Реферат по предмету "Наука и техника"


О роли эксперимента в разработке научных гипотез происхождения жизни

Введение.
Проблема зарождения жизни на наше й планете является одной из важнейших на сегодняшний день для всего человечества. Человек всегда хотел знать, откуда произошёл он и всё живое его окружающее. В самых древнейших религиях мира мы уже видим первые теории о происхождении жизни. Позднее античные мыслители несколько более убедительно давали ответ на этот вопрос, но всё же жизнь, и всё что с нею связано было окружено ореолом святости, в эти дела могли вмешиваться разве что боги. Средневековье также не принесло ничего нового, кроме теории самозарождения. И спустя несколько столетий, в восемнадцатом веке, начались попытки разобраться в этих проблемах с научной точки зрения, призвав на помощь то, с помощью чего Галилеей опроверг проверенное тысячелетиями, но ошибочные, взгляды Аристотеля, — научный эксперимент. Первые же эксперименты показали ошибочность существовавшей в то время теории самозарождения, но и поставили новые вопросы. И всегда для доказательства или опровержения теорий и гипотез применялся эксперимент, как самое надежное беспристрастное средство разрешения научных споров. Постепенно в ходе экспериментов начали выделиться направления, по которым научные изыскания могли принести большие плоды, так, например удалось получить некоторые простые органические вещества из неорганических, и это вселяло надежду в учёных на приоткрытие тайны зарождения жизни. Последующие удачные эксперименты по синтезу всё более и сложных веществ укрепляли веру в предстоящий успех. Меня очень заинтересовали эти эксперименты, захотелось больше узнать об этой очень интересной теме, поэтому для своего реферата я выбрал эту, самую интересную, на мой взгляд, тему. И хочется верить, что хотя бы через несколько десятилетий, биология расставит все точки над i в этой очень важной проблеме.
1. ВозникновениежизнинаЗемле.
1.1 Развитиепредставленийопроисхождениижизни.
Происхождение жизни — одна из трех важнейших мировоззренческихпроблем наряду с проблемой происхождения нашей Вселенной и проблемой происхождения человека.
Попытки понять, как возникла и развивалась жизнь на Земле, были предприняты еще в глубокой древности. В античности сложились два противоположных подхода к решению этой проблемы. Первый, религиозно- идеалистический, исходил из того, что возникновение жизни на Земле не могло осуществиться естественным, объективным, закономерным образом; жизнь является следствием божественного творческого акта (креационизм), и потому всем существам свойственна особая, независимая от материального мира «жизненная сила» (vis vitalis), которая направляет все процессы жизни (витализм). В основе второго, материалистического подхода лежало представление о том, что под влиянием естественных факторов живое может возникнуть из неживого, органическое из неорганического. Несмотря на свою примитивность, первые исторические формы концепции самозарождения сыграли прогрессивную роль в борьбе с креационизмом.
Идея самозарождения получила широкое распространение в средневековье и эпоху Возрождения, когда допускалась возможность самозарождения не только простых, но и довольно высокоорганизованных существ, даже млекопитающих (например, мышей из тряпок). Например, в трагедии В. Шекспира «Антоний и Клеопатра» Леонид говорит Марку Антонию: «Ваши египетские гады заводятся в грязи от лучей вашего египетского солнца. Вот, например, крокодил...»1. Известны попытки Парацельса разработать рецепты искусственного человека (гомункулуса).
Невозможность произвольного зарождения жизни была доказана целым рядом опытов. Итальянский ученый Ф. Реди экспериментальнодоказал невозможность самозарождения сколько-нибудь сложных животных. Применение микроскопа в биологических исследованиях способствовало открытию большого разнообразия одноклеточных организмов. На этой основе вновь возродились старые идеи произвольного самозарождения простейших существ. Окончательно версия о самозарождении была развенчана Л. Мастером в середине XIX века, Л. Пастер показал, что не только в запаянном сосуде, но и незакрытой колбе с длинной S-образной горловиной хорошо прокипяченный бульон остается стерильным, потому что в колбу через такую горловину не могут проникнуть микробы. Так было доказано, что в наше время какой бы то ни было, новый организм может появиться только от другого живого существа.
