Реферат по предмету "Производство"


Голографический документ

--PAGE_BREAK--Голография
Голография (от греч. holos — весь, полный и… графия), метод получения объёмного изображения объекта, основанный на интерференции волн. Идея голографии была впервые высказана Д. Габором (Великобритания, 1948), однако техническая реализация метода оказалась чрезвычайно сложной и голография не получила распространения. Только с появлением лазеров открылись многочисленные и разнообразные возможности практического использования голографии в радиоэлектронике, оптике, физике и различных областях техники.
Принцип голографии
Обычно для получения изображения какого-либо объекта фотографическим методом пользуются фотоаппаратом, который фиксирует на фотопластинке излучение, рассеиваемое объектом. Каждая точка объекта в этом случае является центром рассеяния падающего света; она посылает в пространство расходящуюся сферическую световую волну, которая фокусируется с помощью объектива в небольшое пятнышко на светочувствительной поверхности фотопластинки. Так как отражательная способность объекта меняется от точки к точке, то интенсивность света, падающего на соответствующие участки фотопластинки, оказывается различной. Поэтому на фотопластинке возникает изображение объекта. Это изображение складывается из получающихся на каждом участке светочувствительной поверхности изображений соответствующих точек объекта. При этом трёхмерные объекты регистрируются в виде плоских двухмерных изображений.
В процессе фотографирования на фотопластинке фиксируется лишь распределение интенсивности, то есть амплитуды электромагнитной волны, отражённой от объекта (интенсивность пропорциональна квадрату амплитуды). Однако световая волна при отражении от объекта изменяет не только амплитуду, но и фазу в соответствии со свойствами поверхности объекта в данной точке.
Голография позволяет получить более полную информацию об объекте, так как представляет собой процесс регистрации на фотопластинке не только амплитуд, но и фаз световых волн, рассеянных объектом. Для этого на фотопластинку одновременно с волной, рассеянной объектом (сигнальная волна), необходимо направить вспомогательную волну, идущую от того же источника света (лазера), с фиксированной амплитудой и фазой (опорная волна).
Интерференционная картина (чередование тёмных и светлых полос или пятен), возникающая в результате взаимодействия сигнальной и опорной волн, содержит полную информацию об амплитуде и фазе сигнальной волны, то есть об объекте. Зафиксированная на светочувствительной поверхности интерференционная картина после проявления называется Голограммой. Если рассматривать голограмму в микроскоп, то в простейшем случае видна система чередующихся светлых и тёмных полос. Интерференционный узор реальных объектов весьма сложен. Для того чтобы увидеть изображение предмета, голограмму необходимо просветить той же опорной волной, которая использовалась при её получении. В простейшем случае — интерференции двух плоских волн (двух параллельных пучков) — голограмма представляет собой обычную дифракционную решётку.

