Реферат по предмету "Педагогика"


Система оценивания по математике и информатике

--PAGE_BREAK--14. Периметр прямоугольника равен 22 см, а его площадь равна 30 см2. Найдите стороны прямоугольника.
15. Определите значение х, при котором функция у=-х2+2х-1 принимает наибольшее значение. Найдите это значение.
2 вариант.
Уровень А (репродуктивный).
1. На каком из рисунков изображен график квадратичной функции:
 SHAPE  \* MERGEFORMAT
 А) Б) В)
2. Функция задана формулой f(x)=3х2-5х-2. Найдите f(2).
а) -6; б) 0; в) -24.
3. На каком из рисунков изображен график функции у=х3:
 SHAPE  \* MERGEFORMAT
а)б)в)
4. Найдите нули функции у=:
a) Нулей нет; б) 4 и -6; в) -4 и 6.
5. Какие из линейных функций являются убывающими:
у=3-4х; у=5х; у=5; у=-9х+2.
а) у=3-4х, у=-9х+2; б) у=-9х+2, у=5; в) у=3-4х, у=5, у=-9х+2.
Уровень В (конструктивный).
6. Найдите корни квадратного трехчлена –х2+3х-10:
а) 2 и 5; б) -2 и 5; в) -5 и -2.
7. Разложите на множители квадратный трехчлен 15-8х+х2.
а) -8(х-5)(х-3); б) (х+5)(х+3); в) (х-5)(х-3).
8. Сократите дробь . Ответ: _________________.
9. Решить неравенство 3х2-4х+10. Ответ: _________________.
10. Найдите нули функции у=х3-х2-9х+9. Ответ: ___________________.
Часть С (творческий).
11. Решить неравенство .
12. Постройте график функции у=х2-2х-3.
13. Найдите область определения функции
14. Периметр прямоугольника равен 18 см, а его площадь равна 20 см2. Найдите стороны прямоугольника.
15. Определите значение х, при котором функция у=-х2-6х-9 принимает наибольшее значение. Найдите это значение.
Итоговая контрольная работа по алгебре, 9 класс, 2004-2005 учебный год.
Уровень требований — низкий.
Учителя высшей категории: Н.П.Карпенко, Г.А. Кузнецова., И.Г. Сазыкина
1 вариант.
Уровень А (репродуктивный).
Заполните пропуски:
1.                Функцией называют такую зависимость переменной ______ от переменной _______, при которой каждому значению переменной _____ соответствует единственное значение переменной _____.
2.                Все значения независимой переменной образуют область __________________ функции.
3.                Функция называется возрастающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует _______________ значение функции.
4.                Корнем n-й степени из числа а называется такое число _______________, степень которого равна _____________.
5.                Геометрической прогрессией называют последовательность отличных от нуля чисел, каждый член которой, начиная со второго равен предыдущему члену, _____________ на одно и то же число.
Уровень В (конструктивный).
1.                Среди выражений выбери ту функцию, которая является квадратичной:
а) у=2х+3; б) у= ; в) у=х2-3; г) у=х3.
2. Схематически изобразите график квадратичной функции.
3. Функция здана формулой у= -2х+1. Найдите значений функции при х=2.
а) 5; б) 3; в) -3; г) -5.
4. Проходит ли график функции у= через точку:
а) (4; 0); б) (1; -0,25); в)(-1; 0,25); г) (0; 4).
Ответ: ___________________________.
5. При каких значениях х функция принимает отрицательные значения
 SHAPE  \* MERGEFORMAT
а) (4; -4); б) (0; 6); в) (0; 3); г) (-4; 4).
Ответ: ____________________________.
6.                Составьте формулу n-го члена арифметической прогрессии а1=2,4; d=-0,8.
а) аn=2n-6; б) аn=2n-2; в) аn=2n-5; г) аn=2n-3.
7. Найдите сумму первых пяти членов арифметической прогрессии а1=-4; d=2.
а) 0; б) -40; в) -32; г) 10.
8. Вычислите
а) -6; б) 6; в) 0; г) -2.
9. Вычислите
а) 25,1; б) 25,2; в) 0,14; г) -2.
10. Решите уравнение 1) х4=625
а) 5; б) -5; 5; в) 25; г) -25.
2) х3+7=0
а) ; б) -; в) ; г) .
Уровень С (творческий).
1.                Среди выражений выберите те, которые являются функциями
а) х2-3=0; б) у=; в) 0,5х=4; г) (3х+2)2.
2. Постройте график функции у=-х2-3х+4.
3. Решите неравенство (х-3)(х+5)>0.
4. Сократите дробь .
5. Периметр прямоугольника равен 22 см, а его площадь равна 30 см2. Найдите стороны прямоугольника.
2 вариант.
Уровень А (репродуктивный).
Заполните пропуски:
1.                Функцией называют такую зависимость переменной ______ от переменной _______, при которой каждому значению переменной _____ соответствует единственное значение переменной _____.
2.                Все значения, которые принимает зависимая переменная образуют область __________________ функции.
3.                Функция называется убывающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует ________________ значение функции.
4.                Арифметическим корнем n-й степени из неотрицательного числа а называется такое число _______________, n –я степень которого равна _____________.
5.                Арифметической прогрессией называют последовательность отличных от нуля чисел, каждый член которой, начиная со второго равен предыдущему члену, _____________ с одним и тем же числом.
Уровень В (конструктивный).
2.                Среди выражений выбери ту функцию, которая является линейной:
а) у=х-5; б) у= ; в) у=х2+1; г) у=х5.
2. Схематически изобразите график линейной функции.
3. Функция задана формулой у= х2+1. Найдите значений функции при х=-1.
а) -2; б) 2; в) 0; г) -1.
4. Проходит ли график функции у= через точку:
а) (0; 0); б) (-1; -1/3); в)(0; 3); г) (1; -1/3).
Ответ: ___________________________.
5. При каких значениях х функция принимает положительные значения