Появление жизни на Земле пытались объяснить и занесением ее из других космических миров. В 1865 г. немецкий врач Г. Рихтер выдвинул гипотезу космозоев (космических зачатков), в соответствии, с которой жизнь является вечной и зачатки, населяющие мировое пространство, могут переноситься с одной планеты на другую. Эта гипотеза была поддержана многими выдающимися учеными XIX в. — У. Томсоном, Г. Гельмгольцем и др. Сходную гипотезу в 1907 г. выдвинул известный шведский естествоиспытатель С. Аррениус. Его гипотеза получила название панспермии: во Вселенной вечно существуют зародыши жизни, которые движутся в космическом пространстве под давлением световых лучей; попадая в сферу притяжения планеты, они оседают на ее поверхности и закладывают на этой планете начало живого.
Естествознание XX в. сделало шаг вперед в изучении жизни, ее проявлений на Земле и за ее пределами. Такие отрасли знаний, как биохимия, биофизика, генетика, молекулярная биология, космическая биохимия и др., намного расширили представления о сущности земной жизни, о возможности существования подобных явлений вне пределов нашей планеты. Сейчас уже определенно выяснено, что «азбука» живого сравнительно проста: в любом существе, живущем на Земле, присутствует 20 аминокислот, пять оснований, два углевода и один фосфат. Существование небольшого числа одних и тех же молекул во всех живых организмах убеждает нас, что все живое должно иметь единое происхождение.
Отрицание возможности самозарождения жизни в настоящее время не противоречит представлениям о принципиальной возможности развития органической природы и жизни в прошлом из неорганической материи. На определенной стадии развития материи жизнь может возникнуть как результат естественных процессов, совершающихся в самой материи. Кроме того, элементарные химические процессы на начальных этапах возникновения и развития жизни могли происходить не только на Земле, но и в других частях Вселенной и в различное время. Поэтому не исключается возможность зане- сения определенных предпосылочных факторов жизни на Землю из Космоса. Однако в изученной пока человеком части Вселенной только на Земле они привели к формированию и расцвету жизни.
1.2 Возникновениежизни.
С позиций современной науки жизнь возникла из неживого вещества в результате эволюции материи, является результатом естественных процессов, происходивших во Вселенной. Жизнь — это свойство материи, которое ранее не существовало и появилось в особый момент истории нашей планеты Земля. Возникновение жизни явилось результатом процессов, протекавших сначала миллиарды лет во Вселенной, а затем многие миллионы лет на Земле. От неорганических соединений к органическим, от органических к биологическим. таковы последовательные стадии, по которым осуществлялся процесс зарождения жизни.
Возраст Земли исчисляется примерно 5 млрд. лет. Жизнь существует на Земле, видимо, более 3,5 млрд. лет. Признаки деятельности живых организмов обнаружены в докембрийских породах, рассеянных по всему земному шару. В сложном процессе возникновения жизни на Земле можно выделить несколько основных этапов. Первый из них связан с образованием простейших органических соединений из неорганических.
Образованиепростыхорганическихсоединений. 
Происхождение жизни связано с протеканиемопределенных химических реакций на поверхности первичной планеты. Каковы жеосновные этапы химической эволюции жизни? На начальных этапах своей историиЗемля представляла собой раскаленную планету. Вследствие вращения припостепенном снижении температуры атомы тяжелых элементов перемещались к центру,а в поверхностных слоях концентрировались атомы легких элементов (водорода,углерода, кислорода, азота), из которых и состоят тела живых организмов. Придальнейшем охлаждении Земли появились химические соединения: вода, метан,углекислый газ, аммиак, цианистый водород, а также молекулярный водород,кислород, азот. Физические и химические свойства воды (высокий дипольныймомент, вязкость, теплоемкость и т. д.) и углерода (трудность образованияокислов, способность к восстановлению и образованию линейных соединений)определили то, что именно они оказались у колыбели жизни.
