Реферат по предмету "Педагогика"


Методика изучения показательной и логарифмической функции в курсе средней школы Простейшие показательные 3

Министерство образования Республики Беларусь
Учреждение образования
«Гомельский государственный университет им. Ф. Скорины»
Математический факультет
Кафедра МПМ














Методика изучения показательной и логарифмической функции в курсе средней школы. Простейшие показательные и логарифмические уравнения и неравенства
Реферат




Исполнитель:
Студентка группы М-32 Малайчук А.Ю.
Научный руководитель:
Канд. физ-мат. наук, доцент Лебедева М.Т.








Гомель 2007
Содержание


Введение
1. Образовательные цели изучения темы «Показательная и логарифмическая функции» в средней школе
2. Методика изучения свойств степеней и логарифмов. Введение определения показательной школе показательной функций, ее свойства и их приложения
З. Понятие обратной функции и методика его введения
4. Методика изучения логарифмической функции, ее свойств и их приложения. Производная показательной и логарифмической функции
Заключение
Литература

Введение


Ознакомление учащихся с показательной и логарифмической функциями начиная с изучения свойств степеней и логарифмов.
Курс алгебры знакомит учащихся с понятием степени с рациональным показателем. Таким образом для любого основания степени /> (где />, />). Можно построить функцию: />, />, область определения которой – множество действительных чисел, необходимо ввести определение, степени с иррациональным показателем. Используемое свойство степени с основным, например, большим единицы (возрастании), рациональное приближение иррационального числа α: r1


1. Образовательные цели изучения темы «Показательная и логарифмическая функции» в средней школе


Изучение темы «Показательная, логарифмическая и степенная функции» в курсе алгебры и начала анализа предусматривает знакомство учащихся с вопросами:
Обобщение понятия о степени; понятие о степени с иррациональным показателем; решение иррациональных уравнений и их систем; показательная функция, ее свойства и график; основные показательные тождества:


/>; />;


тождественные преобразования показательных выражений; решение показательных уравнений, неравенств и систем; понятие об обратной функции; логарифмическая функция, ее свойства и график; основные логарифмические тождества:


/>/>; />;


тождественные преобразования логарифмических выражений; решение логарифмических уравнений, неравенств и систем; производная показательной функции; число е и натуральный логарифм; производная степенной функции; дифференциальное уравнение радиоактивного распада.
Основная цель – привести в систему и обобщить имеющиеся у учащихся сведения о степени, ознакомить их с показательной, логарифмической и степенной функциями и их свойствами (включая сведения о числе е и натуральных логарифмах); научить решать несложные показательные и логарифмические уравнения, их системы (содержащие также и иррациональные уравнения).
Рассматриваются свойства и графики трех элементарных функций: показательной, логарифмической и степенной. Систематизация свойств указанных функций осуществляется в соответствии с принятой схемой исследования функций. Достаточное внимание должно быть уделено работе с логарифмическими тождествами: тождественные преобразования логарифмических выражений применяются как при изложении теоретических вопросов курса (например, при выводе формулы производной показательной функции), так и при выполнении различного рода упражнений, например, решение логарифмических уравнений и неравенств.
Приведен краткий обзор свойств степенной функции /> в зависимости от различных значений показателя р.
Особое внимание уделяется показательной функции как той математической модели, которая находит наиболее широкое применение при изучении процессов и явлений окружающей действительности. Рассматриваются примеры различных процессов (например, радиоактивный распад, изменение температуры тела); показывается, что решение дифференциальных уравнений, описывающих эти процессы, является показательная функция. В связи с этим для показательной функции дается формула производной, вывод которой проводится с привлечением интуитивных представлений учащихся.
В ходе изучения свойств показательной, логарифмической и степенной функций учащиеся систематически решают простейшие показательные и логарифмические уравнения и неравенства, а также иррациональные уравнения. По мере закрепления соответствующих умений целесообразно также предлагать им уравнения и неравенства, сводящиеся к простейшим в результате несложных тождественных преобразований.


