--PAGE_BREAK--
Глава 2. МЕТОДИКА ИЗУЧЕНИЯ КРИСТАЛЛОГИДРАТОВ В КУРСЕ ХИМИИ СРЕДНЕЙ ШКОЛЫ
2.1 Тема «Кристаллогидраты» в стандарте школьного образования
Стандарт среднего (полного) общего образования по химии определяет собой обязательных минимум, который должен изучаться в школе и предусматривает следующее содержание. В отношении кристаллогидратов это может проявиться в рамках:
Методы познания веществ и химических явлений: расчеты на массовую долю вещества находящуюся в растворе.
Экспериментальные основы химии: получение кристаллов солей, приготовление растворов.
Химия и жизнь: цемент и другие вяжущие.
Явления проходящих при растворении веществ в воде: разрушение кристаллической решетки, диффузия, диссоциация, гидратация [7].
2.2 Анализ содержания действующих программ по исследуемой теме
В настоящее время существует много программ по химии для средней школы. Эти программы отличаются друг от друга по содержанию, построению материала глубиной изложения вопросов. Но сходство всех программ проявляется в том, что они базируются на обязательном минимуме образования, который определяется стандартом. Мы приняли решение проанализировать не все программы по химии, а выбрали несколько программ, которые получили наибольшее распространение в Калужской области в настоящее время. Мы решили проанализировать программы и учебники следующих авторов:
1) программа для общеобразовательной учреждений (авторы: Гузей Л.С., Сорокин В.В, Суровцева О.С.)
2) программа по химии для общеобразовательных учреждений (автор: Габриелян О.С.)
3) программа по химии для общеобразовательных учреждений (автор: Ахметов Н.С.)
4) программа по химии для общеобразовательных учреждений (автор: Кузнецова Н.Е., Титова И.М., Гара Н.Н., Жегин А.Ю.) [13].
2.3 Анализ содержания темы «Кристаллогидраты» в школьных программах и учебниках
Итак, из проведенного анализа мы можем сделать следующие выводы. Наиболее удачный, в плане рассмотрения понятия кристаллогидраты, мы считаем программу и учебники Н.С. Ахметова. В данном учебно-методическом комплекте рассматриваются вопросы, касающиеся исследуемой нами темы. Четко вводятся понятия, в учебниках присутствует много вопросов и заданий, по исследуемой теме, для самостоятельного выполнения учащимися. В учебниках присутствуют задания с «жизненным» содержанием, что способствует развитию познавательного интереса учащихся (задачи на применение кристаллогидратов). В учебнике представлено большое количество лабораторных и практических работ (получение кристаллогидратов, их свойства) [3],[4],[5],[13].
В программе и учебниках Л.С. Гузея материал темы изложен на достаточно высоком уровне. В ней указывается на необходимость изучения кристаллогидратов, механизмов их образования, а так же изучение их на практике, т.е. через лабораторные и практические занятия. В этом учебнике много лабораторных и практических работ, причем есть лабораторные работы эвристического характера. В учебнике встречается достаточно много заданий для учащихся (на кристаллогидраты). Но к минусам, по нашему мнению, можно отнести недостаточную иллюстрированность учебника по данной тематике. В учебнике рассматриваются вопросы применения кристаллогидратов, но по нашему мнению недостаточно [13],[15],[16],[17],[18].
Анализируя учебники Н.С. Ахметова и Л.С. Гузея можно находить отличия и сходство по научному уровню изучения данной темы. Но здесь модно выделить главное, мы считаем, что именно в этих учебниках происходит поэтапное формирование знаний учащихся по исследуемой теме.
В программах учебниках О.С. Габриеляна и Н.Е. Кузнецовой вводятся только понятия о кристаллогидратах и не изучаются глубоко. После изучения каждой группы элементов довольно хорошо расписано применение их соединений (например, солей находящихся в виде кристаллогидратов). В учебнике мало заданий для учащихся. И понятие кристаллогидраты по нашему мнению не формируется как целое [13],[9],[10],[11],[12],[22],[23],[24],[25].