Наэтих начальных этапах сложилась первичная атмосфера Земли, которая носила неокислительный, как сейчас, а восстановительный характер. Кроме того, она былабогата инертными газами (гелием, неоном, аргоном). Эта первичная атмосфера ужеутрачена. На ее месте образовалась вторая атмосфера Земли, состоящая на 20% изкислорода — одного из наиболее химически активных газов. Эта вторая атмосфера —продукт развития жизни на Земле, одно из его глобальных следствий.
Дальнейшееснижение температуры обусловило переход ряда газообразных соединений в жидкое итвердое состояние, а также образование земной коры. Когда температураповерхности Земли опустилась ниже 100°С произошло сгущение водяных паров.Длительные ливни с частыми грозами привели к образованию больших водоемов. Врезультате активной вулканической деятельности из внутренних слоев Земли наповерхность выносилось много раскаленной массы, в том числе карбидов —соединений металлов с углеродом. При взаимодействии карбидов с водой выделялисьуглеводородные соедине- ния. Горячая дождевая вода как хороший растворительимела в своем составе растворенные углеводороды, а также газы (аммиак,углекислый газ, цианистый водород), соли и другие соединения, которые могливступать в химические реакции. С особым успехом, видимо, протекали процессыроста молекул при наличии группы —N=C=N—. У этой группы большие химическиевозможности к росту за счет как присоединения к атому углерода атома кислорода,так и реагирования с азотистым основанием. Так постепенно на поверхности моло-дой планеты Земля накапливались простейшие органические соединения. Причемнакапливались в больших количествах. Подсчеты показывают, что толькопосредством вулканической деятельности на поверхности Земли могло образоватьсяоколо 1016 кг органических молекул. Это всего на 2-3 порядка меньше массы современной биосферы!
Вместе с тем астрономическими исследованиями установлено, что и на других планетах, и в космической газопылевой материи имеются углеродные соединения, в том числе углеводороды.
Возникновение сложных органических соединений. Второй этап биогенеза характеризовалсявозникновением более сложных органических соединений, в частности белковых веществ в водах первичного океана. Благодаря высокой температуре, грозовым разрядам, усиленному ультрафиолетовомуизлучению относительно простые молекулы органических соединений при взаимодействии с другими веществами усложнялись и образовывались углеводы, жиры, аминокислоты, белки и нуклеиновые кислоты.
Возможность такого синтеза была доказана опытами А.М. Бутлерова, который еще в середине прошлого столетия получил из формальдегида углеводы (сахар). В 1953—1957 гг. химиками различных стран (США, СССР, Германии) в целом ряде экспериментов из смеси газов (аммиака, метана, водяного пара, водорода) при 70—80°С и давлении несколько атмосфер под воздействием электрических разрядов напряжением 60 000 В и ультрафиолетовых лучей были синтезированы органические кислоты, в том числе аминокислоты (глицин, аланин, аспарагиновая и глутаминовая кислоты), которые являются материалом для образования белковой молекулы. Таким образом, были смоделированы условия первичной атмосферы Земли, при которых могли образовываться аминокислоты, а при их полимеризации — и первичные белки.
Эксперименты в этом направлении оказались перспективными. В дальнейшем (при использовании других соотношений исходных газов и видов энергии), путем реакции полимеризации из простых молекул получали более сложные молекулы: белки, липиды, нуклеиновые кислоты и их производные, а позже была доказана возможность синтеза в условиях лаборатории и других сложных биохимических соединений, в том числе белковых молекул (инсулина), азо- тистых оснований нуклеотидов. Особенно важно то, что лабораторные эксперименты совершенно определенно показали возможность образование, белковых молекул в условиях отсутствия жизни.