 SHAPE  \* MERGEFORMAT
а) (-2; 4); б) (-2; 1); в) (0; 4); г) (1; 4).
Ответ: ____________________________.
6.                Составьте формулу n-го члена геометрической прогрессии b1=48; q=0,5.
а) bn=-1+3n-1; б) bn=-3n-1; в) bn=-1+3n; г) bn=-1•3n+1
7. Найдите сумму первых пяти членов геометрической прогрессии а1=-1; q=3.
а) -3; б) 20,25; в) -20,25; г) 20.
8. Вычислите
а) 1; б) -1; в) -5; г) 5.
9. Вычислите
а) 9,2; б) 9,4; в) 3,2; г) .
10. Решите уравнение 1) х6=64
а) 2; б) -2; 2; в) 8; г) -8.
2) х5+5=0
а); б) -; в) ; г).
Уровень С (творческий).
1.                Среди выражений выберите те, которые являются функциями
а) у=х2; б) 2х-3=0; в) х2=4; г) (х-1)2.
2. Постройте график функции у=х2+3х-4.
3. Решите неравенство (х-8)(х+4)>0.
4. Сократите дробь .
5. Периметр прямоугольника равен 18 см, а его площадь равна 20 см2. Найдите стороны прямоугольника.
Уровень требований - средний.
1 вариант.
Уровень А (репродуктивный).
Заполните пробелы:
1.                Функция называется возрастающей в некотором промежутке, если _______ значению аргумента из этого промежутка соответствует _______;
2.                 Квадратным трехчленом называется многочлен вида _________________, где х-переменная, а, b и с — _______________________________________________, причем а≠0;
3.                Арифметической прогрессией называют _____________________________, каждый член которой, _______________________________ равен предыдущему члену, ____________________________________;
4.                Записать формулу n-го члена арифметической прогрессии и формулу суммы n первых членов арифметической прогрессии;
5.                Функция y=f(x) называется четной, если область ее определения ________________ и для любого значения аргумента х верно равенство ___________________________.
Уровень В (конструктивный).
1.                Найдите значения х, при которых р(х)=0, если р(х)=(2х+4)(х2+3)
А) -2; б) 2; в) -2; -.
2. Найдите область определения функции у=
а) (-; 2)  (2; + ); б) (-; 0)  (0; + ); в) (-; 0) (0; 2)  (2; + ).
3. Разложите на множители квадратный трехчлен х2-8х-9
а) (х-1)(х+9); б) (х+1)(х-9); в) (х-1)(х-9).
4. Для параболы, которая является графиком функции у=-2х2+12х-19, определите координаты вершины
а) (3;-1); б) (-3;1); в) (3;1).
5. При каких значениях х значения функции у=-х2-2х+8 положительны?
а) (-; -4)  (2; + ); б) (-4; 2); в) (-2; 4).
6. Решите неравенство
а) (-; -14)  (10; + ); б) (-10; 14); в) (-14; 10).
7. Найдите значение Р, при которых уравнение 3х2+Рх+3=0 имеет два корня
а) (-; -6)  (6; + ); б) (-6; 6); в) (6; +).
8. В арифметической прогрессии а3=6 и d=1,2. Найдите сумму первых семи членов
а) 50,4; б) 42,6; в) 54.
9. Найдите знаменатель q геометрической прогрессии (аn), в которой а2=3, а4=0,75
а) 0,5; б) -0,5; в) 0,5 или -0,5.
10. Представьте в виде обыкновенной дроби число 0,(5)
а) ; б) ; в) .
Уровень С (творческий).
1.                Упростите выражение .
2.                Решите уравнение (х2-3х)2-2(х2-3х)=8.
3.                Найдите количество отрицательных членов арифметической прогрессии: -9,6; -8,3 …
4.                Среди решений данного уравнения найдите те, которые удовлетворяют данному неравенству: ; х2+5х-6
5.                Из пункта А в пункт В выехал автобус и одновременно с ним из В в А выехал автомобиль. Они встретились в пункте С, причем расстояние, пройденное автомобилем до места встречи, оказалось на 50 км больше пройденного автобусом. Автобус прибыл в конечный пункт через 3 часа после встречи, а автомобиль – через 1 час 20 минут. На каком расстоянии от пункта А произошла встреча? За какое время автомобиль прошел все расстояние?
2 вариант.
Уровень А (репродуктивный).
Заполните пробелы:
1.                Функция называется убывающей в некотором промежутке, если ______________________ значению аргумента из этого промежутка соответствует __________________________________________;
2.                 Квадратичной функцией называется функция, которую можно задать формулой _______________, где х-переменная, а, b и с — _______________________________________________, причем а≠0;
3.                Геометрической прогрессией называют _____________________________, каждый член которой, _______________________________ равен предыдущему члену, ____________________________________;
4.                Записать формулу n-го члена геометрической прогрессии и формулу суммы n первых членов геометрической прогрессии;
5.                Функция y=f(x) называется нечетной, если область ее определения ____________________________ и для любого значения аргумента х верно равенство ___________________________.
Уровень В (конструктивный).
1. Найдите значения х, при которых g(х)=0, если g(х)=(3х-9)(х2+5)
А) 3; б) -3; в) 3; -.
2. Найдите область определения функции у=
а) (-; 0)  (0; + ); б) (-; )  (; + ); в) (-; 0) (0; )  (; + ).
3. Разложите на множители квадратный трехчлен 3х2+17х-6
а) 3(х-)(х+6); б) (х-)(х+6); в) 3(х-6)(х+).
4. Для параболы, которая является графиком функции у=х2-4х+7, определите координаты вершины
а) (-2; 17); б) (2; 3); в) (2; -3).
5. При каких значениях х значения функции у=-х2-3х+4 отрицательны?
а) (-1; 4); б) (-4; 1); в) (-; -4)  (1; + ).