2. Методика изучения свойств степеней и логарифмов. Введение определения показательной школе показательной функций, ее свойства и их приложения


Ознакомление учащихся с показательной и логарифмической функциями начиная с изучения свойств степеней и логарифмов.
Курс алгебры знакомит учащихся с понятием степени с рациональным показателем. Таким образом для любого основания степени /> (где />, />). Можно построить функцию: />, />, область определения которой – множество действительных чисел, необходимо ввести определение, степени с иррациональным показателем. Используемое свойство степени с основным, например, большим единицы (возрастании), рациональное приближение иррационального числа α: r1
Затем формируется определение показательной функции: функция, заданная формулой y=ax(/>, />), называется показательной функцией с основанием a, и формулируемые основные свойства: D(ax)=R; E(ax)=RТ; ax возрастает при a>1 и ax убывает при 0
В качестве приложения свойств показательной функции рассматриваются решения простейших показательных уравнений и неравенств.
Логарифмическая функция – новый математический объект для учащихся. К понятию логарифма учащихся подводят в процессе решения показательного уравнения ax=b в том случае, если b нельзя представить в виде степени с основанием a. Наше уравнение в случае b>0 имеет единственный корень, который называют логарифмом b по основанию a и обозначают logab, т.е. alogab=b. Одновременно с введением нового понятия учащиеся знакомятся с основным Логарифмическим тождеством. При работе с логарифмами применяются следующие их свойства, вытекающие из свойств показательной функции:--PAGE_BREAK--
При любом /> (/>) и любых положительных x и y, выполнены равенства:


1. loga1=0
2. logaa=1
3. logaxy= logax+ logay
4. logax/y= logax- logay
5. logaxp= plogax


При доказательстве используется основное логарифмическое тождество:


x=alogax; y=alogay


Рассмотрим доказательство 3:


xy=alogax alogay=alogax+logay т.е. xy=alogax+logay=alogaxy, ч.т.д.


Основные свойства логарифма широко применяются в ходе преобразования выражений, содержащих логарифмы.
№497 (Алгебра и начала анализа, 10-11)
Найти />, если:


/>


т.е. равны основания логарифмов, равны значения логарифмов /> равны логарифмируемые выражения. Этот прием рассуждения в дальнейшем будет применим при решении простейших логарифмических уравнений.

З. Понятие обратной функции и методика его введения


Наиболее доступным введение логарифмической функции можно было бы провести после введения понятия обратной функции. Однако методика изложения темы об обратной функции сложна из-за сложных самого материала. Тема «Понятие об обратной функции» приведена в учебнике «Алгебры и начала анализа. 10-11» и рассчитана на необязательное изучение. В эту тему входят:
1) обратимость функций, связанное с решением следующих задач: вычислить значение функции /> по данному значению аргумента /> и найти значение аргументов, при которых функция /> принимает данное значение />. Вторая задача не всегда имеет единственное решение (например, для />, />). Функция принимает каждое свое значение в единственной точке области определения, называется обратимой, т.е. если /> обратима, а число /> принадлежит />, то уравнения /> имеет решение и притом только одно.
2) Обратная функция – как новое понятие – поясняется на конкретных примерах.
Определение. Пусть /> — произвольная обратимая функция. Для любого числа /> из ее области значений /> имеется в точности одно значение />, принадлежащее области определения />, такое, что: />. Поставив в соответствие каждому /> это значение />, получим новую функцию /> с областью определения /> и областью значений />.
Задача. Найти функцию, обратную функции


/>
/>


Покажем, что уравнения /> при любом значении /> имеет единственное решение />.


/>, где />.