С определенного этапа в процессе химической эволюции на Земле активное участие стал принимать кислород. Он мог накапливаться в атмосфере Земли в результате разложения воды и водяного пара под действием ультрафиолетовых лучей Солнца. (Для превращения восстановленной атмосферы первичной Земли в окисленную потребовалось не менее 1—1,2 млрд. лет.) С накоплением в атмосфере кислорода восстановленные соединения начали окисляться. Так, при окислении метана образовались метиловый спирт, формальдегид, муравьиная кислота и другие соединения, которые вместе с дождевой водой попадали в первичный океан. Эти вещества, вступая в реакции с аммиаком и цианистым водородом, дали начало аминокислотам и соединениям типа аденина. Важно и то, что более сложные органические соединения являются более стойкими перед разрушающим действием ультрафиолетовогоизлучения, чем простые соединения.
Анализ возможных оценок количества органического вещества, которое накопилось неорганическим путем на ранней Земле, впечатляет: по некоторым расчетам за 1 млрд. лет над каждым квадратным сантиметром земной поверхности образовалось несколько килограммов органических соединений. Если их все растворить в мировом океане, то концентрация раствора была бы приблизительно 1%. Это довольно концентрированный «органический бульон». В таком «бульоне» мог вполне успешно развиваться процесс образования более сложных органических молекул. Таким образом, воды первичного океана постепенно насыщались разнообразными органическими веществами, образуя «первичный бульон». Насыщению такого «органического бульона» в немалой степени способствовала еще и деятельность подземных вулканов. «Первичный бульон» и образование коацерватов». Дальнейший этап биогенеза связан с концентрацией органических веществ, возникновением белковых тел.
В водах первичного океана концентрация органических веществ увеличивалась, происходили их смешивание, взаимодействие и объединение в мелкие обособленные структуры раствора. Такие структуры можно легко получить искусственно, смешивая растворы разных белков, например желатина и альбумина. Эти обособленные в растворе органические многомолекулярные структуры выдающийся русский ученый А.И. Опарин назвал коацерватными каплями или коацерватами2. Коацерваты — мельчайшие коллоидальные частицы — капли, обладающие осмотическими свойствами. Коацерваты образуются в слабых растворах. Вследствие взаимодействия противоположных электрических зарядов происходит агрегация молекул. Мелкие сферические частицы возникают потому, что молекулы воды создают вокруг образовавшегося агрегата поверхность раздела.
Исследования показали, что коацерваты имеют достаточно сложную организацию и обладают рядом свойств, которые сближают их с простейшими живыми системами. Например, они способны поглощать из окружающей среды разные вещества, которые вступают во взаимодействие с соединениями самой капли, и увеличиваться в размере. Эти процессы в какой-то мере напоминают первичную форму ассимиляции. Вместе с тем в коацерватах могут происходить процессы распада и выделения продуктов распада. Соотношение между этими процессами у разных коацерватов неодинаково. Выделяются отдельные динамически более стойкие структуры с преобладанием синтетической деятельности. Однако все это еще не дает основания для отнесения коацерватов к живым системам, потому что они лишены способности к самовоспроизведению и саморегуляции: синтеза органических веществ. Но предпосылки возникновения живого в них уже содержались.
Коацерваты объясняют, как появились биологические мембраны. Образование мембранной структуры считается самым «трудным» этапом химической эволюции жизни. Истинное живое существо (в виде клетки, пусть даже самой примитивной) не могло оформиться до возникновения мембранной структуры и ферментов. Биологические мембраны — это агрегаты белков и липидов, способные отграничить» вещества от среды и придать упаковке молекул прочность. Мембраны могли возникнуть в ходе формирования коацерватов.