6. Решите неравенство
а) (-; -1)  (0,5; + ); б) (0,5; +  ); в) (-1; 0,5).
7. Найдите значение Р, при которых уравнение 9х2+Рх+1=0 имеет два корня
а) (-6; 6); б) (-; -6)  (6; + ); в) (-;-6).
8. В арифметической прогрессии а4=-3 и d=-0,8. Найдите сумму первых восьми членов арифметической прогрессии
а) -27,2; б) -28,6; в) -8,6.
9. Найдите знаменатель q геометрической прогрессии (аn), в которой а1=162, а3=18
а) 3; б) -3; в) 3 или -3.
10. Представьте в виде обыкновенной дроби число 0,(15)
а); б); в).
Уровень С (творческий).
1.                Упростите выражение :
2.                Решите уравнение (2х2-х+1)2-2(2х2-х+1)+1=0.
3.                Найдите количество положительных членов арифметической прогрессии: 14; 13,2 …
4.                Среди решений данного уравнения найдите те, которые удовлетворяют неравенству: ; .
5.                Два трактора разной мощности, работая одновременно, вспахали поле за 2 часа 40 мин. Если бы первый трактор увеличил скорость вспашки в 2 раза, а второй – в 1,5 раза, то поле было бы вспахано за 1 ч 36 мин. За какое время вспахал бы поле первый трактор, работая с первоначальной скоростью?
Уровень требований — высокий.
1 вариант.
Уровень А (репродуктивный).
1. Записать определение функции, возрастающей на множестве х.
2. Запишите определение арифметической прогрессии, формулу n-го члена арифметической прогрессии, формулу суммы n первых членов арифметической прогрессии.
3. Дайте определение корня n-ой степени.
4. Дайте определение синуса угла.
5. Запишите основное тригонометрическое тождество.
Уровень В (конструктивный).
1.                Найдите корни квадратного трехчлена х2-8х+23.
2.                Решите неравенство х2+х-6
3.                Решите неравенство методом интервалов (х-3)(х-8)2(х-10)>0.
    продолжение
--PAGE_BREAK--4.                Решите уравнение =х-5.
5.                Решите систему
6.                найдите сумму первых десяти членов арифметической прогрессии 15,4; 13,8; 12,2; …
7.                В геометрической прогрессии (bn) найти S6, если b1=256, q=1/4.
8.                Вычислите .
9.                Найдите значение выражения .
10.           Найдите значение tg α(ctg α +cos α), если sin α=-0,3.
Уровень С (творческий).
1.                Постройте график функции у=х2+х-4.
2.                Представьте выражение в виде степени с основанием а: .
3.                Упростить выражение
4.                Найдите первый положительный член арифметической прогрессии -10,8; -10,2; -9,6;…
5.                Решите уравнение х3+2х2+2х+1=0.
2 вариант.
Уровень А (репродуктивный).
1. Записать определение функции, убывающей на множестве х.
2. Запишите определение геометрической прогрессии, формулу n-го члена геометрической прогрессии, формулу суммы n первых членов геометрической прогрессии.
3. Дайте определение степени с дробным показателем.
4. Дайте определение косинуса угла.
5. Запишите знаки тригонометрических функций в координатных четвертях.
Уровень В (конструктивный).
1.                Найдите корни квадратного трехчлена х2-5х-24.
2.                Решите неравенство х2-х-20≥0.
3.                Решите неравенство методом интервалов (х+10)2(х+6)(х-7)≤0.
4.                Решите уравнение =7-х.
5.                Решите систему
6.                Найдите сумму первых десяти членов арифметической прогрессии 12,6; 11,1; 9,6; …
7.                В геометрической прогрессии (bn) найти S4, если b1=2, q=-3.
8.                Вычислите .
9.                Найдите значение выражения .
10.           Найдите значение ctg α(tg α +sin α), если cos α=-0,2.
Уровень С (творческий).
11.           Постройте график функции у=х2-3х+4.
12.           Представьте выражение в виде степени с основанием а:.
13.           Упростить выражение .
14.           Найдите первый положительный член арифметической прогрессии 10,1; 9,9; 9,7;…
15.           Решите уравнение х3+11х2+11х+1=0.
Контрольная работа по алгебре: 10 класс, нулевой срез, 2004-2005 учебный год. Учитель высшей категории М.Ю.Симатова
Вариант 1.
Уровень А (репродуктивный)
1.                Найдите значение выражения  при а = –1,5, b= 1.
А.  Б. – В. 3 Г.
2.                Чему равно произведение (1,6 × 10–8)×(4 × 104)?
А. 0,064 Б. 0,000064 В. 0,00064 Г. 640
3.                Из формулы пути равноускоренного движения выразите время t.
А. t =  Б. t =  В. t =  Г. t =
4.                Стоимость aкарандашей равна х р. Сколько стоят bтаких же карандашей?
А. aхb Б.  В.  Г.
5.                Укажите выражение, тождественно равное многочлену 6a– 8ab.
А. –2a(3 – 4b) Б. –2a(3 + 4b) В. –2a(4b – 3) Г. –2a(–3 – 4b)
Уровень В (конструктивный).
1.                Выполните действие: .
А.  Б.  В.  Г.
2.                Решите уравнение 10 – 7х = 3 – 2(5х + 1).
А. –2,25 Б. –5,5 В. –3 Г. 6
3.                 В цирке перед началом представления было продано  всех воздушных шариков, а в антракте – еще 12 штук. После этого осталась половина всех шариков, приготовленных для продажи. Сколько шариков было первоначально?
А. 40 Б. 80 В. 120 Г. 160
4. Найдите корни уравнения 32 – 2х2 = 0. Ответ: __________________________
5. На координатной прямой отмечены числа a, b и c. Какое из приведенных утверждений об этих числах неверно?