2.4 Реализация темы «кристаллогидраты» в контрольно-измерительных материалах (едином государственном экзамене)
Полученные знания учащимися о кристаллогидратах находят свое отражение в едином государственном экзамене по химии. Мы повели анализ материалов ЕГЭ и выявили вопросы посвященных кристаллогидратам.
Вывод: таким образом, проведенный анализ программ и учебников по химии на предмет содержания темы «кристаллогидраты», позволяет сделать вывод, что в проанализированной методической литературе материал изложен недостаточно полно. Вся изученная литература имеет свои недостатки, поэтому мы считаем, что необходимо осуществлять некоторое совершенствование процесса изучения кристаллогидратов, что подтверждает анализ материалов ЕГЭ, т.к. знания учащихся по данной тематике являются востребованными единой государственной аттестацией. Нашей последующей задачей является разработка методических рекомендаций к изучению данной темы, позволяющих по нашему мнению осуществлять изучение материала с минимальным расходом времени и сил учащихся. Данная методика должна способствовать формированию более глубокого и целостного представления учащихся о кристаллогидратах.
2.5 Возможности модернизации темы «кристаллогидраты»
Анализ прогарам и учебников показал нам структуру изложения учебного материала. На основе проделанной работы мы приходим к выводу о более эффективной структуре изучения данной темы. Целью данного раздела является рассмотрение возможностей модернизации содержания и методики изучения темы «кристаллогидраты» в курсе химии средней школы. В связи с малым количеством часов на изучение химии, мы не можем предложить достаточное количество уроков для более глубокого изучения темы, поэтому мы, прежде всего, ориентируемся на составление фрагментов уроков, а так же на модернизацию уже имеющегося содержания. В соответствии с поставленными целями мы планируем проводить их реализацию путем постановки и решения следующих познавательных задач.
1. Показать актуальность выбранной темы.
2. Расширить знания учащихся о кристаллогидратах.
3. Расширить знания учащихся о теории химической связи.
4. Использовать разнообразные методы активизации познавательной активности учащихся с целью более глубокого усвоения материала.
Реализацию поставленных задач мы планируем осуществлять через разработку следующих учебных мероприятий: планов уроков (кристаллогидраты, комплексные соединения, кальций и его соединения, силикатная промышленность, оксид углерода (IV). Карбонаты, оксид серы (VI). Сульфаты, теория электролитической диссоциации), лабораторных работ (установление формулы кристаллогидрата по данным анализа, наблюдение кристаллов под микроскопом), практических занятий (реакция обмена между оксидом меди (II) и серной кислотой), лабораторных опытов (получение бетона и железобетона), доклады (кристаллогидраты в природе), внеклассных мероприятий («Своя игра»). Далее приводится разработка лишь некоторых из них.
2.6 Методические рекомендации к изучению темы
План урока: теория электролитической диссоциации
Урок «Теория электролитической диссоциации» располагается по программе в 8 классе, после изучения основных классов неорганических веществ. На данном уроке рассматривается диссоциация веществ с разными типами связей, а так же мы вводим понятия о гидратах и кристаллогидратах.
Цели:
ОБРАЗОВАТЕЛЬНАЯ: раскрыть механизмы диссоциации веществ с разными типами связей, ввести понятия гидраты и кристаллогидраты.
ВОСПИТАТЕЛЬНАЯ: в целях формирования научной картины мира, показать действие законов диалектики, взаимосвязь полярностей связей и типа электролитической диссоциации.
РАЗВИВАЮЩАЯ: в целях развития логического мышления, развивать у учащихся умения наблюдать, делать выводы, анализировать.
ТИП УРОКА: изучения нового материала
ОБОРУДОВАНИЕ И РЕАКТИВЫ: доска, мел, фланелеграф, мультимедийный проектор с компьютером, прибор для демонстрации электропроводности, вещества проводники и диэлектрики.
ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ: учащиеся должны после урока знать, что такое электролиты, не электролиты, механизмы ТЭД, понимать, в чем отличие гидратов от кристаллогидратов.
I. Мобилизующее начало урока.
1. Организация класса.
2. Актуализация знаний.
Учитель начинает урок с демонстрации электрической проводимости разных веществ (соли твердые, растворы солей, спирт). И спрашиваем, почему одни вещества проводят электрический ток, а другие нет?
II. Изучение нового материала.
Вещества сами по себе не обладают электрической проводимостью, но растворитель оказывает влияние на растворяемые вещества и они оказываются электропроводными, но не на все.
Записываем определение:
Электролиты – это вещества растворы или расплавы, которых проводят электрический ток (соли, кислоты, основания, вода).
Неэлектролиты – это вещества растворы или расплавы, которых не обладают электрической проводимостью (сахара, спирты, оксиды).
Давайте теперь постараемся ответить на вопрос, а за счет чего осуществляется электрическая проводимость в растворах (по аналогии с металлами)? Ионы!
В процессе растворения происходит распад электролитов на ионы, т.е. – электролитическая диссоциация.
Давайте рассмотрим механизмы электролитической диссоциации с разными типами связей:
Механизм диссоциации веществ с ионным типом связей.NaCl→Na++Cl-
Выделяют несколько стадий процесса электролитической диссоциации:
1) Ориентация диполей воды к ионам растворяемого вещества
2) Взаимодействие диполей воды с разноименно заряженными ионами – гидратация (идет с выделением энергии)
3) Разрушение диполями воды кристаллической решетки вещества (идет с поглощением энергии).
Исходя из выше указанного, можно написать более сложную форму гидратации хлорида натрия
NaCl + (n+m) Н2О → Na+∙nH2O + Cl-∙mH2O
Чтобы более наглядно представить ученикам процесс электролитической диссоциации возможно использование рисование схемы на доске, использование компьютера, фланелеграфа.
Механизм диссоциации веществ
с ковалентными полярными связями:
Показываем ЭД на примере диссоциации молекул хлороводорода.
НCl + (n+m) Н2О → Н+∙nH2O + Cl-∙mH2O
(где n=1,2,3,4 т.д )
НCl + 2Н2О → H3O+ + Cl-∙H2O ион гидроксония
Стадии диссоциации:
1. Ориентация диполей воды около молекулы за счет диполь-дипольного взаимодействия
2. Поляризация связей молекулы, в результате происходит разделение «центров тяжести» положительных и отрицательных зарядов
3. Гидратация образовавшихся ионов
4. Распад молекулы на разноименно заряженные ионы – диссоциация
Фрагмент урока: введение первоначальных понятий о гидратах и кристаллогидратах. Этот фрагмент очень логично проводить на данном уроке т.к. можно показать, как образуются рассматриваемые вещества и очень логично можно ввести определения этих веществ.
Что общего в процессе диссоциации ионных соединений и молекулярных? Общим является то, что происходит образование гидратированных ионов.
Гидраты – это неустойчивые продукты присоединения молекул воды.
Они устойчивы в растворах и большинство разрушаются после удаления растворителя. Но существуют и устойчивые продукты гидратации — кристаллогидраты.
Кристаллогидраты – это кристаллические вещества, в которых содержатся молекулы воды (медный купорос). На данном уроке целесообразно познакомить учащихся с кристаллогидратами и продемонстрировать им несколько разновидностей кристаллогидратов. Показать отличие безводной соли от кристаллогидрата. Проводим демонстрационный опыт: растворение безводного сульфата меди в воде. Спрашиваем, о чем свидетельствует нагревание пробирки после добавления в нее воды? Как изменился цвет веществ, о чем это свидетельствует?