Повышеннаяконцентрация органических веществ в коацерватах увеличивала возможностьвзаимодействия между молекулами и усложнения органических соединений.Коацерваты образовывались в и воде при соприкосновении двух слабовзаимодействующих полимеров.
Кромекоацерватов в «первичном бульоне» накапливались полинуклеотиды, полипептиды иразличные катализаторы, без которых невозможно образование способности к самовоспроизведениюи об мену веществ. Катализаторами могли быть и неорганические вещества. Так,Дж. Берналом в свое время была выдвинута гипотеза о том, что наиболее удачныеусловия для возникновения жизни складывались в небольших спокойных теплыхлагунах с большим количеством ила, глинистой мути. В такой среде очень быстропротекает полимеризация аминокислот; здесь процесс полимеризации не нуждается внагревании, так как частицы ила выступают в качестве своеобразныхкатализаторов.
Возникновение простейших форм живого. Главная проблема в учении о происхождении жизни состоит в объяснении возникновения матричного синтеза белков. Жизнь возникла не тогда, когда образовались пусть даже очень сложные органические соединения отдельные молекулы ДНК и др., а тогда, когда начал действовать механизм конвариантной редупликации. Именно поэтому завершение процесса биогенеза связано с возникновением у более стойких коацерватов способности к самовоспроизведению составных частей, с переходом к матричному синтезу белка, характерному для живых организмов. В ходе предбиологического отбора наибольшие шансы на сохранение имели те коацерваты, у которых способность к обмену веществ сочеталась со способностью к самовоспроизведению.
Переход к матричному синтезу белков был величайшим качественным скачком в эволюции материи. Однако механизм такого перехода пока не ясен. Основная трудность здесь состоит в том, что для удвоения нуклеиновых кислот нужны ферментные белки, а для создания белков — нуклеиновые кислоты. Как разорвать эту «замкнутую цепь»? Иначе говоря, нужно объяснить, как в ходе предбиологическогоотбора объединились способности к самовоспроизведению полинуклеотидов с каталитической активностью полипептидов в условиях пространственно-временного разобщения начальных и ко печных продуктов реакции.
Существуют разные гипотезы на сей счет, но все они, так или иначе, не полны. Однако в настоящее время наиболее перспективными здесь являются гипотезы, которые опираются на принципы теории самоорганизации,синергетики3, на представления о гиперциклах, т.е. системах, связывающих самовоспроизводящиеся (автокаталитические) единицы друг с другом посредством циклической связи. В таких системах продукт реакции одновременно является и ее катализатором или исходным реагентом. Потому и возникает явление самовоспроизведения, которое на первых этапах вовсе могло и не быть точной копией исходного органического образования. О трудностях становления самовоспроизведения свидетельствует само существование вирусов и фагов, которые представляют собой, по-видимому, осколки форм предбиологической эволюции.
В последующем предбиологический отбор коацерватов, по-видимому, шел по, нескольким направлениям. Во-первых, в направлении выработки способности накопления специальных, белковоподобных полимеров, ответственных за ускорение химических реакций. В результате строение нуклеиновых кислот изменялось в направлении преимущественного«размножения» систем, в которых удвоение нуклеиновых кислот осуществлялось с участием ферментов. На этом пути и возникает характерный для живых существ циклический обмен веществ: Во-вторых, в системе коацерватов происходил и отбор самих нуклеиновых кислот по наиболее удачному сочетанию последовательности нуклеотидов. На этом пути формировались гены. Самовоспроизводящиеся системы со сложившейся стабильной последовательностью нуклеотидов в нуклеиновой кислоте уже могут быть названы живыми.
В проблеме возникновения жизни еще много неопределенного,она еще далека от своего окончательного разрешения. Так, например, не ясно, почему все белковые соединения, входящие в состав живого вещества, имеют только «левую симметрию». Какие механизмы предбиологической эволюции могли к этому привести?
Знание условий, которые способствовали возникновению жизни на Земле, позволяют понять, почему в наше время невозможно появление живых существ из неорганических систем. В нашу эпоху отсутствуют условия для синтеза и усложнения органических веществ. Простые соединения, которые могли бы где-то образоваться, сразу же были бы использованы гетеротрофами. Теперь живые существа появляются только вследствие размножения.
Возникнув, жизнь стала развиваться быстрыми темпами (ускорение эволюции во времени). Так, развитие от первичные протобионтов до аэробных форм потребовало около 3 млрд. лет, тогда как с момента возникновения наземных растений и животных прошло около 500 млн. лет; птицы и млекопитающие
2. Развитиеорганическогомира.
2.1 ОсновныеэтапыгеологическойисторииЗемли.
Прежде чем перейти к рассмотрению развития органического мира, ознакомимся с основными этапами геологической истории Земли. Геологическая история Земли подразделяется на крупные промежутки — эры; эры — на периоды, периоды — на века. Разделение на эры, периоды и века, конечно же, относительное, потому что резких разграничений между этими подразделениями не было. Но все же именно на рубеже соседних эр, периодов преимущественно происходили существенные геологические преобразования: горообразовательные процессы, перераспределение суши и моря, смена климата и проч. Кроме того, каждое подразделение характеризовалоськачественным своеобразием флоры и фауны. Геологические эры Земли:
катархей (от образования Земли 5 млрд. лет назад до зарождения жизни);
архей, древнейшая эра (3,5 млрд.— 2,6 млрд. лет);
протерозой, (2,6 млрд. — 570 млн. лет);
палеозой. (570 млн. — 230 млн. лет) со следующими периодами:
 кембрий (570 млн. — 500 млн. лет);
 ордовик (500 млн. — 440 млн. лет);
 силур (440 млн. — 410 млн. лет);
 девон (410 млн.—350 млн. лет);
 карбон (350 млн. — 285 млн. лет);
 пермь (285 млн. — 230 млн. лет);
мезозой (230 млн. — 67 млн. лет) со следующими периодами:
 триас (230 млн. — 195 млн. лет);
 юра (195 млн. — 137 млн. лет);
 мел (137 млн.—67 млн. лет);
кайнозой (67 млн. — до нашего времени) со следующими периодами веками:
 палеоген (67 млн. — 27 млн. лет);
 палеоцен (67—54 млн. лет);
 эоцен (54—38 млн. лет);
 олигоцен (38—27 млн. лет);
 неоген (27 млн. — 3 млн. лет);
 миоцен (27—8 млн. лет);
 плиоцен (8—3 млн. лет);
 четвертичный (3 млн. — наше время);
 плейстоцен (3 млн. — 20 тыс. лет);
 голоцен (20 тыс. лет — наше время).
2.2 Начальныеэтапыэволюциижизни.
Более 3,5 млрд лет назад на дне мелководных, теплых и богатых питательными веществами морей, водоемов возникла жизнь в виде мельчайших примитивных существ. Первый период развития органического мира на Земле характеризуется тем, что первичные живые организмы были анаэробными (жили без кислорода), питались и воспроизводились за счет «органического бульона», возникшего из неорганическихсистем; иначе говоря, они питались готовыми органическими веществами,синтезированными в ходе химической эволюции, т.е. были гетеротрофами. Но это немогло длиться долго, ведь такой резерв органического вещества быстро убывал.Первый великий качественный переход в эволюции живой материи был связан с«энергетическим кризисом»: «органический бульон» был исчерпан и следоваловыработать способы формирования крупных молекул биохимическим путем, внутриклеток, с помощью ферментов. В этой ситуации преимущество было у тех клеток,которые могли получать большую часть необходимой им энергии непосредственно изсолнечного излучения.
Такойпереход вполне возможен, так как некоторые простые соединения обладаютспособностью поглощать свет, если они включают в свой состав атом магния (как вхлорофилле). Уловленная таким образом световая энергия может быть использованадля усиления реакций обмена, в частности, для образования органическихсоединений, которые могут сначала накапливаться, а затем расщеплятьсявысвобождением энергии. На этом пути и шел процесс образования хлорофилла ифотосинтеза. Фотосинтез обеспечивает организму но лучение необходимой энергииот Солнца и вместе с тем независимость от внешних питательных веществ. Такиеорганизмы называются автотрофными. Это значит, что их питание осуществляетсявнутренним путем благодаря световой энергии. При этом, разумеется, поглощаютсяиз внешней среды и некоторые вещества — вода, углекислый газ, минеральныесоединения.
Первымифотосинтетиками на нашей планете были, видимо, цианеи, а затем зеленыеводоросли. Остатки их находят в породах архейского возраста (около 3 млрд. летназад). В протерозое в морях обитало много разных представителей зеленых изолотистых водорослей. В это же время, видимо, появились первые прикрепленныеко дну водоросли.
Переходк фотосинтезу и автотрофному питанию был великим революционным переворотом вэволюции живого. Значительно увеличилась биомасса Земли. В результатефотосинтеза кислород уже и значительных количествах стал выделяться ватмосферу. Первичная атмосфера Земли не соде ржала свободного кислорода, и дляанаэробных организмов он был ядом. Потому многие одноклеточные анаэробныеорганизмы погибли в «кислородной катастрофе»; другие укрылись в болотах, где небыло свободного кислорода, и, питаясь, выделяли не кислород, а метан. Третьи приспособилиськ кислороду, получив огромное преимущество в способности запасать энергию(аэробные клетки выделяют энергии в 10 раз больше, чем анаэробные). Благодаря фотосинтезу в органическом веществе Земли накапливалось все больше и больше энергии солнечного света, что способствовало ускорению биологического круговорота веществ и ускорению эволюции в целом. Переход к фотосинтезу потребовал много времени. Он завершился примерно 1,8 млрд. лет назад и привел к важным преобразованиям на Земле: первичная атмосфера земли сменилась вторичной, кислородной; возник озоновый слой, который сократил воздействие ультрафиолетовых лучей, а значит, и прекратил производство нового «органического бульона»; изменился состав морской воды, он стал менее кислотным. Таким образом, современные условия на Земле и значительной мере были созданы жизнедеятельностью организмов.
С «кислородной революцией» связан и переход от прокариотов к эукариотам. Первые организмы были прокариотами. Это были такие клетки, у которых не было ядра, деление клетки не включало в себя точной дупликации генетического материала (ДНК), через оболочку клетки поступали только отдельные молекулы. Прокариоты — это простые, выносливые организмы, обладавшие высокой вариабельностью,способностью к быстрому размножению, легко приспосабливающиеся к изменяющимся условиям природной среды.
Но новая кислородная среда стабилизировалась;первичная атмосфера была заменена новой. Понадобились организмы, которые пусть были бы и не вариабельны, но зато лучше приспособлены к новым условиям. Нужна была не генетическая гибкость, а генетическая стабильность. Ответом на эту потребность и явилось формирование эукариотов.
Примерно 1,8 млрд. лет назад. У эукариотов ДНК уже собрана в хромосомы, а хромосомы сосреточены в ядре клетки. Такая клетка воспроизводится без каких-то существенных изменений. Это значит, что в неизменной природной среде «дочерние» клетки имеют столько же шансов на выживание, сколько их имела клетка «материнская».
АЛЕКСАНДРИВАНОВИЧОПАРИН(1894-1980)
Академик Александр Иванович Опарин — советский биохимик, создатель материалистической гипотезы возник- новения жизни на Земле.
С детства будущего ученого интересовала биология: он знал названия многих растений и условия их произрастания. В Московском университете Опарин слушал лекции К. А. Тими- рязева. Учение Ч. Дарвина потрясло его, но одновременно оставило чувство неудовлетворенности: не была решена проблема происхождения живого. Этой проблеме Александр Иванович посвятил всю свою жизнь.
Уже в 1922 г, он сформулировал основные положения своей теории происхождения жиж на Земле в результате эволюции углеродистых соединений.
Но лишь в 1953 г. появилось её первое экспериментальноеподтверждение. Американские ученые С. Миллер и Г. Юри поставили эксперимент по программе, намеченной Опариным, и получили результаты, которые побудили ученых различных стран заняться исследованиями возможных путей предбиологической эволюции. В 1957 г. в Москве состоялся 1-й Международный симпозиум по проблеме происхождения жизни. Спустя десятилетие было организовано Международное общество по изучению происхождения жизни, объединившее ученых разных специальностей: биологов и химиков, геологов и астрономов, физиков и математиков. По предложению американских ученых в 1977 г. им была учреждена Золотая медаль имени А. И. Опарина, присуждаемая раз в три года за выдающиеся заслуги в изучении возможных путей происхождения жизни. А. И. Опарин работал не только над проблемой происхождения жизни. Его трудами заложены основы советской технической биохимии: биохимии хлебопечения (совместно с А. Н. Бахом), сыроделия, виноделия, хранения овощей и др. Более 50 лет жизни посвятил Опарин подготовке советских биохимиков, в течение 25 лет он заведовал кафедрой биохимии растений Московского государственного университета.
Всех, кто работал с Опариным, поражала его способность необычайно быстро вникать в суть любой проблемы и находить лучшие пути ее решения. Энциклопедические знания, ос- трота и широта ума, способность воспринимать новое, умение радоваться жизни и желание прийти на помощь привлекали к нему людей, работавших рядом с ним.
С основания Института биохимии АН СССР (1935) Опарин был заместителем директора, а затем его директором. Долгое время работал академиком-секретарем отделения биологии Академии наук СССР, был первым президентом, а затем почетным президентом Всесоюзного биохимического общества и Международного общества по изучению происхождения жизни, председателем Всесоюзного общества «Знание», членом Всемирного Совета Мира и вице-президентом Международной федерации учёных.
Заключение.
Вот мы и рассмотрели основные гипотезы возникновения жизни на нашей планете, и, конечно же, убедились, как велика была роль научного эксперимента в процессе становления научных гипотез происхождения жизни. Эти гипотезы бы никогда не возникли бы без других наук, таких как физика, органическая химия, астрономия, геология. Ведь астрономы выдвинули гипотезы происхождения нашей солнечной системы и самого Солнца. Физики и геологи рассчитали примерный возраст нашей планеты, смоделировали какие процессы происходили на ней в начальный период развития, и когда же на ней появилась жидкая вода. Химики показали, какие химические превращения могли происходить в этом первичном «бульоне», и результате каких реакций и появилось одно из самых ценных вещество – вода, или на языке всё той же химии просто H2O. Ведь вода как самый универсальный растворитель это основа из основ жизни, по крайней мере, на нашей планете, потому что науке неизвестны другие формы жизни (хотя и не отрицается возможность их существования). Одна из целей, для которых человек посылает космические аппараты – это поиски внеземной жизни. И окаменелые остатки марсианских бактерий, найденные в метеорите, вселяют надежду в учёных. Мы не знаем, как изменится весь наш образ жизни, если эти эксперименты закончатся успехом. И хочется пожелать всем учёным, так или иначе связанных с этой проблемой, удачи и дальнейших успехов в их нелёгкой работе.
Список литературы
1.Найдыш В.М. Концепции современного естезвознания; Учеб. пособие.- М., Гардарики,1999.-476 с.
2.Энциклопедический словарь юного биолога / Сост. Э86 М. Е. Аспиз.- М.: Педагогика,1986.- 352 с., ил.
Дляподготовки данной работы были использованы материалы с сайта www. bolshe.ru/


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.