А. ab b – c b + a > 0 Г. abc
6.На каком рисунке изображено решение неравенства 2х + 3 > 6х – 5?

А. В.
Б. Г.
7.Последовательности заданы формулой n–ого члена. У какой из них каждый следующий член меньше предыдущего?
А. an= 2×10n Б. an= 2×(–10)n В. an=  Г. an=
Уровень С (творческий).
1. Упростите выражение: .
2.Найдите область определения функции у = .
3.На каждого жителя города Челябинска ежесуточно выбрасывается 3,5 кг вредных веществ. Какое количество вредных веществ в год выбрасывается на всех жителей города Челябинска, если сейчас в нём проживает 1,2 миллиона человек? Результат представить в стандартном виде. Спрогнозируйте ситуацию на 10 лет.
4.Решите систему уравнений:
Вариант 2.
Уровень А (репродуктивный)
1.                Найдите значение выражения  при а = –0,5, b= -1.
А.  Б. – В. — 3 Г.
2.                Чему равно произведение (1,2× 10–8)×(3 × 104)?
А. 0,036 Б. 0,000036 В. 0,00036 Г. 360
3.                Из формулы пути равноускоренного движения выразите время t.
А. t =  Б. t =  В. t =  Г. t =
4.                Стоимость aкарандашей равна у р. Сколько стоят bтаких же карандашей?
А. aуb Б.  В. Г.
5.                Укажите выражение, тождественно равное многочлену 4a2-8ab.
А. –4a(a– 4b) Б. –4a(a + 4b) В. –4a(2b – a) Г. –4a(a – 2b)
Уровень В (конструктивный).
1.                Выполните действие:.
А. Б.  В. — Г. -
2.                Решите уравнение 10 – 3х = 5 – 2(3х — 1).
А. –1,25 Б. –5,5 В. –1 Г. 6
3.                 В цирке перед началом представления было продано  всех воздушных шариков, а в антракте – еще 24 штуки. После этого осталась половина всех шариков, приготовленных для продажи. Сколько шариков было первоначально?
А. 40 Б. 240 В. 24 Г. 160
4.Найдите корни уравнения 64 – 4х2 = 0.
Ответ: __________________________
5.На координатной прямой отмечены числа a, b и c. Какое из приведенных утверждений об этих числах неверно?

А. ab b – c b + a abc > 0
6.На каком рисунке изображено решение неравенства 2х + 3 ³ 6х – 5?

А. В.
Б. Г.
7.Последовательности заданы формулой n–ого члена. У какой из них каждый следующий член меньше предыдущего?
А. an= 5×10n Б. an= 5×(–10)n В. an=  Г. an=
Уровень С (творческий).
1.                Упростите выражение:.
2.                Найдите область определения функции у =.
3.                На каждого жителя города Магнитогорска ежесуточно выбрасывается 5 кг вредных веществ. Какое количество вредных веществ в год выбрасывается на всех жителей города Челябинска, если сейчас в нём проживает 0,8 миллиона человек? Результат представить в стандартном виде. Спрогнозируйте ситуацию на 10 лет.
4. Решите систему уравнений:
Контрольная работа по алгебре: 10 класс, промежуточный срез, 2004-2005 учебный год. Учитель высшей категории М.Ю.Симатова
1 вариант.
Уровень А (репродуктивный).
1. На каком из рисунков изображен график показательной функции:
 SHAPE  \* MERGEFORMAT
 А) Б) В)
2. Укажите область определения у = 3х.
а) (-; +); б) [0;+ ); в) (1; +); г) (-; 0).
3. На каком из рисунков изображен график функции у=х-2:
 SHAPE  \* MERGEFORMAT
а)б)в)
4. Вычислить log5125:
a) 5; б) 3; в) 2; г) 25.
5. Найдите значение выражения 5log525:
а) 5; б) 25; в) 2; г) 1.
Уровень В (конструктивный).
6. Решить уравнение 4х-1=1:
а) 0; б) 1; в) 2; г) 4.
7. Решить уравнение: :
а) 8; б) 10; в) 2; г) 4.
8. Решить неравенство: :
а) [11;+ ); б) (11; + ); в) (-; 11); г) (-; 11].
9. Решить уравнение 32х-1+32х=108:
а) 2; б) 1,5; в) 27; г) 4.
10. Решить неравенство :
а) (-; 4]; б) [4; +); в) (-; 4); г) [4; +).
11. Решить неравенство 9х-3х-6>0;
а) (1; +); б) (-; 1); в) (-1; +); г) (-; 1).
12. Решить уравнение log(2x-1)=4:
а) 5; б) 2; в) Ѕ; г) 4.
13. Вычислить . Ответ: ___________.
14. Вычислить . Ответ: _______________.
15. Вычислить log362-1/2log1/63. Ответ: ______________.
Уровень С (творческий).
Решить уравнение:
16. 2х+4+2х+2=5х+1+35х.17.
18. Решить неравенство .
19. Упростить выражение
20. При различных значениях а решить неравенство .
2 вариант.
Уровень А (репродуктивный).
1. На каком из рисунков изображен график степенной функции при p=2n:

