Узнать стоимость написания работы
Оставьте заявку, и в течение 5 минут на почту вам станут поступать предложения!
Реферат

Реферат по предмету "Производство"


Расчет гидропривода многоцелевого сверлильно-фрезерно-расточного станка с числовым программным у

--PAGE_BREAK--2. Расчет и выбор элементов гидропривода


2.1 Выбор рабочей жидкости


Жидкость в гидроприводе предназначена для передачи энергии и надежной смазки его подвижных элементов. Жидкость подвергается воздействию в широких пределах давлений, скоростей и температур.

Так как рабочее давление 2,5 МПа и рабочая температура 450С, то рекомендуется применение масел с вязкостью 60-110сСт.

Опираясь на эти данные, выберем из таблицы 2.2 страница 6 («Расчет гидропривода») марку масла:

Индустриальное 20, ГОСТ 1707-51 для которого имеются следующие характеристики:

плотность 890 кг/м3, вязкость при температуре +500 С: 17…23 сСт, температура застывания -200С, температура вспышки 1700С, пределы рабочих температур 0…900С.

Найдем кинематический коэффициент вязкости по формуле:
 (1)
где,   — кинематический коэффициент вязкости см2/c при температуре , ˚С; n – показатель степени, приведенный в таблице 2.1 в зависимости от вязкости, в градусах Энглера, при температуре +50˚С.

Вязкость масла в градусах Энглера:
 (2)
отсюдаn=1,99, следовательно, по формуле 1:



2.2 Определение рабочего давления


Рабочее давление в цилиндре гидродвигателя назначим ориентировочно от величины требуемого полезного усилияF:

так как номинальное усилие 4 кН, то в диапазоне F = 10-20 кН рекомендуется рабочее давление в диапазоне Рр  (25-40)·105 Н/м2.

Выбор величины рабочего давления при проектировании гидропривода производится в соответствии с нормальным рядом давлений, установленным ГОСТом. При выборе, расчете и проектировании гидроприводов необходимо руководствоваться ГОСТ 15445-67 и МН 3610-625.

Из нормального ряда давлений примем рабочее давление Рр= 2,5 МПа, а пробное давление 3,8 МПа.

Рабочее давление определяет возможный длительный рабочий режим гидропривода, а на пробное давление производится его испытание.




3 Расчет основных параметров гидроцилиндров


3.1 Приближенный расчет основных параметров силового гидроцилиндра


Определим внутренний диаметр силового гидроцилиндра по формуле, мм:
, (3)
где F – полезная нагрузка, приведенная к штоку; Рр – рабочее давление в цилиндре, принимаемое в зависимости от F.

По вычисленному диаметру D подберем ближайший нормализованный.

Ближайшим нормализованным размером является 50. Следовательно, примем D =50мм.

Далее определим диаметр штока d в зависимости от величины хода поршня.

Рабочий ход поршня равен S =50мм. Так как S
 (4)
По вычисленному значению диаметра штока примем ближайший больший, согласно ГОСТу 6540-68.

Ближайшим является 16. Значит, примем .


3.2 Уточненный расчет основных параметров силового гидроцилиндра




В процессе работы силового гидроцилиндра часть рабочего давления затрачивается на преодоление сил трения в конструктивных элементах гидроцилиндра, силы противодавления, динамических нагрузок, возникающих при разгоне и торможении поршня гидроцилиндра.

Полезные и дополнительные нагрузки определяют величину усилия, развиваемого гидроцилиндром, Н:
, (5)
где,  – динамическая сила;  – Статическая нагрузка.

Статическая нагрузка определяется при установившемся движении поршня:
, (6)
где F — полезная нагрузка, приведенная к штоку поршня;  – сила трения в конструктивных элементах;  – сила противодавления.

Определим величину каждого элемента, входящего в формулы, т.е. , , .

Сила трения в конструктивных элементах расходуется на преодоление механических сопротивлений – трение в манжетах, поршневых кольцах:

Сила трения уплотнения манжетами равна, Н:
, (7)
где  – коэффициент трения, принимаемый для резиновых манжет

= 0,03…0,032;  – диаметр контактной поверхности (поршня); – длина контактной поверхности, мм; Рр – рабочее давление в гидроцилиндре.

Длина контактной поверхности принимается в зависимости от диаметра поршня или штока по таблице 3.1.(«Расчет гидропривода»):

ширина уплотнения равна 7,5 мм для штока, для поршня равна 10.
,

, (8)
где  – толщина (радиальная) сечения набивки, мм.

