мундштука на 0,3-04 мм. Облегчает начало процесса резки сборка листов с небольшим сдвигом. Пакетную резку используют и при машинной резке.
Резка поковок и отливов. Производится ручным резаком типа РЗР-2, работающим на пропан-бутане в смеси с кислородом. Этот резак режет поковки и отливки толщиной от 300 до 800 мм. Для обеспечения качественной резки заготовок такой толщины важное значение имеют положение резака и скорость его перемещения. В начале резки резак располагают под прямым углом к разрезаемой поверхности или под углом 5о в сторону, обратную движению. После предварительного подогрева места начала резки и пуска режущего кислорода необходимо убедиться в полном прорезании металла по всей толщине и затем начать перемещение резака. К концу реза следует немного снизить скорость резки и увеличить угол наклона резака в сторону, обратную движению, до 10-15о для обеспечения полного прорезания конечного участка и уменьшения отставания линий реза.
Резка труб. Ручная кислородная резка используется для обрезки торцов труб под сварку, вырезки дефектных участков и отверстий в трубопроводах и т.д. Резка выполняется с использованием в качестве горючего газа ацетилена или газов-заменителей. Трубы можно резать в любых пространственных положениях. Резка труб небольшого диаметра выполняется без их поворота. При резке неповоротных труб большого диаметра резак перемещается по направляющему угольнику, а при резке поворотных труб используются специальные каретки и роликовые стенды.
Скорость резки труб с толщиной стенок 6-12 мм не превышает 800мм/мин. Для повышения скорости резки резак устанавливают под углом 15-25о к касательной в точке пересечения оси резака с поверхностью трубы. При этом увеличивается зона взаимодействия кислорода с металлом и образующийся в процессе резки шлак нагревает лежащий впереди участок трубы, благодаря чему улучшается окисление металла. Однако время предварительного подогрева поверхности трубы до температуры воспламенения увеличивается до 60-70с. Чтобы избежать этого, необходимо ввести в зону реакции стальной пруток (или железный порошок). В этом случае средняя скорость резки труб диаметром 300-1020 мм с толщиной стенки до 12 мм составляет 1,5-2,5 м/мин, т.е. повышается в 2-3 раза по сравнению с резкой при перпендикулярном расположении резака.
Резка производится универсальными или вставными резаками. Режимы её устанавливаются в зависимости от толщины металла согласно паспортным характеристикам резаков.
Резка профильного проката. Последовательность операций резки зависит от профиля разрезаемого металла. Резку уголка начинают с кромки полки. Резку двутавровых балок начинают с резки полок, а затем прорезают стойку.
Поверхностная кислородная резка.
Поверхностной кислородной резкой называют процесс снятия слоя металла кислородной струёй. Эта резка отличается от разделительной тем, что вместо сквозного разреза на поверхности обрабатываемого металла образуется канавка. Профиль её зависит от формы и размеров выходного канала мундштука для режущего кислорода, а также режимов резки и расположения (угол наклона) резака относительно листа.
Суть процессов разделительной и поверхностной резки одинакова. Однако в последнем случае струя кислорода направляется под острым углом к поверхности металла и быстро перемещается. Источником нагрева металла является не только подогревающее пламя резака, но и расплавленный шлак, который, растекаясь по поверхности листа вдоль линии реза, подогревает нижележащие слои металла. Следовательно, при поверхностной резке эффективнее используется теплота, выделяемая в результате окисления железа, чем при разделительной. В результате этого скорость поверхностной резки достигает 2-4 м/мин, соответственно повышается и производительность труда. Ручным резаком удаляется до 40 кг/ч металла, в то время как при пневматической вырубке – не более 2-3 кг/ч.
Поверхностная резка широко применяется в металлургической промышленности и сварочном производстве. В сварочном производстве поверхностная резка используется для вырезки дефектных участков швов и при ремонтных работах.
Ручная резка выполняется резаками типов РПК и РПА, а машинная с помощью машин огневой зачистки (МОЗ). Они удаляют слои металла толщиной от 0,5 до 3,5 мм одновременно с четырех сторон сляба или блюма. Производительность сплошной зачистки проката велика и составляет 600-1000 кг/ч в зависимости от сортамента обрабатываемой стали. Скорость движения металла при зачистке достигает 45-50 м/мин.