 SHAPE  \* MERGEFORMAT
 А) Б) В)
2. Укажите область определения у = х1/2.
а) (-; +); б) [0;+ ); в) (1; +); г) (-; 0).
3. На каком из рисунков изображен график функции у=х-5:
 SHAPE  \* MERGEFORMAT
а)б)в)
4. Вычислить log5125:
a) 5; б) 3; в) 2; г) 25.
5. Найдите значение выражения 2log25:
а) 5; б) 25; в) 2; г) 1.
Уровень В (конструктивный).
6. Решить уравнение 2х+1=1:
а) 0; б) 1; в) -1; г) 2.
7. Решить уравнение:
а) 26; б) 9; в) 24; г) 11.
8. Решить неравенство:
а) [21;+ ); б) (21; + ); в) (-; 21); г) (-; 21].
9. Решить уравнение 2х-1+2х=192:
а) 2; б) 5; в) 63; г) 4.
10. Решить неравенство:
а) (-; 0]; б) [0; +); в) (-; 0); г) [0; +).
11. Решить неравенство 4х-2х-2>0;
а) (1; +); б) (-; 1); в) (-1; +); г) (-; 1).
12. Решить уравнение :
а) 33,5; б) 39; в) 30Ѕ; г) 40.
13. Вычислить. Ответ: ___________.
14. Вычислить. Ответ: _______________.
15. Вычислить 2log 2530+log 0,26. Ответ: ______________.
Уровень С (творческий).
Решить уравнение:
16. .17.
18. Решить неравенство .
19. Упростить выражение
20. При различных значениях а решить неравенство .
Контрольная работа по алгебре: 10 профильный класс, итоговый срез, 2004-2005 учебный год. Учитель высшей категории Т.А.Шевченко
1 вариант.
Уровень А (репродуктивный).
1.                На тригонометрическом круге покажите расположение чисел
а) arcsin ; б) arctg (-2).
2) Запишите формулы корней уравнений и укажите область их применения (множество значений входящих в них букв)
а) sin x=a; б) cos x=1.
3. Выясните, является ли функция четной, нечетной или не обладает этими свойствами y=-.
4. Запишите с помощью формул правило для вычисления производной функции в точке х0.
5.Функция у=f(x) задана графиком. Укажите:
а) критические точки функции; б) точки экстремумов; в) точки области определения, где производная функции не определена.
Уровень В (конструктивный).
1.                Найдите производную функции у=(2х-3)2.
2.                Решите уравнение х3+6х2+3х-10=0.
3.                Решите неравенство sin 2x
4.                Найдите область определения функции у=.
5.                Упростите выражение .
6.                вычислите tg(arcsin).
7.                Написать уравнение наклонной асимптоты при х→ + к графику функции у=.
8.                Функция у=f(x) определена на промежутке (а; 6). График ее производной изображен на рисунке. Укажите точку максимума функции у=f(x).
9.                Решите уравнение .
10.           Найдите значение выражения .
Уровень С (творческий).
1.                Решите уравнение 5tg x+cos2 x+sin 2x=1.
2.                Найдите множество значений функции у=2sin x+cos x-5.
    продолжение
--PAGE_BREAK--3.                Вычислите предел .
4.                Решите уравнение касательной к графику функции у= f(x)=6х2-х-4, проходящего через точку М(0; -100).
5.                В прямоугольном параллелепипеде две грани с общим ребром покрасили в голубой цвет, а остальные грани – в белый. Площадь белых граней равна 504, а одна из голубых граней – квадрат. Найдите наименьшее значение суммы длин всех ребер параллелепипеда, не являющихся ребрами голубых граней.
2 вариант.
Уровень А (репродуктивный).
1.                На тригонометрическом круге покажите расположение чисел
а) arccos (-); б) arctg 1,5.
2) Запишите формулы корней уравнений и укажите область их применения (множество значений входящих в них букв)
а) cos x=a; б) sin x=0.
3. Выясните, является ли функция четной, нечетной или не обладает этими свойствами y=.
4. Запишите с помощью формул правило для вычисления производной частного двух функций.
5.Функция у=f(x) задана графиком. Укажите:
а) критические точки функции; б) точки экстремумов; в) точки области определения, где производная функции не определена.
Уровень В (конструктивный).
1.                Найдите производную функции у=
2.                Решите уравнение х3+4х2-7х-10=0.
3.                Решите неравенство cos 3x>0,5.
4.                Найдите область определения функции у=.
5.                Упростите выражение.
6.                Вычислите tg(arccos).
7.                Написать уравнение наклонной асимптоты при х→ + к графику функции у=.
8.                Функция у=f(x) определена на промежутке (а; 6). График ее производной изображен на рисунке. Укажите длину промежутка возрастания функции у=f(x).
9.                Решите уравнение.
10.           Найдите значение выражения.
Уровень С (творческий).
1.                Решите уравнение 12сtg x-2sin 2x=1+cos 2x.
2.                Найдите множество значений функции у=2 cos x +2sin x+ 7.
3.                Вычислите предел.
4.                Решите уравнение касательной к графику функции у= f(x)=7х2-2х-5, проходящего через точку М(2; -93).
5.                На графике функции f(x)=х2-2 найдите точку, ближайшую к точке А(0,5; -0,75).
3 вариант.
Уровень А (репродуктивный).
1.                На тригонометрическом круге покажите расположение чисел
а) arctg 1,5; б) arccos (-0,7).
2) Запишите формулы корней уравнений и укажите область их применения (множество значений входящих в них букв)
а) tg x=a; б) cos x =1.
3. Выясните, является ли функция четной, нечетной или не обладает этими свойствами y=.
4. Запишите с помощью формул правило для вычисления производной произведения двух функций.
5.Функция у=f(x) задана графиком. Укажите:
а) критические точки функции; б) точки экстремумов; в) точки области определения, где производная функции не определена.
Уровень В (конструктивный).
1.                Найдите производную функции у=(1+sin x)2.
2.                Решите уравнение х3-6х2+3х+10=0.
3.                Решите неравенство tg ≥-.
4.                Найдите область определения функции у=.
5.                Упростите выражение.
6.                Вычислите сtg(arcsin 0,8).
7.                Написать уравнение наклонной асимптоты при х→ + к графику функции у=.
8.                Функция у=f(x) определена на промежутке (а; 6). График ее производной изображен на рисунке. Укажите точку минимума функции у=f(x).
9.                Решите уравнение+4=х.
10.           Найдите значение выражения.
Уровень С (творческий).
1.                Решите уравнение sin 2x +1= sin2 x+6ctg x.
2.                Найдите множество значений функции у=3sin x- 2cos x + 1.
3.                Вычислите предел.
4.                Решите уравнение касательной к графику функции у= f(x)=4х2-8х-2, проходящего через точку
М(3; -90).
5.                В прямоугольном параллелепипеде две грани с общим ребром покрасили в фиолетовый цвет, а остальные грани – в белый. Площадь белых граней равна 1080. белые грани, имеющие по два общих ребра с фиолетовыми гранями, являются квадратами. Найдите наименьшее значение суммы длин всех ребер параллелепипеда, исключая общее ребро фиолетовых ранней.
Контрольная работа по алгебре: 11 класс, нулевой срез, 2004-2005 учебный год. Учитель высшей категории И.Г. Сазыкина.
Iвариант.
Уровень А (репродуктивный)
                                                3+х
1.                Решите неравенство — ≤ 0
                                           (х+9)(х-1)
1) (-∞;-3]3) (-∞;-9)
2) [-3;1)U(9;+∞)4) (-∞;-3]U(1;9)
2.                Решите уравнение sin x — √3/2=0
 

3.                Укажите промежуток, которому принадлежит корень уравнения 34х+9=27
1) (1;3)2) [-1;0]3) [-3;-1]4) (0;1]
4.                Какому промежутку принадлежит корень уравнения log4х=log47+log43?
1) (8;12)2) (24;28)3) (18;22)4) (2;6)
5.                Вычислите 7-3•641/6
1) 12) 83) –54) -17
Уровень В (конструктивный).
                                                                          5 √а11
1.                Упростите выражение-----
                                                                             5√а
1) а12/52) а53) а24) а11/5
2.                На каком из следующих рисунков функция, заданная графиком, возрастает на промежутке
[-2;1]?
 

3.                Какое из следующих чисел входит в множество значений функции у=(1/8)х-2?
1) –12) –23) –34) –6.
4.                Укажите область определения функции у=4√1-23х+9
1) [–3;+∞)2) (-∞;-3]3) (-3/5;-1/3]4) [–1/3;+∞)
Уровень С (творческий).
1.                Сколько корней имеет уравнение (sin4x-cos4x)log2(1-x2)=0?
2.                Сплав алюминия и магния отличается большой прочностью и пластичностью. Взяли два таких сплава, сплавили их и получили сплав, содержащий 4% магния. Отношение масс первого и второго сплавов равно 3:2. Определите процент содержания магния во втором сплаве, если первый сплав содержит 6% магния.
3.                Решите систему уравнений
 

IIвариант.
Уровень А (репродуктивный).
                                          (х-8)(х+5)
1.                Решите неравенство — ≥ 0
                                                 4+х
1) [8;+∞)3) (-∞;-5]U(-4;8]
2) [-5;+∞)4) [-5;-4)U[8;+∞)
2.                Решите уравнение cos x — 1/2=0
 

3.                Укажите промежуток, которому принадлежит корень уравнения 26х+7=32
1) (1;3)2) (-3;-1]3) (-1;0)4) (0;1]
4.                Какому промежутку принадлежит корень уравнения log5х=log56+log53?
1) (17;21)2) (6;10)3) (13;17)4) (2;6)
5.                Вычислите 3•125⅓ — 0,3
1) 142) 14,73) 15,34) 15
Уровень В (конструктивный).
                                                                          5√а11
1.                Упростите выражение-----
                                                                              5√а
1) а12/52) а53) а24) а11/5
2.                На каком из следующих рисунков функция, заданная графиком, убывает на промежутке [3;7]?
 

3.                Какое из следующих чисел входит в множество значений функции у=11Х+11?
1) 12) 113) 124) 10
4.                Укажите область определения функции у=8√1-0,255х-8
1) [0;+∞)2) (-3;+∞)3) [1,6;+∞)4) [0,625;+∞)
Уровень С (творческий).
1.                Сколько корней имеет уравнение (sin4x-cos4x)log2(1-x2)=0?
2.                Из двух сплавов, содержащих алюминий и магний, получили 4 кг нового сплава, в котором содержится 5% магния. Масса первого сплава, в котором 4% магния, в 4 раза меньше массы второго сплава. Сколько граммов магния содержалось во втором сплаве?
3.                Решите систему уравнений
 

Таблица 6. Контроль знаний и умений учащихся по математике.
№ п.п.
Форма контроля
Классы
5
6
7
8
9
10
11
1
Тестовый (нулевой контрольный срез)

6а, б, в, г, д
7а, б, в, г, д
8а, в, г
9а, в, б, г
10в, г
11в, г
2
Контрольная работа (разноуровневые контрольные задания)

6а, б, в, г, д
7а, б, в, г, д
8а, в, г
9а, б, в, г
10в, г
11в, г
3
Тестовый (итоговый контрольный срез)

6а, б, в, г, д
7а, б, в, г, д
8а, в, г
9а, б, в, г
10а, в, г
11в, г
Таблица 7. Результаты тестовой формы контроля (нулевой и промежуточный срезы).
класс
Число учащихся в классе
Число учащихся, выполнявших контрольную работу
Отметка
Среднее значение балла
Коэффициент успешности
Ф.И.О. учителя
5
4
3
2

20
20

4
11
5
3,0
0,48
Гордеева Э.Ш.

28
27

12
13
2
3,8
0,83
Кузнецова Г.А.
10а
25
25
3
9
13

3,6
0,84
Шевченко Т.А.
10в
18
18
1
6
10
1
3,4
0,67
Симатова М.Ю.
10г
19
19
2
8
8
1
3,5
0,72

21
19
4
5
8
2
3,6
0,72
Федорова Н.В.

24
23
5
10
6
2
4,3
0,86
Сазыкина И.Г.
11в
24
24
5
14
3
2
4
0,80
11г
24
24
2
0
8
4
3,4
0,68
Выводы: Учащиеся с работой справились хорошо, показав достаточно высокий результат остаточных знаний и умений в классах 11в, 9б, 9а, 10а, учителя Сазыкина И.Г., Федорова Н.В., Шевченко Т.А. Подобрать систему заданий для учащихся, допустивших типичные ошибки при выполнении контрольной работы.

Таблица 8.
№п.п.
класс
Число учащихся в классе
Число учащихся, выполнявших контрольную работу
Отметка
Среднее значение балла
Коэффициент успешности
Ф.И.О. учителя
5
4
3
2
1.

20
15
5
5
5

4,0
0,80
Гордеева Э.Ш.
2.

28
24
5
7
11
1
3,7
0,63
Кузнецова Г.А.
3.
10а
25
25
6
9
9
1
3,8
0,56
Шевченко Т.А.
4.
10в
18
18

8
10

3,4
0,68
Симатова М.Ю.
5.
10г
19
19
1
10
8

3,6
0,77
6.

21
19
4
6
7
2
3,7
0,63
Федорова Н.В.
7.

24
21
7
12
2

4,2
0,84
Сазыкина И.Г.
8.
11в
24
24
5
12
7

3,9
0,78
9.
11г
24
24
3
10
11

3,6
0,77
    продолжение
--PAGE_BREAK--Выводы: Учащиеся достаточно хорошо усвоили основные понятия и термины, особенно в классах с более высоким уровнем подготовки (9г, 10 а, в, г), поэтому первая часть работы тестовое задание выполнили практически все. Задание части В вызвало больше затруднений, так как требует хорошее знание алгоритмов и умение делать выводы.
Наибольший интерес вызвало тестовое задание. В целом с работой справились все учащиеся. Много ошибок было сделано по темам: нахождение части от числа, действия с числами с разными знаками, свойства степеней, свойства неравенств, нахождение области определения функции, сопоставление графика с функцией. Следовательно, необходимо обратить внимание на данные темы в ходе повторения. Работа, составленная по трем этапам заданий, позволяет более глубоко оценить усвоенные знания учащихся и выявить пробелы.

Таблица 9. Результаты итоговой контрольной работы.
класс
Число учащихся в классе
Число учащихся, выполнявших контрольную работу
баллы
Отметка
Ф.И.О. учителя
уровень А
Уровень В
Уровень С
общий
10а
25
25
3,5
7,45
7,23
18,18
3,3
Шевченко Т.А.
10в
18
18
3,2
8,36
5,3
16,86
3,3
Симатова М.Ю.
10г
19
19
4,6
8,56
10,3
23,46
4,2

28
25
3,6
7,3
5,3
16,2
3,1
Выводы: Все экспериментальные классы справились с контрольной работой. Высокие результаты показали 10г класс (учитель Симатова М.Ю.). Задание части В вызвало больше затруднений, так как требует хорошее знание алгоритмов и умение делать выводы. К заданиям части С многие учащиеся не приступили, т.к. оно требует умения использовать алгоритмы, но и уметь переносить знания из одной области в другую, выполнять анализ данных.
В ходе повторения необходимо подобрать систему заданий учащимся, допустившим типичные ошибки при выполнении контрольной работы.
1.2 Контроль и оценка знаний и умений учащихся по информатики
Учитель 1 категории Т.Ю.Ерёмина
Классы: 10 Б, 10 В (химико-биологический), 10 Г (гуманитарный), 10 Д, 10 Е.
Таблица 10. Структура учебной нагрузки
№ п/п
Классы
Количество часов в параллели
Классы, участвующие в эксперименте
Предпрофильная подготовка
Профильная ориентация
1
10В
20
10В (хим-био)
2
10Е
28
10Е

3. Формы контроля знаний, умений и навыков экспериментальных классов
Таблица 11
№ п/п
Форма контроля
10 классы
2
Защита проекта (создание презентации с помощью PowerPoint)
10В, 10Е
3
Тестовый (итоговый контрольный срез)
10В, 10Е
Знания и умения учащихся по уровням требований по информатике.
Таблица 12.
Уровни требований/ уровни КОЗ
Низкий
Средний
Высокий
Репродуктивный
Узнавание и различение основных информационных определений и обозначений. Понимание назначения и области использования основных технических средств информационных и коммуникационных технологий и информационных ресурсов
Знание основных понятий, отражающих вклад информатики в формирование современной научной картины мира, роль информационных процессов в обществе, биологических и технических системах. Умение иллюстрировать эти знания на примерах и применять в соответствующей ситуации.
Умение оперировать различными видами информационных объектов, в том числе с помощью компьютера, соотносить полученные результаты с реальными объектами.
Конструктивный
Умение оперировать различными видами информационных объектов, в том числе с помощью компьютера, соотносить полученные результаты с реальными объектами.
Умение систематизировать и обобщать знания об информационных объектах и их свойствах, используя имеющиеся знания о возможностях информационных и коммуникационных технологий. Умение оценивать числовые параметры информационных объектов и процессов.
Умение применять теоретические знания для построения информационных моделей объектов, систем и процессов, используя для этого типовые средства (таблицы, графики, диаграммы, формулы и т.п.), систематизировать и обобщать результаты, рационализировать способы решения и соответствующего сопровождения – графического, письменного и устного оформления. Уверенное владение известными приемами моделирования, обосновывать этапы моделирования и контролировать выполнение промежуточных действий.
Творческий
Умение систематизировать и обобщать знания об информационных объектах и их свойствах, об основных технических средствах информационных и компьютерных технологий.
Умение оценивать числовые параметры информационных объектов и процессов.
Умение применять теоретические знания для построения информационных моделей объектов, систем и процессов, используя для этого типовые средства (таблицы, графики, диаграммы, формулы и т.п.), систематизировать и обобщать результаты, рационализировать способы решения и соответствующего сопровождения – графического, письменного и устного оформления. Уверенное владение известными приемами моделирования, обосновывать этапы моделирования и контролировать выполнение промежуточных действий.
Глубокое знание теоретического материала, умение сочетать различные приемы моделирования при решении задач, обосновать и рационально оформить самостоятельно найденное решение, безошибочно выполнить все промежуточные действия. Интерпретировать результаты, получаемые в ходе моделирования реальных объектов.
 
Контрольная работа по информатике: 10 класс, итоговый срез, 2004-2005 учебный год.
Учитель 1 категории Т.Ю. Еремина
Часть А.
1.                За минимальную единицу измерения количества информации принят…
1) 1 бод2) 1 пиксель3) 1 байт4) 1 бит
2.                Основной микросхемой, управляющей работой всех блоков компьютера и производящей обработку информации, является…
1) регистр2) процессор3) контроллер4) адаптер
3.                Файл – это …
1)                единица измерения информации;
2)                программа или данные на диске, имеющие имя;
3)                программа в оперативной памяти;
4)                текст, распечатанный на принтере.
4.                В растровом графическом редакторе изображение формируется из …
1)                линий;
2)                окружностей;
3)                прямоугольников;
4)                пикселей.
5.                Гипертекст – это…
1)                очень большой текст;
2)                текст, в котором могут осуществляться переходы по выделенным ссылкам;
3)                текст, набранный на компьютере;
4)                текст, в котором используется шрифт большого размера.
Часть В.
6.                В барабане для розыгрыша лотереи находится 64 шара, причем среди них нет шаров с одинаковыми номерами. Сколько информации несет сообщение, что из барабана достали шар с номером 21?
1) 1 бит2) 8 байт3) 6 бит4) 21 бит
7. Для записи фрагмента текста из 80 символов использовался алфавит, который состоит из 32 букв. Какой объем информации содержит такой фрагмент текста?
1) 400 бит2) 32 бита3) 80 бит4) 8 байт
8. Черно-белое (без градаций серого) растровое графическое изображение имеет размер 10х10 точек. Какой объем памяти займет это изображение?
1) 100 бит2) 100 байт3) 10Кбайт4) 1000бит
9. Как записывается десятичное число 1210 в двоичной системе счисления?
1) 11112) 11003) 10114) 1001
10. Файл с именем r_w.exe находится на логическом диске D, в каталоге TRANSFER, в подкаталоге WORK. Путем доступа к файлу r_w.exeявляется …
1)                TRANSFER\r_w.exe;
2)                D:\TRANSFER\WORK\r_w.exe;
3)                D:\r_w.exe;
4)                D:\WORK\r_w.exe;
11. Для приведенного ниже абзаца текста выберите номер варианта, в котором правильно указаны использованные при наборе элементы форматирования…
Шаровой, или сферической поверхностью называется геометрическое место точек пространства, равноудаленных от одной точки – центра шара.
№ варианта
Наличие красной строки
Выравнивание абзаца
Стиль начертания символов
1
нет
по центру
полужирный, все буквы прописные
2
красная строка
по левому краю
обычный
3
красная строка
по правому краю
обычный и полужирный
4
красная строка
по ширине
обычный и курсив
12. Какой вид примет содержащая абсолютную и относительную ссылку формула, записанная в ячейке С1, после ее копирования в ячейку С2?
А
В
С
1
5
10
=$A$1*B1
2
15
1) =$A$1*B23) =$A$2*B1
2) =$A$1*B14) =$A$2*B2
13. Какой результат будет вычислен в ячейке С2 после копирования в нее формулы из ячейки С1, которая содержит абсолютную и относительную ссылку?
А
В
С
1
5
10
=$A$1*B1
2
15
1) 03) 50
2) 254) 75
14. Какова таблица истинности логической функции F=A&B?
1)
A
B
F
0
0
0
0
1
0
1
0
0
1
1
1

2)
A
B
F
0
0
0
0
1
1
1
0
1
1
1
1
3)
A
B
F
0
0
0
0
1
1
1
0
0
1
1
1
4)
A
B
F
0
0
1
0
1
1
1
0
1
1
1
1
15. Логическое выражение A&A равносильно:
1) 02) 13) А4) А
Часть С.
16. Для записи текста использовался 256-символьный алфавит. Каждая страница содержит 30 строк по 70 символов в строке. Какой объем информации содержат 5 страниц текста?
17. 256-цветный рисунок содержит 120 байт информации. Из скольких точек он состоит?
18. Сложить числа 11012 и 810. Сумму представить в двоичной системе счисления.
9. По данным электронной таблицы построена диаграмма. Укажите имя столбца таблицы, данные которого отражены на диаграмме?

\s
20. Составить таблицу истинности для формулы X&YvX.
Средний уровень
Часть А.
1. Чему равен 1 байт?
1) 8 бит2) 210 бит3) 10 бит4) 103 бит
2. Где должна находиться программа, команды которой в текущий момент выполняет процессор?
1) в оперативной памяти;
2) на жестком диске;
3) на устройстве ввода;
4) в постоянном запоминающем устройстве.
3. Операционная система – это …
1)                программа, обеспечивающая управление базами данных;
2)                антивирусная программа;
3)                программа, управляющая работой компьютера;
4)                система программирования.
4. В растровом графическом редакторе минимальным объектом, цвет которого можно изменить, является…
1) точка экрана (пиксель);
2) графический примитив (точка, линия, окружность и т.д.)
3) знакоместо (символ);
4) выделенная область.
5. Абзацем в текстовом редакторе является…
1)                фрагмент документа между двумя маркерами абзаца;
2)                выделенный фрагмент документа;
3)                строка символов;
4)                фрагмент документа, начинающийся с отступа (красной строки).
Часть В.
6. Какое количество информации получит второй игрок при игре в крестики-нолики на поле 8х8, после первого хода первого игрока, играющего крестиками?
1) 4 бита2) 5 бит3) 6 бит4) 7 бит
7. Информационное сообщение объемом 1,5 Кбайта содержит 3072 символа. Сколько символов содержит алфавит, с помощью которого было записано это сообщение?
1) 4 символа2) 16 символов3) 32 символа4) 8 символов
8. Цветное (с палитрой из 256 цветов) растровое графическое изображение имеет размер 10х10 точек. Какой объем памяти займет это изображение?
1) 100 бит2) 400 бит3) 800 бит4) 10 байт
9. Как записывается восьмеричное число 678 в десятичной системе счисления?
1) 532) 543) 554) 56
10. Файловую систему обычно изображают в виде дерева, где «ветки» — это каталоги (папки), а «листья» — это файлы (документы). Что может располагаться непосредственно в корневом каталоге, т.е. на «стволе» дерева?
1) каталоги и файлы;3) только файлы;
2) только каталоги;4) ничего
11. Для приведенного ниже абзаца текста использовались элементы форматирования…
Поисковая система – специальный Web-узел, предназначенный для автоматизации поиска в Интернет нужной информации с использованием ключевых слов.

1)           отрицательный выступ, выравнивание по левому краю, шрифт с засечками, обычное и полужирное начертание;
2)           красная строка, выравнивание по левому краю, шрифт с засечками, обычное и полужирное начертание;
3)           красная строка, выравнивание по ширине, шрифт рубленый, полужирное и курсивное начертание;
4)           выравнивание по центру, шрифт с засечками, полужирное начертание
12. В результате использования функции в ячейке D1 появилось число, равное 9. В ячейке D1 записана функция…
A
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Что считать браком в полиграфии?
Реферат Функции и методы инновационного менеджмента
Реферат Идейная направленность романа Ф М Достоевского Униженные и оскорбленные
Реферат Индексы в социально-экономической статистике
Реферат Особливості кримінальної відповідальності неповнолітніх Примусові заходи медичного характеру с
Реферат Колонизация русским Сибири и Дальнего востока в XVII веке
Реферат Налоговое регулирование инновационной деятельности (на примере предприятий Железнодорожного района г. Витебска)
Реферат Древняя Индия
Реферат Эвфемизмы как средство манипулирования в языке СМИ (на материале русского и английского языков)
Реферат Задачи по статистике (пять штук)
Реферат Активизация познавательной деятельности на уроках географии через использование икт
Реферат McDonald's
Реферат Plato Essay Research Paper The Use of
Реферат Засоби невербального спілкування
Реферат Генетический и геолого-промышленный тип Верхнекамского месторождения (Быгельско-Троицкий участок)