Навчальна програма зматематики для допоміжної школи
План
1. Принципипобудови навчальної програми з математики у допоміжній школі
2.Концентричність розташування матеріалу у програмі
3.Структурні особливості програми з математики у допоміжній школі
4.Диференціація навчальних вимог до учнів з різним рівнем засвоєння матеріалу
1. Принципи побудови навчальної програми з математики у допоміжнійшколі
Програма є державним документом, який визначає зміст, об'ємнавчального матеріалу, систему та послідовність його подачі. Програма складаєтьсяз урахуванням вікових та психофізіологічних особливостей учнів допоміжноїшколи, трудової спеціальності, яку вони опановують.
В Україні для допоміжної школи розроблено новий навчальний план,який розрахований на десятирічне навчання, при цьому 10-й клас — це класпоглибленої професійно-трудової підготовки. Ним передбачено відкриття в цихшколах підготовчого класу, в який приймаються діти віком 6-7 років, що маютьнедостатній рівень готовності до навчання. Завданням такого класу є не лишепідготовка розумово відсталих учнів до систематичного засвоєння навчальногоматеріалу з різних дисциплін (в тому числі і з математики), а й уточненнядіагнозу, оптимізація шляхів і методів для формування у них системи знань,умінь та навичок.
У програмі чітко визначена послідовність вивчення розділів зматематики, їхня наступність, що значно полегшує вчителям складання як перспективних,так і поурочних планів.
В основу програми з математики закладено такі основніпринципи:
1. Принцип цілісності та завершеності навчання математиці.
Порушення вищих форм пізнавальної діяльності у розумово відсталихшколярів призводять до значних труднощів при оволодінні навчальним матеріалом.Допоміжна школа — це навчальний заклад, який розрахований на інтелектуальнийпотенціал цих учнів і навчання в якому дає їм можливість після закінченняадаптуватись до життя в суспільстві. Враховуючи труднощі оволодіння нимизнаннями, об'єм навчальною матеріалу зменшений порівняно з загальноосвітньоюшколою. При цьому він відповідає логічно закінченій системі, що дозволяєвикористовувати отримані математичні знання, вміння та навички безпосередньо впроцесі трудової діяльності і життя в соціальному оточенні. Всі математичніпоняття та навички, які вивчаються учнями допоміжної школи, носять цілісній тазавершений характер.
2. Принцип корекційно-розвиваючої спрямованості навчання. Зміст навчального матеріалу з математики має чітко визначену корекційно-розвиваючуспрямованість. Це означає, що кожен метод, прийом, який використовує вчитель науроці математики, має бути спрямований не лише на формування в розумововідсталих школярів системи математичних знань, умінь та навичок, але й наподолання вад фізичного та психічного розвитку: уваги, пам'яті, мислення,мовлення, емоційно-вольової сфери, моторики тощо.
Особливістю розташування матеріалу в програмі є його«забігання» наперед, наявність підготовчих вправ, які поволіпідводять учнів до формування того або іншого поняття. Це дозволяє вчителюорганізувати систему підготовчих вправ для вивчення найбільш складнихтем та розділів.
3. Принцип доступності навчання математики.
Навчальнапрограма з математики передбачає дотримування принципу доступності матеріалу,його відповідність змісту та методам викладання цієї дисципліни віковим,типологічним та індивідуальним пізнавальним можливостям розумово відсталихучнів. Цей принцип забезпечується тим, що вчитель поступово переходить відлегкого до складного, від конкретного до абстрактного матеріалу враховуючи прицьому пізнавальні можливості школярів і фіксуючи увагу на тих змінах, які відбуваютьсяу них під час корекційно-розвивального виливу. Його дотримування дозволяє дітямзі стійкими інтелектуальними вадами краще засвоювати, усвідомлювати,запам'ятовувати та відтворювати у потрібний момент відповідний навчальнийматеріал.
4. Принцип індивідуального та диференційованого підходу. Своєю метою він ставить, перш за все, врахування індивідуальнихособливостей та можливостей розумово відсталих школярів. Індивідуальний підхід — необхідна умова організації процесу навчання математики: краще встигаючішколярі потребують додаткових завдань, більш складніших, а для учнів, які, зтих або інших причин, відстають з математики програмою передбаченоіндивідуальні, полегшені завдання. В ній відведено спеціальний розділ, в якомувизначено мінімальний рівень знань, засвоєння яких дозволяє переводити їх з одногокласу в наступний.
З огляду на неоднорідність складу учнів класу, різні можливостіпід час засвоєння математичного матеріалу програма вказує на необхідністьдиференціації навчальних вимог. В цілому вона визначає оптимальний обсяг знань,вмінь і навичок, які доступні більшості школярів. Але практика і спеціальнідослідження свідчать, що майже в кожному класі є учні, які постійно відстаютьвід своїх однокласників у засвоєнні математичних знань. «Диференційованийпідхід означає роздільне навчання учнів в залежності від тих чи іншихпритаманних їм відмінностей. Диференційоване навчання відбувається якпаралельне навчання груп учнів, — пише І.Г.Єременко, — які відрізняються зарівнем розвитку пізнавальних можливостей: кожна група навчається у своєму темпіза окремою програмою» .
Враховуючи це положення програма з математики складена для І і II відділень: учні з більшимипізнавальними можливостями займаються за програмою першого, а школярі з меншими- за програмою другого відділення. Програма другого відділення містить у собізначно менше матеріалу, він є дещо спрощеним, але при цьому без порушеннялогіки дисципліни. Для школярів, які відстають у вивченні математики, програмапередбачає спрощення по розділах у кожному класі і дозволяє вчителю варіювативимоги до них залежно від їхніх індивідуальних можливостей.
5. Принцип практичного спрямування навчання.
Знання, які учні отримують в школі на уроках математики, неповинні бути відірваними від дійсності. Школярі мають навчитись їхвикористовувати в процесі трудової діяльності. Тому програма включає в себевелику кількість практичних робіт з різних тем, які дозволяють їм навчитисьвикористовувати математичні знання, вміння та навички в житті. Програмнийматеріал, який вивчається, носить завершений характер. Крім того, в кожномукласі він розбитий за чвертями, що значно спрощує роботу вчителя по йогоплануванню. Складаючи тематичний, а потім і поурочний план педагог враховуєособливості учнів, їхні знання з даного предмету, можливості у засвоєнні математичнихзнань, умінь та навичок. Для кожного класу в програмі визначено основніматематичні поняття, які вони мають вивчити за один рік навчання, уміння танавички, якими повинні оволодіти. Крім практичних вмінь програмою передбаченийі певний теоретичний матеріал, яким мають оволодіти школярі для того, щоб їхнізнання носили завершений, цілісний характер.
6. Принцип наочності навчання.
Він є одним з головних чинників, за допомогою яких у розумововідсталих учнів формується система математичних знань, тому програма націлює вчителяна широке використання наочності, дидактичного та роздаткового матеріалу.
Шлях до абстрактно-логічних узагальнень, на яких базуєтьсяматематика як наука, починається з чуттєвого пізнання дійсності. Оскільки розумововідсталі учні мають значні порушення вищих психічних функцій, і в першу чергумисленнєвих процесів, педагогу потрібно підібрати такі наочні посібники,роздатковий матеріал, технічні засоби навчання, таблиці, плакати, малюнки,креслення тощо, які б сприяли формуванню у них математичних уявлень. При цьому потрібно мати на увазі, щоучні не можуть самостійно виділити суттєве в предметах або явищах, об'єднати їхміж собою. Тому ті реальні наочні посібники, які використовує вчитель науроках, самі по собі не можуть служити основою для розвитку мисленнєвихфункцій. Для їх розвитку потрібно, щоб крім наочності у свідомості школяраіснували і мовленнєві терміни, слова, фрази, які б відображали сутність наочносприйнятих форм, образів, предметів, дій з ними. Отже, програма націлює вчителяна використання словесних пояснень для формування математичних знань.
7. Принцип міцності отриманих знань.
Його суть полягає в тому, щоб школярі отримані на уроках знання,уміння і навички могли легко актуалізувати у відповідний момент. Оскількирозумово відсталі учні схильні до уповільненого запам'ятовування і швидкогозабування матеріалу програма передбачає його вивчення невеликими«порціями». При цьому значна кількість часу у ній відведена наповторення, узагальнення і закріплення. Повторення передбачає поступове розширення,а головне, поглиблення раніше вивчених знань. В основі будь-якогозапам'ятовування є утворення часових зв'язків між новими подразниками, якіпоступають до кори головного мозку, і слідами від минулих подразників. Прицьому, якщо новий подразник потрапляє в середовище однорідних, близьких длянього по суті подразників — то суб'єкт краще зберігає його в пам'яті.Врахування цих особливості психічного розвитку учнів допоміжної школи іпокладено в основу даного принципу. Вважається, що найважливішою умовоюстійкості утворення математичних зв'язків у розумово відсталих є забезпеченняусвідомлення ними навчального матеріалу, тобто утворення відповідних змістовнихзв'язків у корі головного мозку. Якщо в процесі роботи на уроках вчитель буделише багаторазово повторювати матеріал, не вимагаючи при цьому його розуміння,усвідомлення школярами, він досягне лише незначного результату. Тому програманацілює вчителя на використання різноманітних методів і прийомів під часвивчення матеріалу, застосовування теоретичних знань на практиці, постійного зв'язку їх з життям.Цьому сприяє те, що матеріал в програмі розбитий на змістовно закінченіскладові частини, які дозволяють педагогу врахувати ці особливості розумововідсталих під час навчання.
8. Принцип науковості і системностінавчання.
Потрібно сказати, що не зважаючи на значні інтелектуальні відхилення,притаманні розумово відсталим, весь матеріал подається науково достовірним івідповідає реальній дійсності. Використання даного принципу для учнівдопоміжної школи має важливе значення, оскільки в них легко виникаютьнеправильні з'явлення, які потім буває надзвичайно важко викоренити. Оскількибагато розумово відсталих не вміють використовувати на практиці математичнізнання, вміння та навички, в програмі вказується на необхідність в організаціїспеціальних уроків, спрямованих на використання отриманих знань під частрудової діяльності.
Принцип науковості поєднується з принципом системності отриманихзнань. Це означає, що знання, якими оволодівають розумово відсталі учні науроках з математики, даються за певною науковою системою, яка визначаєпослідовність їхнього знайомства з ними. При цьому в кожному класі отриманіраніше знання поглиблюються і удосконалюються.
2. Концентричність розташування матеріалу у програмі
Програмаз математики для допоміжної школи складена з урахуванням принципуконцентричності. Вивчення арифметичного матеріалу в середині кожного концентравідбувається досить повно і закінчено. При такому розташуванні матеріалуоволодіння математичними знаннями відбувається поступово, причому нумераціячисел, складність арифметичних дій в кожному концентрі розширюється.
У кожному концентрі учні виконують обчислення за 4-а арифметичнимидіями (за винятком 1 -го, де вивчаються лише дії додавання та віднімання вмежах 10). При такому розташуванні матеріалу розумово відсталі школярізнайомляться з числами, діями і їх властивостями, доступними на даному етапіїхньому розумінню. В кожному концентрі поряд з вивченням нового матеріалувідбувається повторення вже опрацьованого. Концентричність дозволяє чітковизначити систему розширення математичного матеріалу, при цьому школярі накожному етапі знайомляться з числами, арифметичними діями, їх властивостями,поглиблюють і розширюють ці знання в наступних концентрах.
Кожен концентр має свої завдання.
У першому концентрі робота проводиться з числами 1-го десятка:відбувається ознайомлення з цифрами, усвідомлення залежності між кількістю,числом і цифрою, вивчення дій додавання і віднімання у межах 10, розв'язуванняпростих текстових арифметичних задач на знаходження суми та залишку. В цейперіод учні отримують уявлення про геометричні фігури (трикутник, круг,квадрат) та геометричні тіла (куля, куб). Одночасно вони знайомляться з мірамивартості, довжини, часу. Матеріал першого концентру вивчається в 1-му класі.
Завданнядругого концентру — вивчення усної та письмової нумерації чисел, засвоєнняприйомів додавання та віднімання в межах 20. Учні знайомляться з їх назвами,вивчають і поглиблюють знання мір: довжини — сантиметр, метр, дециметр; об'єму— літр; часу — тиждень, доба, день, година, хвилина; маси — кілограм, вчатьсявизначати час за годинником, креслити відрізки в сантиметрах і дециметрах,геометричні фігури за даними вершинами. Вони знайомляться з новою лічильною одиницею- десятком, вивчають склад чисел в межах 20. -В цей час велика увагаприділяється вивченню табличних випадків додавання і віднімання.
У третьому концентрі учні знайомляться з усною та письмовоюнумерацією в межах 100, арифметичними діями множення та ділення, діями І та II ступенів, усними та письмовими (простими випадками) прийомамиобчислень. У цей час на перший план виходить вивчення таблиці множення та ділення,адже без усвідомлення цього матеріалу школярам буде практично неможливозрозуміти математику в наступних класах. Продовжується вивчення мір довжини,вартості, маси, часу, відбувається знайомство з геометричним матеріалом.Матеріал третього концентру вивчається в 3-4-му класах.
У четвертому концентрі школярі знайомляться з числами в межах 1000і арифметичними діями з ними. Цей матеріал стоїть на межі між сотнею табагатоцифровими числами. У цей період учні закінчують вивчати прийоми уснихобчислень і переходять до систематичного вивчення письмових обчислень.Продовжується знайомство з величинами та їхніми мірами, геометричнимматеріалом. Матеріал четвертого концентру вивчається у 5-му класі.
Завданням п'ятого концентру є знайомство з числами таарифметичними діями у межах 1000000. Діти знайомляться з нумерацієюбагатоцифрових чисел, отримують поняття класу, вивчають множення та ділення наодно-, дво-, і трицифрові числа.
У 6-му класі учні знайомляться з нумерацією чисел в межах 10000, у7-му — в межах 100000, у 8-му — в межах 1000000, у 9-10-му — повторюють матеріал,вивчений за попередні роки.
Потрібнозазначити, що на уроки з геометрії, починаючи з 5-го класу, виділяється однагодина на тиждень. Це дозволяє організувати знайомство з властивостямигеометричних фігур та тіл у певній послідовності. У цей період учні вивчаютьформули для обчислення периметру багатокутників, площі квадрата, прямокутника,паралелограма, трикутника, об'єму куба та паралелепіпеда, знайомляться з коломі кругом, радіусом, дугою, діаметром, сектором, січною, сегментом, хордою.Відбувається удосконалення і поглиблення знань школярів про основні міри та діїз ними, про їхні властивості, співвідношення, вивчаються прості й десятковідроби, дії з ними, відсотки. Матеріал п'ятого концентру вивчається в 6-10-мукласах.
3. Структурні особливості програми з математики
Особливості навчання математики дітей зі стійкими інтелектуальнимивідхиленнями як в теоретичному, так і в практичному плані розкриваються впрацях В.І.Басюри, Р.А.Ісенбаєвої, Н.Ф.Кузьміної-Сиромятникової,М.І.Кузьмицької, М.М.Перової, С.М Поповича, П.Г.Тишина, А.О.Хілько, В.В.Ек таінших. У своїх дослідженнях вони вказують, що стійкі порушення вищих психічнихфункцій, які спостерігаються при розумовій відсталості, не дозволяють дітямопанувати програмний матеріал з математики в об'ємі загальноосвітньої школи. Дляданої категорії школярів притаманними є такі риси психічної діяльності, якінертність утворених зв'язків, уповільненість, фрагментарність, недостатнядиференційованість під час сприймання матеріалу тощо. Всі ці особливостіпсихічної діяльності розумово відсталих враховані при складанні програми. Виділимонайбільш характерні з них:
1. Учням допоміжної школи притаманна уповільненість протіканнятаких психічних процесів, як сприймання, запам'ятовування, відтворення тощо.Цим пояснюється занадто повільний темп їхнього навчання. Тому програмоюпередбачено зменшення щільності навчального навантаження, матеріал дається упорівняно невеликому обсязі.
2. Основне завдання цієї школи — підготовка дітей до життя всуспільному середовищі. Враховуючи це програма націлює вчителя на необхідністьформування у школярів бази теоретичних знань, необхідних для адаптації усоціальному середовищі.
3. У програмі матеріал, яким повинні оволодіти учні, дається удвох варіантах враховуючи різний рівень розвитку у них пізнавальної діяльності.Це передбачає диференціацію навчальних вимог до учнів з неоднаковимиможливостями у засвоєнні математики.
4. Оскільки розумово відсталі характеризуються конкретністюмислення їхнє навчання будується на предметно-практичній основі, з широким використаннямнаочності. Наочність виступає тим джерелом, що забезпечує створення конкретнихобразів, утворення певних узагальнень. Враховуючи це програма орієнтує педагогана широке використання наочності та дидактичного матеріалу на уроках.
5. Учні, які приходять на навчання в підготовчий і в 1 -й класидопоміжної школи мають різний рівень готовності до засвоєння математичногоматеріалу. Тому з метою вирівнювання їхніх знань і визначення оптимальнихшляхів організації навчально-виховного процесу вводиться пропедевтичний період.Його тривалість — від 2 тижнів до 1,5-2 місяців залежно від рівня розвиткудітей.
6. Оскільки для розумово відсталих школярів характерною єуповільненість запам'ятовування навчального (і особливо математичного)матеріалу, швидке його забування, програма передбачає значну кількість годин наповторення, закріплення, узагальнення та систематизацію знань.
7. Весь процес оволодіння матеріалом носитькорекційно-розвивальний характер. Тому навчання математики повинноспрямовуватись на підвищення не лише загального розвитку, а й на корекціюпсихофізичних відхилень. Враховуючи це у програмі чітко визначені основнізнання, вміння та навички, якими повинні оволодіти учні за період їхньогонавчання в школі.
Після закінчення пропедевтичного періоду учні приступають довивчення систематичного курсу математики за такими розділами: 1) нумерація; 2)арифметичні дії; 3) величини, міри; 4) дроби; 5) елементи наочної геометрії.
При вивченні нумерації школярі знайомляться з кількістю, числом іцифрою, нумерацією чисел, рахунком простими і розрядними одиницями, рівнимичисловими групами, навчаються читати і записувати числа, в них формуєтьсяпоняття про десятковий склад, розряди і класи.
Одним з основних елементів математики є арифметичні дії. Учнямнеобхідно розкрити їх зміст на конкретній основі, у процесі виконання операційнад множинами, сформувати у них вмінням додавати і віднімати усно числа в межах100, вивчити таблицю множення і ділення. Вони повинні познайомитись зі знакамиарифметичних дій, усвідомити, що додавання — це об'єднання множин, віднімання — виділення частини з множини, множення — додавання суми однакових доданків,ділення — поділ множини на еквівалентні підмножини.
Програмою передбачено ознайомлення учнів з величинами та одиницямиїх вимірювання: довжини — мм, см, дм, км; маси — г, кг, ц, т; вартості — коп.,гривня; часу — сек.., год., доби, тиждень, місяць, рік тощо.
Учні вивчають звичайні та десяткові дроби, виконують обчислення зними, знайомляться з таким математичним поняттям, як відсоток, знаходятьвідсоток за числом і число за відсотком.
На протязі всього періоду навчання на уроках математики школярівчаться розв'язувати прості задачі, які розкривають суть кожної арифметичноїдії, складені задачі, для розв'язання яких необхідно використати знаннязалежностей між даними і шуканим. У дітей формуються уявлення про величини,якими вони користуються у повсякденному житті: вартості, довжини, об'єму, маси,часу, площі. Школярі повинні знати таблицю співвідношення цих величин, вмітикористуватися вимірювальними інструментами: лінійкою, циркулем, рулеткою,чашковими і циферблатними терезами, мірним кухлем, літровими або півлітровимипосудинами (банками, пляшками), годинником тощо.
Прививченні геометричного матеріалу повинні знати назви і впізнавати основнігеометричні фігури, вміти їх креслити, оволодіти вимірювальними навичками,використовувати їх у своїй практичній діяльності, усвідомити формули дляобчислення периметру, площі геометричних фігур та об'єму паралелепіпеда і кубатощо.
4. Диференціація навчальних вимог до учнів з різним рівнем засвоєння матеріалу
Як уже зазначалось, програма в цілому визначає оптимальний обсягматематичних знань, умінь і навичок, якими можуть оволодіти учні допоміжноїшколи. Але не слід забувати, що математика як навчальний предмет є однією знайважчих дисциплін даного закладу. Особливо важко вона дається учням зускладненими формами порушення розумового розвитку. Ця група школярів будепостійно відставати від однокласників у засвоєнні знань, що зумовлює певніорганізаційно-методичні труднощі на уроці. Для оптимізації їхнього включення вроботу вчитель має постійно давати їм для вирішення прості приклади назакріплення, повторення матеріалу, завдання на списування з дошки тощо. Прицьому на самостійну роботу дається завдання відповідно до їхніх можливостей.Для того, щоб сформувати у них систему нових математичних знань, умінь танавичок необхідно у процесі роботи використовувати значну кількість наочного,дидактичного, роздаткового матеріалу, постійно організувати вправи наповторення, узагальнення та систематизацію знань, збільшити кількістьпрактичних завдань.
У програмі визначено необхідний мінімум математичних знань івмінь, якими повинні оволодіти учні в кожному класі і на основі яких вонипереводиться в наступний. Переведення школяра на індивідуальну, спрощену програмунавчання можливе лише за умови, якщо вчитель використав весь наявний у ньогонабір спеціальних прийомів, а позитивного результату так і не отримав.
У допоміжній школі зустрічаються діти, які не спроможні засвоїтинавчальний матеріал з математики у зв'язку з ураженнями головного мозку, вбільшості випадків в тім'яно-потиличній області. Це діти з акалькулією.Розрізняють: 1) акалькулії первинні — пов'язані з розладами розуміннярозрядного складу чисел, труднощами виконання самихрахункових операцій; 2) акалькулії вторинні — виникають при розладах інших психічних функцій (афазії, агнозії, амнезії) абопри загальному порушенні цілеспрямованої інтелектуальної діяльності), яківстигають з інших навчальних предметів, але не можуть засвоїти програмудопоміжної школи з математики навіть при наявності додаткових індивідуальнихзанять, передбачається можливість навчання за індивідуальним планом, якийскладається вчителем і затверджується адміністрацією.