Зная, все эти данные мы можем определить силу трения уплотнения манжетами по формуле (7):

Число манжет определим из таблицы 3.2 («Расчет гидропривода»), опираясь на диаметр поршня и давление:

диаметру 50 мм и давлению 2,5 МПа соответствует числу манжет равным 3.

Силу трения для поршневых колец можно подсчитать по формуле, Н:
, (9)
где  – коэффициент трения кольца о стенку цилиндра (примем равным 0,07 т.е. для быстрого движения); b – ширина поршневого кольца;Рр– рабочее давление в цилиндре; Рк – среднее удельное давление на поверхности цилиндра, создаваемое упругими силами (Рк = 0,6·105 Па);i – число поршневых колец. Ширину поршневого кольца выберем из таблицы 3.3 («Расчет гидропривода»):

Так как диаметр поршня порядка 50 мм, то примем b = 2,8мм, глубина канавки равна 2,7 мм.

Число колец найдем по таблице 3.4 в зависимости от величины давления:

для диаметра 50 мм и давления 2,5 МПа число поршневых колец равно 2.

Зная все эти данные, найдем силу трения для поршневых колец с использование формулы (9):




Определим суммарное усилие трения цилиндра, Н:
 (10)
Определим силы противодавления, Н/м2:

Примем .

Сила противодавления определится, Н:
, (11)
где  – площадь сечения поршня.

Следовательно, решение формулы (11):



Подставляя данные в уравнение (6), определим статическую нагрузку:
 (5.1),
Динамическая сила, Н:
, (12)
где,  – приведенная к поршню силового цилиндра масса, кг;  – время ускорения или замедления движения, с;  – изменение скорости, м/c.
 (13)
где  – плотность стали, L=0,03.

Подставляя данные в формулу (13), найдем приведенную массу, кг:


,

, (14)
где  – рабочий ход, м;  – время рабочего хода, с.

Подставляя найденные значения в выражение (12), получим:
 (12.1)


Зная все эти данные, определим величину усилия, развиваемого гидроцилиндром (формула (12)), использовав данные выражений (5.1) и (12.1):

Далее по вычисленному усилию Т и принятому рабочему давлению уточняем диаметр силового гидроцилиндра, м:
 (15)



Следовательно, решение формулы (15):




Примем D = 50 мм.

Определим толщину стенок корпуса тонкостенного гидроцилиндра изготовленного из вязкого материала (латунь), мм:
, (16)
где σ – допустимое напряжение материала на растяжение, Рп – пробное давление, .

При давлении рабочей жидкости ниже 10 МПа можно использовать алюминиевые трубы или литье из серого чугуна с  МПа.



Наш цилиндр тонкостенный, так как DH/D

Рассчитаем толщину донышка, причем донышко примем плоское, мм:
 (17)
Итог формулы (17):




3.3 Расчёт гидроцилиндра на устойчивост
ь
Допускаемая нагрузка из условий устойчивости, Н:
, (18)
где, К — коэффициент, учитывающий возможное повышение давления в гидросистеме К = 1,15; nц – запас устойчивости, принимаемый в зависимости от материала и назначения цилиндра, для чугуна 4…5, примем К = 4,5.

Критическую силу определим по формуле Эйлера, Н:




, (19)
где Е — модуль упругости материала, Е = 22·104МПа; l – полная длина цилиндра с выдвинутым штоком, l = 110 мм; С- коэффициент учета заделки концов цилиндра и штока, С = 2.

Момент инерции цилиндра:
, (20)
где DH – наружний диаметр цилиндра; D -внутренний диаметр цилиндра. Итог формул (20), (19) и (18):
,

,

.
Из условия устойчивости гидроцилиндра определим допустимое давление жидкости в цилиндре, МПа:
, (21)


Цилиндр является устойчивым, так как рабочее давление меньше допускаемого, т.е. 1·107


4 Подбор гидромотора


Аксиально-поршневой гидромотор Г15-24

1.      Рабочий объем, 68,4;

2.      Номинальное давление, 5;

3.      Номинальный крутящий момент, 50;

4.      Скорость вращения, 1000;

5.      Механический КПД, 0,895;

6.      Объемный КПД, 0,95;

7.      Полный КПД, 0,85.




5. Подбор трубопроводов


Функциональная связь гидроагрегатов в системе гидропривода осуществляется с помощью трубопроводов различной конструкции. Несмотря на относительную простоту этих элементов, от их правильного выбора зависит надежность работы гидропривода. Большая часть трубопроводов и присоединительной арматуры нормализованы.