Способы записи голограммы Запись голограммы плоской волны
Рисунок иллюстрирует схему записи голограммы плоской волны (напомним, что плоская волна – это волна, амплитуда которой одинакова в любой точке пространства). Пусть на фоточувствительную среду Н падают две плоских когерентных волны равной интенсивности. Их когерентность достигается тем, что в качестве источника света используется лазер с подходящими свойствами, и его излучение делится с помощью специального делителя на два пучка. На фоточувствительной среде образуется интерференционная картина, имеющая вид параллельных периодических полос. Для того чтобы фоточувствительная среда зафиксировала интерференционную картину, ее разрешающая способность должна составлять более 1000 линий/мм.
Интерференционная картина дифракции плоских волн, зарегистрированная на фоточувствительной среде, например, на фотопластинке, представляет собой хорошо известную дифракционную решетку. Если на решетку направить луч света в направлении, соответствующем одному из пучков при записи, например, 2 на рисунке, то в результате дифракции мы получим волну, распространяющуюся в том же направлении, что и волна 1 при записи. В действительности справа от пластинки мы увидим кроме волны 1 целый набор плоских дифрагировавших волн, соответствующих разным порядкам дифракции. Нулевой порядок, m =0, соответствует распространению падающей волны. Направление волны, отвечающей первому порядку дифракции m =1, точно соответствует направлению объектной волны 1 при записи, m =-1 – противоположному направлению под тем же углом. Дополнительные волны с порядком дифракции больше единицы возникают вследствие того, что ни одна реальная регистрирующая среда не может воспроизвести с высокой точностью распределение освещенности при записи, которое в нашем случае является синусоидальным.
Описанный выше эксперимент показывает, что использование двух волн при записи позволяет регистрировать распределение фаз волны на поверхности и восстанавливать волну, участвовавшую в записи решетки, которая представляет собой простейшую голограмму.
Голографическая запись сферической волны
На рисунке изображена схема голографической записи сферической волны. На фоточувствительную среду падают две волны – сферическая волна от источника S и плоская волна F, которая с помощью пластинки P направляется перпендикулярно к плоскости фоточувствительной среды. В плоскости фоточувствительной среды мы будем наблюдать интерференционную картину в виде концентрических колец, центр которой находится в точке пересечения плоскости перпендикуляром, проведенным из S. Расстояние между кольцами убывает по мере роста их радиуса. Зарегистрированная картина представляет собой хорошо известную зонную пластинку Френеля. На рисунке показана схема опыта по восстановлению волнового фронта, зарегистрированного фоточувствительной средой. Освещая пластинку плоской волной, мы увидим справа от голограммы, по крайней мере, две волны. Одна из них, распространяющаяся в направлении исходной падающей волны соответствует нулевому порядку дифракции, вторая расходится из точки S ’, воспроизводя действительное изображение источника, и третья волна сходится в точку S ’’, воспроизводя мнимое изображение. Последняя находится в той же самой точке, в которой находился источник сферической волны при записи голограммы. Если бы пропускание среды в точности воспроизводило распределение освещенности в интерференционной картине при записи, то никаких других волн, соответствующих высшим порядкам дифракции, не наблюдалось бы. В действительности будут наблюдаться еще несколько слабых волн.
Возможна также запись голограммы сферического источника при наклонном падении опорной волны. В этом случае при восстановлении голограммы дифрагированная волна все равно будет сходиться в той точке, где находился источник сферической волны при записи.

    продолжение
--PAGE_BREAK--Голограмма Денисюка
В пятидесятых годах двадцатого века советский физик Ю.Н. Денисюк разработал метод регистрации голографических изображений во встречных пучках. В основе метода лежит то обстоятельство, что интерференционное поле в области перекрытия опорной и предметной волн распределено во всем пространстве пересечения. Используя подходящие светочувствительные материалы, трехмерную интерференционную картину возможно зарегистрировать. Для этого используют стеклянные фотопластины, политые слоем желатины, в котором распределены микрокристаллы галогенидов серебра. Эти фотопластинки должны обладать полной прозрачностью до проявления. Толщина желатинового слоя порядка 10 мкм достаточна, чтобы регистрировать объемную интерференционную картину, поскольку эта величина много больше, чем длина волны света, порядка 0.5 мкм.