Ручная зачистка начинается с прогрева начального участка до температуры воспламенения металла. При включении режущего кислорода образуется очаг горения металла и обеспечивается устойчивый процесс зачистки за счет равномерного перемещения резака вдоль линии реза. При нагреве резак обычно располагается под углом 70-80о к поверхности. В момент подачи режущего кислорода его наклоняют на 15-45о.
При прочих равных условиях глубина и ширина канавки зависят от скорости резки и с её увеличением уменьшаются. Глубина канавки увеличивается с возрастанием угла наклона мундштука резака, повышением давления режущего кислорода и уменьшением скорости резки. Ширина канавки определяется диаметром канала режущей струи кислорода. Чтобы избежать появления закатов на поверхности заготовки, ширина канавки должна быть в 5-7 раз больше её глубины.
При необходимости зачистки дефектов на значительной поверхности обычно производят резку «ёлочкой» за один или несколько проходов, придавая резаку колебательные движения. Расстояние между мундштуком и зачищаемым металлом должно быть постоянным.
Поверхностная кислородная резка может быть использована для зачистки дефектов на поверхности высоколегированных сталей. В этом случае следует применять кислородно-флюсовую резку в сочетании с поверхностной, используя резаки типа РПА или другие с кислородно-флюсовой оснасткой и установку типа УГПР.
Свойства зоны термического влияния при резке.
В процессе газокислородной резки в разрезаемый металл вводится значительное количество теплоты. Нагрев происходит неравномерно и распределяется по кромке реза и сравнительно узкой полосе металла, прилегающей к резу. Это создаёт напряжения в металле и деформирует его, искажая геометрическую форму. Кромка реза несколько укорачивается и в прилегающем слое возникают растягивающие напряжения, которые могут быть полностью сняты лишь отжигом с равномерным нагревом всей детали. Напряжения и деформации также уменьшаются при механической обработке (строгание или фрезерование кромки реза). Полоса металла шириной 2-5 мм, прилегающая к резу, быстро нагревается выше критических температур, а затем быстро охлаждается вследствие отвода теплоты в холодную основную массу металла. Происходит термообработка металла, соответствующая закалке.
продолжение
--PAGE_BREAK--Степень закалки, образующиеся структуры и максимальная твердость кромки реза определяются в первую очередь химической обработке. Простые углеродистые стали, содержащие менее 0,3 % углерода, при резке почти не закаливаются. У легированных сталей и сталей с повышенным содержанием углерода часто значительно повышается твердость по кромке реза. Металл нагревается до наивысшей температуры у поверхности кромок, где обычно происходит полное аустенитное превращение, наблюдаются максимальные изменения структуры и твердости. В низкоуглеродистых сталях образуется сорбитная структура; по мере повышения содержания углерода и легирующих элементов в стали появляется троостит, а затем и мартенсит, свидетельствующий о высокой твердости и хрупкости металла. По мере удаления от кромки изменения структуры постепенно становятся менее заметными, твердость уменьшается и на расстоянии несколько миллиметров от кромки основной металл сохраняет первоначальную структуру.
Ширина зоны термического влияния при кислородной резке зависит от химического состава и толщины разрезаемого металла, возрастая вместе с ней. При резке низкоуглеродистой стали толщиной 10 мм ширина зоны влияния не превышает 1 мм; при толщине 150-200 мм ширина этой зоны составляет около 3 мм. Стали легированные и с повышенным содержанием углерода толщиной 100 мм могут иметь зону термического влияния шириной до 6 мм.
Исследования структуры и механических свойств металла показали, что кислородная резка меньше изменяет свойства кромки, чем механическая резка ножницами и фрикционной пилой. Для низкоуглеродистой стали нет необходимости удалять поверхностный слой металла с кромки реза; при последующей сварке достаточно очистить кромки от окалины. После резки сталей, чувствительных к термической обработке, иногда приходится прибегать к дополнительным операциям: механическому строганию кромки, местному отжигу. Особенно опасным является возникновение мелких трещин в зоне влияния, что иногда наблюдается у сталей, легко закаливающихся. В подобных случаях используют предварительный подогрев металла. Он уменьшает коробление, внутренние напряжения, изменения структуры, твердость металла. Поэтому подогрев часто является единственным надежным средством, обеспечивающим качественную кислородную резку легко закаливающихся легированных и углеродистых сталей. При машинной кислородной резке подогрев осуществляется мощными многопламенными горелками, смонтированными на режущей машине и перемещающимися вместе с кислородным резаком вдоль поверхности разрезаемого металла.
Помимо структурных превращений металла, при кислородной резке происходит изменение его химического состава на глубину до 2-3 мм. Наиболее существенным является повышение содержания углерода у поверхности реза, что можно объяснить науглероживающим действием подогревательного пламени. Однако повышение содержания углерода происходит и при использовании водородного пламени, которое не может науглероживать металл. По-видимому, основной причиной является миграция (перемещение) углерода при неравномерном нагреве металла в более нагретые области. Так как наиболее сильно нагревается поверхность кромки реза, то наблюдается перемещение углерода из внутренних менее нагретых слоёв металла к поверхности кромки.
Резаки.
Классификация резаков. Резаки – основной инструмент, который используется при кислородной резке. Они служат для смешивания горючего газа или жидкости с кислородом, разогрева металла подогревающим пламенем и подачи струи кислорода в зону резки.
Ручные резаки для газовой резки классифицируются по следующим признакам:
· роду горючего газа, на котором они работают (для ацетилена, газов-заменителей, жидких горючих);
· принципу смешения горючего газа и кислорода (инжекторные и безынжекторные);
· назначению (универсальные и специальные);
· виду резки (разделительная, поверхностная, кислородно-флюсовая, копьевая).
Особенности конструкции резаков. Как и сварочные горелки, резаки имеют инжекторное устройство, обеспечивающее их работу при любом давлении горючего газа. Инжекторный резак отличается от инжекторной горелки тем, что имеет отдельные канал для подачи кислорода и специальную головку, которая представляет собой два сенных мундштука – внутренний и наружный.
Ацетиленокислородный инжекторный резак включает две основные части – ствол и наконечник. Ствол состоит из рукоятки с ниппелями и для присоединения кислородного и ацетиленового рукавов, корпуса с регулировочными кислородным и ацетиленовым вентилями, инжектора, смесительной камеры, трубки, головки резака с внутренним мундштуком и наружным, трубки режущего кислорода с вентилем. Ствол присоединяется к корпусу накидной гайкой.
Кислород из баллона поступает в резак через ниппель и в корпусе идёт по двум канала. Часть газа, проходя через вентиль, поступает в инжектор. Выходя из инжектора с большой скоростью, струя кислорода создаёт разрежение и подсасывает ацетилен. В результате в камере получается горячая смесь, которая, проходя через зазор между наружными и внутренними мундштуками, сгорает, создавая подогревающее пламя.
Другая часть кислорода через вентиль поступает в трубку и, выходя через центральный канал внутреннего мундштука, образует струю режущего кислорода.
Основной деталью резака является мундштук, который в процессе резки быстро изнашивается. Мундштуки разделяют на две группы: к первой группе относятся цельные неразборные, ко второй – составные. Последние состоят из двух самостоятельных мундштуков, имеют кольцевую щель для выхода горючей смеси, которая поступает по кольцевому зазору между внутренним и наружным мундштуками. По центральному каналу внутреннего мундштука подаётся кислород.
Составные резаки с кольцевой щелью легче изготавливать и заменять.
Вид режущей струи кислорода зависит от формы (профиля) каналов сопла мундштука, их размеров, давления кислорода перед соплом, расхода кислорода в единицу времени, давления внутри сопла и скорости истечения.
При резке металла толщиной 10-350 мм наиболее широкое распространение получили сопла со ступенчатым расширением на выходе. Эти сопла используют при давлении кислорода от 0,3 до 1,2 МПа. При давлении кислорода на входе в сопло до 0,3 МПа применяют простые цилиндрические сопла без расширения на выходе. Их используют при резке металла толщиной до 10 мм и свыше 350мм. Наименьшие потери давления кислорода обеспечивают мундштуки, сопла которых имеют плавное расширение на выходе.
Давление кислорода выбирают в зависимости от толщины разрезаемого металла и конструкции сопла.
Резаки универсальные. В настоящее время широкое применение получили универсальные резаки. К ним предъявляют следующие требования: возможность резки стали толщиной от 3 до 300 мм и в любом направлении; устойчивость к обратным ударам; малая масса; удобство в использовании. Машинные резаки часто применяют в безынжекторном исполнении.
Принцип работы резаков инжекторного типа аналогичен принципу работы горелок для сварки и нагрева. Однако в отличие от горелок резаки имеют каналы для подвода кислорода и специальную головку, к которой крепятся два сменных мундштука – внутренний и наружный.
Ручной резак РАВ-1 предназначен для ручной разделительной резки низкоуглеродистой стали толщиной 3-300 мм с использованием подогревающего пламени, образующегося при сгорании смеси ацетилена с кислородом. Резак – безынжекторный, работает при давлении ацетилена 0,05-0,07МПа, характеризуется повышенной устойчивостью к обратным ударам, продолжительным временем горения пламени, повышенной скоростью резки низкоуглеродистой стали, экономичностью расхода ацетилена. Меняя мундштук, можно применять различное горючее. При оснащении приспособлением подачи флюса резак можно использовать для флюсовой резки легированных сталей, чугуна, цветных металлов, а также неметаллических материалов. Резак состоит из ствола, присоединительных ниппелей для резинотканевых рукавов, головки, вентиля для режущего кислорода, вентиля для кислорода подогревающего пламени и горючего газа, а также рукоятки. На торце мундштука имеются кольцевой ряд отверстий для горючей смеси и канал для режущего кислорода. Источниками питания резака являются баллоны или рампы для баллонов, газопроводы, ацетиленовые генераторы среднего давления. Масса резака 1,3кг; его комплектуют шестью сменными мундштуками.
Резак РАП-1 инжекторного типа предназначен для удаления струёй кислорода корней сварных швов и выправки небольших пороков с стальном литье. Состоит из корпуса, рукоятки, наконечника со смесительной камерой и инжектором. На корпусе расположены рукоятка и вентили: для подачи режущего кислорода, подогревающего кислорода и ацетилена. В качестве горючего используют ацетилен. Расход ацетилена и кислорода для подогревающего пламени регулируют соответствующими вентилями. Работа резака основана на использовании инжектирующего действия струи кислорода, поступающего в резак под давлением, значительно превышающим давление инжектируемого ацетилена. Масса резака 1,2 кг; комплектуют двумя сменными мундштуками №1 и 2.
Резак Р2А-01 (средней мощности) состоит из ствола, ниппелей, инжектора, смесительной камеры, трубок для подачи кислорода и горючих газов, головки и сменных мундштуков. Предназначен для ручной резки низкоуглеродистой и низколегированной сталей толщиной от 3 до 200 мм. Работает на ацетилене.
Резак Р3П-01 (большой мощности) предназначен для тех же целей, что и резак Р2А-01, но работает на газах-заменителях (пропан-бутане или природном газе). Диапазон разрезаемых толщин металла – от 3 до 300 мм. По сравнению с резаком Р2А-01 имеет большие диаметры проходных каналов инжектора, смесительной камеры и выходных каналов внутренних мундштуков.
Резаки вставные. Используются при выполнении монтажных, ремонтных и других работ в условиях индивидуального рабочего поста, когда часто приходится осуществлять и сварку, и резку. Вставные резаки присоединяются к стволам универсальных горелок. Выпускаются в двух исполнениях.
Резаки РВ-1А-02 присоединяется к стволу горелки Г2-04. Предназначен для ручной кислородной резки низкоуглеродистых и низколегированных сталей толщиной 3-100 мм. Работает на ацетилене. Комплектуется двумя наружными мундштуками (№1А, 2А) и пятью внутренними мундштуками (№0А, 1А, 2А, 3А,4А).
Резак РВ-2А-02 присоединяется к стволу горелки Г3-03 и позволяет разрезать сталь толщиной 3-200 мм. Комплектуется дополнительным внутренним мундштуком №5А.
Резаки специальные. Используют для ручной разделительной резки металла толщиной более 300 мм, поверхностной резки и резки с пользованием жидкого горючего.
Резаки РПК-2-72 и РПА-2-72 предназначены для ручной поверхностной резки низкоуглеродистой и низколегированной сталей с целью удаления местных дефектов с поверхности литья и чёрного проката. Резаки состоят из корпуса с наружным и внутренним мундштуками, вентилей и рычага пуска режущего кислорода. Проходные сечения и диаметры выходных каналов в мундштуках несколько увеличены по сравнению с универсальными резаками с целью получены по сравнению с универсальными резаками с целью получения широкой и мягкой струи режущего кислорода. Длина резака 1350 мм, масса 2,5 кг.
В резаке РПК-2-72 используется в качестве горючего коксовый или природный газ давлением не менее 0,02 МПа (0,2 кгс/см2), а в резаке РПА-2-72 – ацетилен давлением не менее 0,01 МПа (0,1 кгс/см2).
Резак РЗР-2 служит для ручной разделительной резки поковок, отливок и прибылей из низкоуглеродистой и низколегированной сталей толщиной 300-800 мм. Резак – с внутрисопловым смешиванием горючего газа и подогревающего кислорода. Для повышения устойчивости горения подогревающего пламени давления горючего газа на входе в резак составляет не менее 0,05 МПа (0,5 кгс/см2). В качестве горючего газа используется пропан-бутан. Наибольший расход его – 7,5, кислорода – 114,5 м3/ч. Для контроля режущего кислорода предусмотрен манометр. Питание газом осуществляется от цеховых магистралей или распределительных рамп. В последнем случае необходима кислородная рампа на 10 баллонов и пропанобутановая рампа на 3 баллона. Масса резака 5,5 кг.
Охрана труда при газопламенных работах.
Эксплуатация оборудования.
Общие сведения. Газопламенные работы (сварка, резка, строжка, выплавка пороков металла, нагрева изделий и др.) должны производиться на расстоянии не менее 10 м от передвижных генераторов, 5 м – от баллонов и бачков с жидким горючим, 1,5 м – от газопроводов и газоразборных постов.
Перед началом работ необходимо проверить исправность используемой аппаратуры, передвижного ацетиленового генератора, баллонов и рукавов и герметичность разъёмных соединений, а также пломб на затворах «сухого» типа и редукторах. При работе от газоразборного поста следует убедиться в работоспособности защитного устройства и проверить уровень залитой жидкости по контрольному крану на жидкостном затворе. Вблизи рабочего места сварщика должен находиться сосуд с чистой водой для охлаждения горелки. При перегреве горелки работу нужно прекращать.
По окончании работ следует перекрыть вентили на баллонах или газоразборного поста, вывернуть регулировочный винт редуктора, открыть вентиль на горелке (резаке), привести в порядок рабочее место и убрать оборудование в специально отведённое место.
Запрещается:
· проводить газопламенные работы при нарушении герметичности соединений и рукавов;
· работать без спецодежды и средств индивидуальной защиты, замасленной одежде, применять замасленную ветошь и инструмент;
· использовать кислород для очистки одежды от пыли; выполнять газопламенные работы при отсутствии средств пожаротушения;
· курить при работе с передвижным ацетиленовым генератором, карбидом кальция, жидким горючим;
· ремонтировать горелки и другую аппаратуру на рабочем месте.
Баллоны. Склады для хранения баллонов оборудуются вентиляцией. Освещение складов баллонов с горючими газами должно быть выполнено во взрывозащищенном исполнении.
Хранить горючие материалы и производить работы, связанные с применением открытого огня (кузнечные, сварочные, паяльные и др.) в радиусе 25 м от склада баллонов, запрещается.
Баллоны с кислородом хранить в одном помещении с баллонами с горючим газом, а также с карбидом кальция, красками и маслами (жирами) запрещается. Пустые баллоны следует хранить отдельно от баллонов, наполненных газом.
Перевозка наполненных газом баллонов производится на рессорном транспорте или автокарах в горизонтальном положении обязательно с прокладками между баллонами. В качестве прокладок могут применяться деревянные бруски с вырезанными гнездами для баллонов, а также верёвочные или резиновые кольца толщиной не менее 25 мм (по два кольца на баллон) или другие материалы, предохраняющие баллоны от ударов один о другой. Все баллоны на время перевозки должны укладываться вентилями в одну сторону.
Разрешается перевозка баллонов в специальных контейнерах, а также без контейнеров в вертикальном положении обязательно с прокладками между ними и ограждением от возможного падения.
При погрузке, разгрузке, транспортировании и хранении баллонов должны приниматься меры, предотвращающие падение, повреждение и загрязнение баллонов.
Совместная перевозка кислородных баллонов с баллонами горючих газов как наполненных, так и пустых на всех видах транспорта запрещается, за исключением доставки двух баллонов на специальной ручной тележке к рабочему месту.
Баллоны необходимо перемещать на специально предназначенных для этого тележках, контейнерах и других устройствах, обеспечивающих устойчивое их положение.
Переноска баллонов на руках или плечах запрещается.
В рабочем положении и при хранении баллоны должны находиться в вертикальном положении в гнёздах специальных стоек. Допускается держать на рабочем месте отдельные баллоны без специальных стоек или в наклонном положении, но приняв меры против их опрокидывания.
продолжение
--PAGE_BREAK--