CuSO4 + (х+у) Н2О = Cu2+∙хН2О + SO42- ∙ уН2О + Q
Спрашиваем у учеников: как вы думаете, какой из ионов окрашивает раствор в синий цвет? Что бы ответить на данный вопрос растворяем безводный сульфат натрия в воде и пишем уравнения реакции:
Na2SO4 + (х+у)Н2О = Na+∙хН2О + SO42- ∙ уН2О + Q
Мы видим, что раствор остается бесцветный, но гидратация происходит (т.к. раствор нагревается), делаем вывод, что цвет обуславливает именно ионы меди т.к. сульфат ионы бесцветны[9], [14].
III. Итоги урока: подводя итоги мы задаем ученикам следующие вопросы.
1. На какие группы делятся вещества, по электропроводности их расплавов и растворов?
2. Перечислите стадии ЭД веществ с разными типами связей?
3. На какие группы делятся продукты гидратации по их устойчивости?
IV. Домашнее задание: Электролитическая диссоциация веществ, написать диссоциацию любых 5 веществ на ионы.
Данный фрагмент позволяет ввести определения гидратов и кристаллогидратов, это очень логично и удачно можно сделать на данном уроке.
План урока: оксид серы (VI). Сульфаты.
Данный урок расположен в теме подгруппа кислорода после уроков: сероводород, сульфиды. На данном уроке происходит рассмотрение соединений серы в степени окисления +6. В качестве дополнения к изучаемому материалу мы можем предложить рассматривать в качестве солей серной кислоты, сульфаты переходных металлов.
Цели:
Образовательная: показать разнообразие соединений серы в степени окисления + 6, показать свойства этих соединений, также познакомить учащихся с солями серной кислоты, а в частности с купоросами. Показать их значимость в быту, в сельском хозяйстве и т.д.
Воспитательная: в целях формирования научной картины мира, показать действие законов диалектики, показать зависимость свойств веществ от их химического состава и структуры, в частности зависимость цвета веществ от наличия или отсутствия кристаллизационной воды.
Развивающая: в целях развития логического мышления, продолжать развивать умения учащихся наблюдать и делать выводы по результатам химического эксперимента.
Тип урока: изучение нового материала.
МПС: медицина, сельское хозяйство, биология.
Планируемые результаты: учащиеся должны получить представления о том, какие соединения образует сера в степени окисления +6, знать их свойства и применение.
Ход урока:
I. Мобилизующее начало урока:
— организация класса
— актуализация знаний
II. Изучение нового материала
Учитель рассматривает соединения серы в степени окисления + 6, а именно оксид серы (VI), серную кислоту, соли серной кислоты. При рассмотрении обращается внимание на химические свойства, правила названий, применение этих веществ.
Далее вводится фрагмент урока, на котором изучаются соли серной кислоты. Мы вводим определение данного класса веществ.
Фрагмент урока: купоросы, удобно ввести при изучении соединений серы в С.О. +6. Это обусловлено тем, что они являются сульфатами переходных металлов. На данном уроке мы рассматриваем свойства купоросов, как соединений серы и демонстрируем их специфические свойства, способность к реакциям дегидратации. Показываем наличие кристаллизационной воды.
Купоросы– это сульфаты некоторых переходных двухвалентных металлов (меди, железа, марганца, цинка, кобальта, никеля), содержащие кристаллизационную воду.
Учитель дает краткую характеристику истории происхождения данного названия.
Не исключено, что купорос – это искаженное старонемецкое Kupferwasser (дословно «медная вода»). По другой версии, купорос произошел от латинского cuprirosa – «медный цветок». В пользу этого свидетельствует средневековое английское название медного купороса – coperose, которое позже перешло в copperas. Так же называли «зеленый, синий и белый купоросы» – гидратированные сульфаты железа, меди и цинка.
Отсюда и название концентрированной серной кислоты – купоросное масло т.к. ее раньше получали нагреванием купоросов, и она конденсировалась в реторте.
Названия соединений: FeSO4·7H2O – гептагидрат сульфата меди (II) (железный купорос), СoSO4 ·7H2O – гептагидрат сульфата кобальта (кобальтовый купорос), CuSO4· 5H2O – пентагидрат сульфата меди (II) (медный купорос);
продолжение
--PAGE_BREAK--