Соединительный трубопровод гидропривода разделяют на 3 части: всасывающий и напорный трубопроводы, сливная магистраль. Всасывающим трубопроводом принято называть участок трубопровода гидропривода соединяющий насос с баком. Участок трубопровода, по которому жидкость от насоса поступает в гидравлический двигатель, называется напорным или нагнетательным; участок трубопровода, по которому жидкость отводится из рабочей полости гидродвигателя в резервуар, называется сливным.

Основной характеристикой трубопровода является его условный проход (номинальный внутренний диаметр). Исходными параметрами для определения номинальных внутренних диаметров трубопроводов являются: рабочее давление, расход гидродвигателя,скорость движения рабочей жидкости в данной части трубопровода.
5.1 Определение расхода

При подаче жидкости в бесштоковую полость гидроцилиндра расход , определяется по формуле:
, (22)
где  – диаметр гидроцилиндра, ;

 – рабочий ход поршня, ;

 – время, необходимое для совершения рабочего хода, .

Подставляя числа в выражение (22), получим:

Подача насоса должна быть больше расхода, обеспечивающего требуемую скорость рабочего органа гидродвигателя, на величину потерь расхода и приближенно принимается равной:
 (23)
Подставив численные значения, получим:

В дальнейших расчетах нам придется применять значение расхода в литрах в минуту. Переведем расход,:

Переведем подачу,:

5.2 Допустимые скорости движения жидкости в трубопроводах




В трубопроводах гидропривода рекомендуются следующие величины допустимых скоростей:

-        всасывающего трубопровода ;

-        нагнетательного трубопровода ;

-        сливного трубопровода .
5.3 Условный проход трубопроводов

При известном расходе и допустимой для соответствующего трубопровода скорости движения жидкости, условные проходы определяются по формуле:
 (24)
Подставляя соответствующие значения допустимых скоростей, получим условные проходы:

Для всасывающего трубопровода, :

Для нагнетательного трубопровода, :

Для сливного трубопровода, :

Полученные значения диаметров округляются до ближайшего большего значения по ГОСТ 16516-70. Примем следующие значения диаметров трубопроводов, : , ,

После принятия окончательного значения диаметров трубопроводов, рассчитаем реальные скорости движения жидкости в них, ::
 (25)
Подставляя соответствующие значения диаметров, получим скорости:

Для всасывающего трубопровода:




Для нагнетательного трубопровода:



Для сливного трубопровода:



При величинах условного прохода менее 30 мм, применяются стальные, бесшовные, холоднотянутые и холоднокатаные трубы (ГОСТ8734-58). Примем материал для изготовления труб: Сталь 20.

Вычислим толщину стенки трубы по формуле:
, (26)
где  – предел прочности при растяжении (сопротивление на разрыв), для выбранного материала,  (принимается по таблице 5.1 [1]):

Подставляя в формулу значения диаметров трубопроводов, получим толщину их стенок, :
,

,


    продолжение
--PAGE_BREAK--5.4 Соединение трубопроводов


Трубопроводы, из которых монтируют гидролинии в гидроприводах, по конструкции можно разделить на жесткие и гибкие.

Жесткие трубопроводы в основном изготовляют из стальных бесшовных холоднотянутых труб или из труб цветных металлов: медь или алюминий.

В гидроприводах применяют следующие типы соединений:

а) пайка (сварка) — в машиностроении применяется редко, только для трубопроводов, не подлежащих демонтажу;

б) соединение с развальцовкой используют для труб диаметром . Соединение отличается простотой, но может применяться при давлении не более  и имеет ограниченное число повторных демонтажей вследствие затвердения материала и порчи развальцованной части трубы;

в) соединение трубопроводов по внутреннему конусу применяется для гидросистем с рабочим давлением до  при необходимости частого демонтажа гидролинии. Этот тип соединения наиболее широко применяется в гидросистемах тракторов, дорожных и строительных машин;

г)соединение трубопроводов с врезающим кольцом распространено в гидросистемах, работающих при высоких давлениях. Соединение простое по конструкции и обеспечивает надежную герметизацию при давлениях до ;

д) фланцевое соединение трубопроводов применяется для стальных труб, диаметром свыше .

Типы и размеры арматуры соединительных частей трубопроводов указаны в ГОСТ 16039-70 16078-70, ГОСТ 15063-70  15804-70, ГОСТ 4233-67.

Гибкие трубопроводы применяют для соединения элементов гидропривода, которые расположены на подвижных частях и могут перемещаться относительно друг друга.

В качестве гибкого трубопровода в основном применяют резинотканевые шланги, называемые рукавами высокого давления (РВД). В зависимости от количества металлических оплеток рукава высокого давления делятся на три типа: 1 тип – с одной металлической оплеткой, рассчитанный на давление до ; 2 тип – с двойной оплеткой, рассчитанный на давление до ; 3 тип – с тройной оплеткой, применяется при внутреннем диаметре до . Основные размеры РВД даны в ГОСТ 6286-73.

Для заданных условий работы гидросистемы гибкие трубопроводы могут быть выбраны из специальной литературы [8,10].
5.5 Выбор гидроаппаратуры


Тип и марку отдельных элементов гидроаппаратуры, выбирают (таблица 6.4 [1]) по давлению на их входе и фактическому расходу, проходящему через них.

В технических характеристиках гидроаппаратов приводится потеря давления  при определенном (номинальном) расходе . Как правило, не удается подобрать гидроаппарат, у которого фактический расход  соответствует , а значит и потери давления фактические  будут отличаться от .

Фактические потери давления рассчитываются простым суммированием потерь давления в каждом гидравлическом устройстве. Эти данные берутся из таблицы 6.4 [1]. Но так как не все выбранные гидроаппараты имеют номинальный расход, соответствующий требуемому, то и фактические потери давления будут отличаться от номинальных.

Определить фактические потери можно по формуле:
 (27)
Перед определением потерь, необходимо выбрать тип и марку гидроаппаратуры на данном участке гидропривода. Выбирают их по расходу (таблице 6.4 [1]).

На данном участке находится следующая гидроаппаратура:

1. Напорный золотник с обратным клапаном Г56-23;

2. Реверсивный золотник Г72, Г73-12;

3. Золотник с ручным управлением Г 74-12;

4. Фильтр 0,08 Г 41-13




6. Определение потерь давления и объемных потерь в системе гидропривода


6.1 Определение потерь давления


При движении жидкости по трубопроводам гидропривода, при прохождении жидкости через контрольно-регулирующую и распределительную аппаратуру возникают потери давления. Поэтому давление выбранного насоса должно быть достаточным для обеспечения необходимого усилия или крутящего момента гидродвигателя и преодоления потерь давления, возникающих в трубопроводах, клапанах, дросселях и т. д.

Суммарные потери давления в гидросистеме гидропривода определяются по зависимости:
,         (28)
где  – потери давления при трении движущейся рабочей жидкости в трубопроводах;

 – потери давления в местных сопротивлениях трубопроводов;

 – потери давления в гидроаппаратуре.

Потери давления на трение жидкости в трубопроводах складываются из потерь на отдельных участках трубопровода:
, (29)
где  – потери давления в трубопроводе нагнетания;

 – потери давления в трубопроводе всасывания;

 – потери давления в трубопроводе слива.

Потери давления на отдельных участках трубопроводов рассчитываются по формуле:
, (30)
где  – коэффициент сопротивления жидкости;

 – длина участка трубопровода, ;

 – внутренний диаметр трубопровода, ;

 – плотность рабочей жидкости, для выбранной жидкости (см. пункт 2.2) ;

 – скорость жидкости на рассматриваемом участке трубопровода, .

Для определения коэффициента сопротивления трения предварительно определяется число Рейнольдса:
, (31)
где  – коэффициент кинематической вязкости жидкости, . Для выбранного масла:  

Подставив значения внутренних диаметров и скоростей жидкости в формулу (31), получим числа Рейнольдса для отдельных участков трубопровода:

Для всасывающего трубопровода:


Для нагнетательного трубопровода:

Для сливного трубопровода:

Как видим, значения числа Рейнольдса для всех участков трубопровода превышают критическое значение , значит, режим движения в них является турбулентным и коэффициент сопротивления для стальных труб рассчитывают по формуле Блазиуса:
 (32)
Абсолютная шероховатость ∆ определяется по таблице 6.2[1]. Примем ∆=0,04, для стальных горячекатаных труб ГОСТ 8732-70.

Для всасывающего трубопровода:

Для нагнетательного трубопровода:

Для сливного трубопровода:

Подставляя все полученные значения в формулу (30), получим: ,,

Суммируя полученные результаты по формуле (29), получим результирующие потери на трение, :

Потери давления в отдельных местных сопротивлениях трубопровода получаются путем сложения потерь в отдельных местных сопротивлениях, которые определяются по формуле:
, (33)
где  – коэффициент местного сопротивления (по таблице 6.3 [1]), ;

 – поправочный коэффициент, зависящий от числа Рейнольдса и определяемый по рисунку 6.1 [1].

Из исходных данных известно, что в магистрали встречаются 4 плавных поворота и 2 резких.

Для плавных поворотов коэффициент местного сопротивления, :

Для резких поворотов коэффициент местного сопротивления, :

Тогда общий коэффициент местного сопротивления, :

Теперь можно вычислить местные потери в нагнетательном и сливном трубопроводах, :
,

,


Тогда суммарные потери в местных сопротивлениях (), найдем по формуле:
 (34)
Подставив числовые значения, получим:

Суммарные потери в гидроаппаратуре () с учетом формулы (27) будут равны:





Зная все нужные значения, подставим их в выражение (28), получим общие потери давления в гидросистеме, :

6.2 Определение объемных потерь в системе гидропривода

Объемные потери в гидроприводе происходят вследствие утечек жидкости через зазоры в элементах гидропривода. Примером объемных потерь может служить утечка жидкости в рабочем цилиндре между стенками цилиндра и поршнем, утечка жидкости в золотнике.

Общие потери в гидроприводе складываются из потерь в насосе , гидродвигателе , которые в зависимости от типа гидродвигателя, являются потерями в гидроцилиндре , потерь в золотниковом распределителе .
 (35)
Приближенное значение перечисленных потерь можно выразить через удельную утечку, являющуюся потерей расхода приходящейся на один  давления.
, (36)
где  – удельная утечка жидкости в насосе, см3/мин МПа;

 – удельная утечка жидкости в гидроцилиндресм3/мин МПа;

 – удельная утечка жидкости в золотниковом распределителе,см3/мин МПа;

 – давление, развиваемое насосомПа;

 – давление в гидроцилиндре принимается равным рабочему давлению , Па;

 – давление в золотниковом распределителе принимается равным рабочему давлению , Па.

Давление, развиваемое насосом:
, (37)
где  – потери давления;

 – рабочее давление.

Подставив численные значения, получим:

Подставляя числа в формулу (36), получим объемные потери в гидросистеме, : .




7. Выбор насоса


Объемный насос, применяемый в гидроприводе, предназначен для преобразования энергии привода в энергию жидкости в виде давления и подачи жидкости в гидродвигатель, создавая усилие (крутящий момент) на рабочем органе и обеспечивая скорость его движения.

Выбор насоса производят по давлению,  (см. пункт 6.2):
,
и расходу, :
,         (38)
где  – потери расхода;

 – расход жидкости, поступающей в гидроцилиндр (см. пункт 5.1).

Подставляя числа, получим:

По таблице 7.1 [1] выберем шестеренный насос НШ-10 с номинальным давлением – , подачей –  и скоростью вращения – . Для дальнейших расчетов, запишем его КПД: объемный – , механический – , полный – .




8. Расчет параметров пневмогидроаккумулятора


Расчет параметров пневмогидроаккумулятора проводят на основе уравнения политропы, охватывающего все возможные состояния газа:
 (39)
Обозначим общий объем аккумулятора , объем газа , в конце зарядки при давлении , объем  в конце разрядки аккумулятора при давлении . Здесь  – полезный объем, аккумулятора; определяемый по формуле:
, (40)
где  – подача насоса;

 – время зарядки, равное 10-15 с.

Подставим численные значения и получим, м3:

Объем газа, м3:
 (41)
Показатель политропы п зависит от условий работы аккумулятора (теплообмен, продолжительность разрядки) и в качестве средних значений его можно принять 1,1 — 1,3. Минимальное давление газа:


, (42)
где  – рабочее давление (в гидроцилиндре).Отношение давлений , принимают равным 0,5 — 0,7.
,


Подставим численные значения в формулу (41) и получим:

Для обеспечения надежной работы гидросистемы необходимо иметь количество жидкости в аккумуляторе несколько больше полезного объема.
, (42)
где  – коэффициент, равный 1,2 — 1,5.



Полный объем аккумулятора, м3:
, (43)






    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Поиски нравственного соглашения между людьми как авторская задача в русской прозе 18601870-х годов
Реферат Век «нынешний» и век «минувший» в комедии Грибоедова «Горе от ума»
Реферат Consequences Of Steroids In Sports Essay Research
Реферат Система управления сетями Transcend Manager v.5.0 фирмы 3Com
Реферат Вавилонское царство
Реферат Денежные потоки и методы их оценки Методы оценки финансовых активов
Реферат Теплоэнергетические генераторы и радиоизотопные источники энергии
Реферат Развитие курортного дела в России на современном этапе
Реферат Abortion And A Womens Right To Choose
Реферат Изображение судьбы русской женщины в поэме Некрасова Кому на Руси жить хорошо
Реферат Творчество Анри Матисса
Реферат Микропроцессорная система управления предназначенная для использования на лесопильном заводе
Реферат Таволетта
Реферат Анализ рассказа АП Чехова Душечка
Реферат Азиатско-Тихоокеанское сотрудничество