Если вспомнить область значения данной функции />, то получаем положительный ответ. Таким образом, наша функция обратима и обратная ей функция


/>


Алгоритм решения таких задач: найти /> и /> данной функции />; поменять местами в формуле переменные />, т.е. получить формулу /> и из полученного равенства выразить /> через />.
В более сложных случаях (когда функция не является обратимой на всей области определения) следует пользоваться теоремой: об обратной функции:
Если функция f возрастает (или убывает) на промежутке I, то она обратима. Обратная к f функция g, определенная в области значений f, также является возрастающей (или убывающей).
Задача. Найти функции, обратные функции y=x2-3x+2.


x=y2-3y+2=y2-2y*3/2+9/4-9/4+2=(y-3/2)2-¼ => (y-3/2)2=x+1/4, где x≥-1/4 => y1=3/2+(x+1/4)1/2 и y2=3/2-(x+1/4)1/2.
D(y1)= D(y2)=E(x2-3x+2)=[-1/4;+∞)


Для нахождения областей значений обратных функций обратимся к графику, используя следующее свойство:
Графики функции f и обратной к ней функции g симметричны относительно прямой y=x.


x2-3x+2=0 => x1=1; x2=2
xв=3/2; yв=-1/4


0100090000031602000002009601000000009601000026060f002203574d46430100000000000100da6e0000000001000000000300000000000000030000010000006c0000000000000000000000080000001000000000000000000000007a220000a51c000020454d4600000100000300001000000002000000000000000000000000000000900600001a040000b801000013010000000000000000000000000000c0b6060038320400160000000c000000180000000a00000010000000000000000000000009000000100000005101000018010000520000007001000001000000f1ffffff00000000000000000000000090010000000000cc04400022430061006c006900620072006900000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001100dc5f11001000000040631100c060110052516032406311003860110010000000a8611100246311002451603240631100386011002000000049642f31386011004063110020000000ffffffff1c05f700d0642f31ffffffffffff0180ffff0180efff0180ffffffff0000000000080000000800004300000001000000000000006000000025000000372e9001cc00020f0502020204030204ef0200a07b20004000000000000000009f00000000000000430061006c00690062007200000000000000000000611100dee32e31e88d0832606411006c6011009c3827310900000001000000a8601100a8601100e878253109000000d06011001c05f7006476000800000000250000000c00000001000000250000000c00000001000000250000000c00000001000000120000000c00000001000000180000000c00000000000002540000005400000000000000000000000800000010000000010000001886d1411886d141000000000d000000010000004c000000040000000000000000000000510100001801000050000000200039040900000046000000280000001c0000004744494302000000ffffffffffffffff5201000019010000000000004600000014000000080000004744494303000000250000000c0000000e000080250000000c0000000e0000800e000000140000000000000010000000140000000400000003010800050000000b0200000000050000000c0218015101040000002e0118001c000000fb02f1ff0000000000009001000000cc0440002243616c6962726900000000000000000000000000000000000000000000000000040000002d010000040000002d010000040000002d0100000400000002010100050000000902000000020d000000320a0d000000010004000000000051011801205909001c000000fb021000070000000000bc02000000cc0102022253797374656d0000000000000000000000000000000000000000000000000000040000002d010100040000002d010100030000000000    продолжение
--PAGE_BREAK--


Из графика видно, что


E(y1)=[3/2;+∞), E(y2)=(-∞;3/2].

4. Методика изучения логарифмической функции, ее свойств и их приложения. Производная показательной и логарифмической функции


Методика изучения логарифмической функции
Изучение логарифмической функции начинается с выделения определения: функцию, заданную формулой /> называют логарифмической функцией с основанием />. Основные свойства выводится из свойств показательной функции:


1. />,


т.к. при решении уравнения


/>/>/>,


т.е. любое положительное число /> имеет логарифм по основанию />.


2. />,


т.к. по определению логарифма любого действительного числа /> справедливо равенство:


/>,


т.е. функции вида /> принимает значение /> в точке />.
3. Логарифмическая функция на всей области определения возрастает (при a>1) или убывает (при 0
Покажем, что /> при a>1 возрастает. Пусть /> и />, надо доказать, что: />. Допустим противное, т.е. что />. Т.к. показательная функция /> при a>1 возрастает, то из неравенства /> следует: />/>/>, что противоречит выбору />. Следовательно: /> и функция /> при a>1 – возрастает.
Т.к. при a>1 функция возрастает, то логарифмическая функция положительна при x>1 и отрицательна для 0
Производная показательной и логарифмической функции
Приступая к изучению производной показательной и логарифмической функций, учащиеся знакомятся с новым для них числом e. Необходимость появления этого числа связывается с решением задачи о касательной к графику показательной функции, с угловым коэффициентом, равным 1, т.е. без доказательства принимается следующее утверждение:
существует такое число, больше 2 и меньшее 3 (это число обозначают буквой е), что показательная функция y=ex в точке 0 имеет производную, равную 1, т.е. (eΔx-1)/Δx à при Δxà0.
Теорема: функция eæ дифференцируема в каждой точке области определения и (ex)'= ex. Опр.: Натуральным логарифмом называется логарифмом по основанию е:


ln x = logex


Верносоотношение:


eln a=a => ax=(eln a)x=ex ln a.


Теорема: показательная функция аx дифференцируема в каждой точке области определения, и:
(ax)'=axln a


Дифференцируемость логарифмической функции следует из того, что: графики у=ах и у=log ax симметричны относительно у=х. Показательная функция дифференцируема в любой точке, а ее производная не обращается в нуль, график показательной функции имеет негоризонтальную касательную в каждой точке. Поэтому и график логарифмической функции имеет невертикальную касательную в любой точке, а это равносильно дифференцируемости логарифмической функции на ее области определения.
Производная логарифмической функции для любого х из области определения находится по формуле: ln'x=1/x.


x=elnx => x'=(elnx)', n/r/ x'=1 => (elnx)'=1 => elnx(ln x)'=1 => ln'x=1/elnx=1/x.


Заключение


Изучение темы «Показательная, логарифмическая и степенная функции» в курсе алгебры и начала анализа предусматривает знакомство учащихся с вопросами:
Обобщение понятия о степени; понятие о степени с иррациональным показателем; решение иррациональных уравнений и их систем; показательная функция, ее свойства и график; основные показательные тождества:


/>; />;


тождественные преобразования показательных выражений; решение показательных уравнений, неравенств и систем; понятие об обратной функции; логарифмическая функция, ее свойства и график; основные логарифмические тождества:


/>/>; />;


тождественные преобразования логарифмических выражений; решение логарифмических уравнений, неравенств и систем; производная показательной функции; число е и натуральный логарифм; производная степенной функции; дифференциальное уравнение радиоактивного распада.


Литература


1. К.О. Ананченко «Общая методика преподавания математики в школе», Мн., «Унiверсiтэцкае»,1997г.
2.Н.М.Рогановский «Методика преподавания в средней школе», Мн., «Высшая школа», 1990г.
3.Г.Фройденталь «Математика как педагогическая задача», М., «Просвещение», 1998г.
4.Н.Н. «Математическая лаборатория», М., «Просвещение», 1997г.
5.Ю.М.Колягин «Методика преподавания математики в средней школе», М., «Просвещение», 1999г.
6.А.А.Столяр «Логические проблемы преподавания математики», Мн., «Высшая школа», 2000г.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат 01034, м. Київ-34, вул. Прорізна, 19, тел. (044) 284-08- 75, тел./факс (044) 278-01-03, Call-центр (044) 15-51
Реферат Статистические показатели экономического состояния предприятия
Реферат Повышение эффективности кабельных линий
Реферат Оценка факторов влияющих на производство и реализацию продукции
Реферат Nuclear Weapons And Defense Essay Research Paper
Реферат Teambuilding сегодня в Татарстане
Реферат Значение педагогических идей С Т Шацкого для развития отечественной социальной педагогики
Реферат 1. Настоящее Положение определяет порядок лицензирования торговли патронами к оружию, осуществляемой юридическими лицами
Реферат Культура России в XVIII в
Реферат Культурный слой усадеб – носитель информации о взаимодействии природы и общества (на примере музея-заповедника «Царицыно»)
Реферат Индонезийцы и полинезийцы
Реферат Эволюция элитных групп в организационных системах
Реферат Инвестиции в человеческий капитал 3
Реферат Скульптура кватроченте во Флоренции (Вероккьо)
Реферат Музыкальный романтизм: тенденции развития и особенности стиля