Схема регистрации приведена на рисунке. Фотопластинку располагают в оптической схеме таким образом, что с одной стороны ее освещает равномерное поле лазерного света, которое играет роль опорной волны, а с другой свет от того же лазера, отраженный от объекта, голограмму которого необходимо получить. Так как желатин прозрачен для света, в толщине его слоя происходит интерференция этих световых полей, в результате которой происходит формирование интерференционной картины.
Интерференционное поле представляет собой сложную структуру, проявляющуюся в виде чередования светлых и темных полос. После проявления и закрепления фотопластины, внутри желатинового слоя оказываются микрообласти с различными показателями преломления и поглощения.
При просвечивании голограммы в отраженном свете восстанавливается изображение объекта. Важное для практического применения свойство голограмм Денисюка заключается в возможности восстановления голограммы с помощью расходящегося пучка белого света. Это объясняется тем, что при освещении голограммы условия дифракции выполняются только для тех длин волн и тех направлений распространения света, которые удовлетворяют условиям дифракции. Весь остальной свет проходит сквозь голограмму, не взаимодействуя с ней. Поэтому голограмма видна в том цвете, в котором она была записана. Возможно также получение цветных голографических изображений. Для этого в фотопластинке нужно зарегистрировать три элементарных голограммы при длинах волн синего, зеленого и красного света. При восстановлении голограммы белым светом каждая из элементарных голограмм формирует свое изображение в соответствующем цвете. Эти три изображения образуют полноцветную картину, подобно тому, как это происходит на экране цветного телевизора. Таково упрощенное описание этого метода.
Рассмотрим теперь практические аспекты применения голограмм Денисюка. Наиболее широкое распространение получили голограммы, изображающие предметы искусства. Отсюда, кстати, пошло общеупотребительное наименование голограмм этого типа как «изобразительные». Существуют целые галереи изобразительных голограмм редких золотых украшений и прочих раритетов из коллекций различных музеев. Более того, когда лет двадцать назад появились сравнительно недорогие импульсные лазеры, появилась возможность съемки голографических портретов. Существуют коммерческие студии, которые осуществляют запись портретов людей и животных, но, в силу достаточно высокой стоимости процесса и материалов, этот бизнес эксклюзивен и не имеет широкого распространения. Дополнительные трудности, обусловленные необходимостью снабдить каждую голограмму источником света, капризность желатиновых фотоматериалов к условиям хранения (они очень чувствительны к влажности) и неудобство обращения с хрупким стеклянным носителем, наряду с дороговизной процесса и материалов существенно ограничивают область применимости таких проектов.
Около десяти лет назад корпорацией «Дюпон» был разработан фотополимер, который, подобно галогенид-серебряной желатиновой эмульсии способен регистрировать голографические изображения при использовании данной методики записи. Это событие позволило реализовать массу проектов, связанных с производством сувенирной продукции, поскольку разрешило проблему прочности и безопасности продукта. Теперь стало возможным изготовление изобразительных голограмм в картонных паспарту, а также в виде открыток, и, даже, самоклеящихся этикеток. Самоклеящиеся голограммы этого типа нашли применение, в том числе, и для защиты от подделок. Наиболее крупный проект реализован в России для маркировки голограммами из фотополимера контрольно-кассовых машин. Для большего распространения этой технологии в сфере защиты от подделки существуют препятствия, связанные как с низкой производительностью изготовления таких голограмм, дороговизной монопольного материала, так и с конкуренцией со стороны голографической продукции, изготовленной другими методами.

Голограмма Френеля
В 1961 году Э.Лейт и Ю.Упатниекс предложили двухлучевую схему голографирования (иначе её называют схемой голографирования с опорным пучком). В этой схеме регистрируемый предмет освещается отдельным когерентным пучком света. Свет, рассеянный объектом, интерферирует на фотопластинке с опорной волной. Совокупность точек объекта, рассеивающих свет можно рассматривать как совокупность точечных объектов, излучающих сферические волны. В результате в плоскости фотопластинки регистрируется распределение волнового поля в виде, на первый взгляд, беспорядочного распределения светлых и темных областей, которое на самом деле является результатом сложения индивидуальных зонных решеток. При восстановлении волны все эти зонные решётки интерферируют независимо: каждая восстанавливает свою точку предмета на том самом месте, где она была при записи голограммы. Если точка более яркая, то соответствующая ей решётка будет более контрастной и при восстановлении она даёт более яркую точку изображения. Поэтому при восстановлении такой голограммы с помощью опорной волны мы, как и в случае голограммы сферической волны, будем наблюдать мнимое и истинное изображение объекта. В качестве объекта для съемок могут использоваться любые предметы – прозрачные и непрозрачные, живые и мертвые. Однако голограммы Френеля восстанавливают объект только при освещении их монохроматическим светом лазера. Это обстоятельство препятствует их широкому применению для потребительских целей, в том числе в качестве защитных голограмм. Как правило, голограммы Френеля используют в качестве промежуточных оригиналов для интерференционного копирования.
На примере голограммы Френеля можно сформулировать ее основные свойства.
Каждый отдельный участок голограммы несет информацию обо всем объекте. Это связано с тем, что любой участок зонной решетки восстанавливает изображение точки. Естественно, что уменьшение площади участка голограммы, восстанавливающей объект, ведет к ухудшению качества изображения (появление зернистости изображения) Негативный и позитивный отпечаток голограммы всегда дают позитивное изображение. Это следует из того, что регистрируется интерференционная картина, являющаяся совокупностью светлых и темных областей, и она же впоследствии используется для восстановления изображения. Голограмма восстанавливает стереоскопическое изображение объекта, поскольку более далекие точки объекта восстанавливаются дальше. Параллакс голограммы позволяет наблюдать объект под разными углами.
Возможно наложение на одну и ту же пластинку голограмм разных объектов или частей объекта, которые при восстановлении будут образовывать независимые изображения.

    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :