Реферат по предмету "Коммуникации и связь"


Cети передачи данных

Федеральное агентство связи Сибирский Государственный Университет Телекоммуникаций и Информатики Межрегиональный центр переподготовки специалистов РЕФЕРАТ Сети передачи данных Выполнил Лоскутов А.М. Группа СД В - 52 Проверил Новосибирск, 2005 Содержание Введение 21. Типы сетей и сетевых ресурсов 2. Эволюция вычислительных сетей 8 2.1.

Два корня сетей передачи данных 2. Появление первых вычислительных машин 3. Программные мониторы - первые операционные системы 4. Многотерминальные системы - прообраз сети 5. Первые сети - глобальные 3. Локальные сети 1. Место и роль локальных сетей 2. Топология локальных сетей 3. Требования к каналам передачи данных 253.4.

Появление стандартных технологий локальных сетей 5. Роль персональных компьютеров в эволюции компьютерных сетей 6. Новые возможности пользователей локальных сетей 4. Глобальные сети. 1. Структура глобальной сети. 2. Наследие телефонных сетей 3. Оборудование сетей 32

Литература 35 Введение. Сеть передачи данных - совокупность оконечных устройств терминалов связи, объединенных каналами передачи данных и коммутирующими устройствами узлами сети , обеспечивающими обмен сообщениями между всеми оконечными устройствами. Благодаря возникновению и развитию сетей передачи данных появился новый, высокоэффективный способ взаимодействия между людьми. Первоначально сети использовались главным образом для научных исследований, но затем они стали проникать

буквально во все области человеческой деятельности. При этом большинство сетей существовало совершенно независимо друг от друга, решая конкретные задачи для конкретных групп пользователей. В соответствии с этими задачами выбирались те или иные сетевые технологии и аппаратное обеспечение. Построить универсальную физическую сеть мирового масштаба из однотипной аппаратуры просто невозможно, поскольку такая сеть не могла бы удовлетворять потребности всех ее потенциальных

пользователей. Одним нужна высокоскоростная сеть для соединения машин в пределах здания, а другим - надежные коммуникации между компьютерами, разнесенными на сотни километров. Тогда возникла идея объединить множество физических сетей в единую глобальную сеть, в которой использовались бы как соединения на физическом уровне, так и новый набор специальных соглашений или протоколов. Эта технология, получившая название internet, должна была позволить компьютерам общаться друг с другом

независимо от того, к какой сети и каким образом они подсоединены. Осознав важность идеи internet, несколько правительственных организаций в США стали работать над ее реализацией. И наибольшего успеха в этом добилось агентство Defense Advanced Research Projects Agency DARPA , создавшее стек протоколов TCP IP. Возникший в конце 60-х гг. как проект объединения сетей нескольких крупных исследовательских

организаций, в наше время TCP IP стал одним из наиболее популярных протоколов сетевого взаимодействия и стандартом de facto для реализации глобальных сетевых соединений. Сеть Internet - это одна из реализаций технологии internet, которая объединяет около 10 млн. компьютеров по всему миру, которые взаимодействуют друг с другом с помощью стека протоколов TCP IP. Серия протоколов TCP IP - яркий пример открытой системы в том смысле, что, в отличие от протоколов,

используемых в коммуникационных системах разных поставщиков, все спецификации этого стека протоколов и многие из его реализаций общедоступны предоставляются бесплатно или за символическую цену . Это позволяет любому разработчику создавать свое программное обеспечение, необходимое для взаимодействия по Internet. TCP IP привлекает своей масштабируемостью, предоставляя одинаковые возможности глобальным и локальным сетям. Немного о прошлом По мере совершенствования средств вычислительной техники появились

сети передачи и обработки данных сначала с использованием типовых каналов и трактов телефонных и телеграфных сетей, а затем с помощью специализированных сетей передачи данных. Первая попытка создания сети с пакетной коммутацией была сделана в Национальной физической лаборатории в Великобритании в 1966 г а в 1968 г. в США была начата разработка сети с пакетной коммутацией

Arpanet, ставшей предтечей Internet.Работа над созданием технологии internet была начата в DARPA в середине 70-х годов. А в 1977-1979 гг. архитектура и протоколы TCP IP приобрели современный вид. К этому времени агентство DARPA уже стало одним из лидеров в исследовании и разработке сетей с коммутацией пакетов и реализовало немало новых идей в этой области в своей сети ARPANET.

Бурное развитие разнообразных сетевых технологий, в том числе беспроводных радиосетей и спутниковых каналов связи, стимулировало активность DARPA в исследовании проблем межсетевого взаимодействия и реализации принципов internet в ARPANET. DARPA не делало тайны из своей деятельности в этом направлении, поэтому разнообразные научные группы проявляли большой интерес к разработкам технологии глобальной сети сетей, особенно те исследователи, которые уже имели опыт использования принципов коммутации пакетов в сети

ARPANET. DARPA инициировало ряд неформальных встреч, во время которых ученые обменивались новыми идеями и обсуждали результаты экспериментов. К 1979 г. в работу по созданию TCP IP оказались вовлечены такие значительные силы, что было принято решение о создании неформального комитета для координации и руководства процессом разработки протоколов и архитектуры сети Internet. Получившая название Internet Control and

Configuration Board ICCB , эта группа существовала и регулярно работала до 1983 г когда она была реорганизована. Начало 80-х гг время зарождения реальной сети Internet. В эти годы DARPA инициировало перевод машин, подсоединенных к его исследовательским сетям, на использование стека TCP IP. ARPANET стала магистральной сетью Internet и активно использовалась для многочисленных экспериментов с TCP IP. Окончательный переход к технологии internet произошел в январе 1983 г.

В это же время сеть ARPANET была разбита на две независимые части. Одна из них предназначалась для исследовательских целей, и за ней было оставлено название ARPANET вторая, несколько большая по масштабу сеть MILNET, должна была отвечать за военные коммуникации. Для того чтобы стимулировать адаптацию и использование новых протоколов в университетских кругах,

DARPA сделало реализацию TCP IP доступной, предлагая ее за низкую цену. В это время большинство факультетов, занимающихся исследованиями в компьютерной области, использовало версию ОС Unix от Berkeley Software Distribution Berkeley Unix, или BSD Unix университета шт. Калифорния в Беркли. Субсидировав компанию Bolt Beranek and Newman BBN с целью реализации ею протоколов

TCP IP для использования вместе с Unix, а также университет в Беркли для интеграции этих протоколов в свою версию популярной операционной системы, DARPA добилось того, что более 90 компьютерных факультетов университетов адаптировали новую сетевую технологию. Версия BSD стала стандартом de facto для реализаций стека протоколов TCP IP. Такую большую популярность она приобрела во многом благодаря тому, что обеспечивает больше,

чем просто базовые internet-протоколы. Помимо стандартных прикладных программ TCP IP, BSD предоставляет набор сетевых утилит, сходных с Unix-службами, используемыми на автономной машине. Основное преимущество этих утилит состоит в том, что они аналогичны стандартным средствам Unix. Сейчас поддержку стека протоколов TCP IP встраивают в свои операционные системы многие компании,

в том числе Microsoft, Novell и Apple. Большое количество независимых поставщиков работает над продуктами, расширяющими возможности TCP IP, добавляя поддержку интерактивных приложений, защиту информации, речевую почту и средства коллективной работы. Но вернемся в начало позапрошлого десятилетия. Сетевые коммуникации становятся критически важной составляющей научных исследований. Осознав этот факт, National Science Foundation приняла активное участие в расширении

Internet с целью сделать стек TCP IP доступным максимальному числу исследовательских организаций. С 1985 г. NSF реализовывала программу создания сетей вокруг шести своих суперкомпьютерных центров. В 1986 г. была создана магистральная сеть NSFNET, которая в конце концов, объединила все эти центры и связала их с ARPANET. К началу 90-х гг. Internet объединяла уже сотни отдельных сетей в США и Европе. К мировой Сети помимо научных институтов и университетов стали подключаться компьютерные

компании и большие корпорации нефтяной, автомобильной и электронной индустрии, а также телефонные компании. Кроме того, многие организации использовали TCP IP для создания своих корпоративных сетей, которые не являются компонентами большой Internet. В наши же дни Internet проникает буквально во все сферы человеческой жизни, и сейчас уже всерьез говорят о влиянии мировой сети на наше мировоззрение и мировосприятие.

1. Типы сетей и сетевых ресурсовСтруктура действующих сетей и характер предоставляемых ими услуг зависят от их назначения, определенного владельцами информационных центров и хостовых систем. Можно предложить следующую классификацию типов владельцев сетей и сетевых ресурсов. Тип 1. Сети передачи данных общего пользования иначе - ?общественные или ?Public сети . Эти сети обычно имеют собственные мощные хостовые системы для предоставления клиентам

сети базовых услуг, включающих электронную почту, базы данных, пересылку файлов и телеконференции, а также шлюзы, обеспечивающие выход в другие сети. Тип 2. Информационные центры широкого использования. К сетям подключено много ресурсов, которые не принадлежат администрациям сетей, но предназначены для массового использования. Например, в сетях широко представлены различные базы данных, принадлежащие организациям, производящим

или перепродающим информацию. Такие организации имеют с администрациями сетей договоры, регламентирующие финансовые и другие условия доступа абонентов сетей к интересующей их информации. Технически базы данных этого типа иногда размещаются на хост-компьютерах, принадлежащих администрациям сетей передачи данных, однако чаще владельцы баз данных устанавливают собственные хост-системы и подключают их по протоколу Х.25 по выделенным линиям к сетям.

Тип 3. Региональные сети передачи данных. Вследствие организационных или экономических причин развитие сетей передачи данных на местах часто имеет характер создания региональных сетей, например, областной или краевой сети. Логически региональные сети могут строиться как подсети больших федеральных сетей общего пользования с единым адресным пространством и управлением из единого центра управления сетью. Однако администрация региональной сети может самостоятельно решать все вопросы эксплуатации сети на

своей территории, включая определение цен на телекоммуникационные услуги. Экономическая целесообразность создания региональной сети заключается в том, что большой объем информации замыкается внутри региона, достигая 70 от всей циркулирующей в региональной сети информации. Очевидно, что весь доход от предоставления услуг по внутрирегиональной коммуникации остается у региональной сети. При этом все вопросы межрегионального, а также зарубежного обмена данными остаются за администрацией

федеральной сети, что существенно упрощает взаимодействие региона с внешним миром. Тип 4. Информационные системы ограниченного доступа. В общественных сетях передачи данных имеются хостовые системы, доступ к которым жестко ограничен. Примерами таких систем являются банковские системы, ориентированные на обслуживание клиентов банка системы клиент-банк , банковские системы верификации кредитных карточек, биржевые системы.

Число пользователей таких систем, как правило, бывает большим несколько тысяч , география их размещения может быть обширной и трудно планируемой, хотя объем информации, передаваемой каждым пользователем, может быть невелик. Для таких систем часто бывает целесообразным использование общественных сетей передачи данных для обеспечения широкого доступа к их хост-ЭВМ. Однако сами ресурсные хост-ЭВМ таких систем всегда являются собственностью соответствующих организаций

банков, бирж и находятся на их территории. Часто у этих организаций возникает необходимость подключения рабочих станций их локальных сетей к средствам электронной почты, базам данных и другим ресурсам глобальных сетей передачи данных. Предпринимаются значительные усилия для обеспечения безопасности этих систем. С увеличением масштабов таких систем они имеют тенденцию преобразовываться в системы следующего 5-го типа. Тип 5. Частные сети. Наиболее закрытым типом информационных систем являются частные информационные

центры или частные сети передачи данных. Примером таких систем может быть телекоммуникационная система крупного банка, предназначенная для внутрибанковского обмена информацией между центральным офисом банка и его отделениями в пределах одного города, а также между центральным офисом и филиалами банка в других городах, регионах, странах. Еще одним примером этого типа может быть сеть передачи данных МВД. Типичной частной сетью является сеть отрасли промышленности или крупного куста промышленных предприятий

например, в топливно-энергетическом комплексе, в машиностроении, в космической промышленности и т.д Как и для региональных сетей, для частных сетей характерны не только владение техническими средствами своих информационных хостовых систем, но и ориентация на использование собственных выделенных каналов и собственного телекоммуникационного оборудования. Это не исключает использование частными сетями средств передачи данных сетей общего пользования, с которыми

частные сети имеют шлюзы для доступа к другим информационным системам, к зарубежным сетям передачи данных или для связи с некоторыми собственными удаленными структурами. Обычно частные сети, владеющие собственным телекоммуникационным оборудованием, строятся как подсети больших сетей общего пользования с единым адресным пространством и управлением из единого центра управления сетью. Последнее никак не отражается на том факте, что это закрытые сети с замкнутым хотя и большим

кругом пользователей. Для этих сетей характерны большой объем информации, циркулирующей внутри сети высокие требования к защите информации использование специфических сетевых приложений распределенные базы данных, распределенные системы автоматизированного проектирования, необходимость связи крупных локальных сетей и пр Системы 3, 4 и 5-го типов можно считать корпоративными информационными системами или корпоративными сетями, для которых характерны следующие признаки информационные услуги абонентам

предоставляются центрами хостами , являющимися собственностью организаций, которые их используют центры располагаются на территориях этих организаций и управляются характер информации, условия доступа и т.п. их персоналом центры имеют собственные средства для подключения абонентов например, телефонные и или телеграфные линии , используемые в основном для работы местных абонентов, например в пределах одного города центры корпоративной сети подключены к магистральным каналам одной или нескольких сетей передачи

данных общего пользования, что обеспечивает взаимодействие абонентов корпоративной сети с абонентами других сетей, а также доступ собственных и внешних абонентов к ресурсам корпоративной сети из удаленных точек. Если подключение всех абонентов и обмен данными между хостами можно осуществить, используя исключительно собственные линии связи, то корпоративная сеть может быть полностью изолированной. 2.Эволюция вычислительных сетей 2.1. Два корня сетей передачи данных

История любой отрасли науки или техники позволяет не только удовлетворить естественное любопытство, но и глубже понять сущность основных достижений в этой отрасли, а также выявить тенденции и правильно оценить перспективность тех или иных направлений развития. Сети передачи данных, называемые также вычислительными или компьютерными сетями, являются результатом эволюции двух важнейших научно-технических отраслей современной цивилизации - компьютерных и телекоммуникационных

технологий рис. 1. 1. С одной стороны, сети передачи данных представляют собой частный случай распределенных вычислительных систем, в которых группа компьютеров согласованно выполняет набор взаимосвязанных задач, обмениваясь данными в автоматическом режиме. 2. С другой стороны, компьютерные сети могут рассматриваться как средство передачи информации на большие расстояния, для чего в них применяются методы кодирования и мультиплексирования данных, получившие развитие в различных телекоммуникационных системах.

Рис. 1. Эволюция компьютерных сетей на стыке вычислительной техники и телекоммуникационных технологий. Итак, компьютерная сеть - это набор компьютеров, связанных коммуникационной системой и снабженных соответствующим программным обеспечением, которое предоставляет пользователям сети доступ к ресурсам этого набора компьютеров сеть могут образовывать компьютеры разных типов - небольшие микропроцессоры, рабочие станции, мини-компьютеры, персональные компьютеры или суперкомпьютеры передачу сообщений между любой парой компьютеров сети обеспечивает

коммуникационная система, которая может включать кабели, повторители, коммутаторы, маршрутизаторы и другие устройства компьютерная сеть позволяет пользователю работать со своим компьютером, как с автономным, и добавляет к этому возможность доступа к информационным и аппаратным ресурсам других компьютеров сети. 2.2. Появление первых вычислительных машинИдея компьютера была предложена английским математиком Чарльзом Бэбиджем Charles Babbage в середине девятнадцатого века.

Однако его механическая аналитическая машина по-настоящему так и не заработала. Подлинное рождение цифровых вычислительных машин произошло вскоре после окончания второй мировой войны. В середине 40-х были созданы первые ламповые вычислительные устройства. Для этого периода характерно следующее компьютер представлял собой скорее предмет исследования, а не инструмент для решения каких-либо практических задач из других областей одна и та же группа людей участвовала

и в проектировании, и в эксплуатации, и в программировании вычислительной машины программирование осуществлялось исключительно на машинном языке не было никакого системного программного обеспечения, кроме библиотек математических и служебных подпрограмм операционные системы еще не появились, все задачи организации вычислительного процесса решались вручную каждым программистом с пульта управления. С середины 50-х годов начался следующий период в развитии вычислительной техники, связанный с появлением

новой технической базы - полупроводниковых элементов. В этот период выросло быстродействие процессоров, увеличились объемы оперативной и внешней памяти компьютеры стали более надежными появились первые алгоритмические языки, и, таким образом, к библиотекам математических и служебных подпрограмм добавился новый тип системного программного обеспечения - трансляторы были разработаны первые системные управляющие программы - мониторы, которые автоматизировали всю последовательность действий

оператора по организации вычислительного процесса. 2.3. Программные мониторы - первые операционные системыПрограммные мониторы явились прообразом современных операционных систем, они стали первыми системными программами, предназначенными не для обработки данных, а для управления вычислительным процессом. В ходе реализации мониторов был разработан формализованный язык управления заданиями, с помощью которого программист сообщал системе и оператору, какие действия

и в какой последовательности он хотел бы выполнить на вычислительной машине. Типовой набор директив обычно включал признак начала отдельной работы, вызов транслятора, вызов загрузчика, признаки начала и конца исходных данных. Оператор составлял пакет заданий, которые в дальнейшем без его участия последовательно запускались на выполнение монитором. Кроме того, монитор был способен самостоятельно обрабатывать наиболее распространенные аварийные ситуации,

возникающие при работе пользовательских программ, такие как отсутствие исходных данных, переполнение регистров, деление на ноль, обращение к несуществующей области памяти и т. д. МультипрограммированиеСледующий важный период развития операционных систем относится к 1965-1975 годам. В это время в технической базе вычислительных машин произошел переход от отдельных полупроводниковых элементов типа транзисторов к интегральным микросхемам, что открыло путь к появлению следующего поколения

компьютеров, представителем которого является, например, IBM 360. В этот период были реализованы практически все основные механизмы, присущие современным ОС мультипрограммирование, мультипроцессирование, поддержка многотерминального многопользовательского режима, виртуальная память, файловые системы, разграничение доступа и сетевая работа. В эти годы начинается расцвет системного программирования.

Из направления прикладной математики, представляющего интерес для узкого круга специалистов, системное программирование превращается в отрасль индустрии, оказывающую непосредственное влияние на практическую деятельность миллионов людей. В условиях резко возросших возможностей компьютера, связанных с обработкой и хранением данных, выполнение только одной программы в каждый момент времени оказалось крайне неэффективным. Начались разработки в области мультипрограммирования.

Мультипрограммирование - способ организации вычислительного процесса, при котором в памяти компьютера находится одновременно несколько программ, попеременно выполняющихся на одном процессоре. Мультипрограммирование было реализовано в двух вариантах пакетная обработка разделение времени. Системы пакетной обработки предназначались для решения задач в основном вычислительного характера, не требующих быстрого получения результатов. Главной целью и критерием эффективности систем пакетной

обработки является максимальная пропускная способность, то есть решение максимального числа задач в единицу времени. Для достижения этой цели в системах пакетной обработки используется следующая схема функционирования рис.2. в начале работы формируется пакет заданий, каждое задание содержит требование к системным ресурсам из этого пакета заданий формируется мультипрограммный набор , то есть множество одновременно выполняемых задач. Для одновременного выполнения выбираются задачи, предъявляющие к ресурсам

различные требования, так, чтобы обеспечивалась сбалансированная загрузка всех устройств вычислительной машины. Например, в мультипрограммном наборе желательно присутствие и вычислительных задач, и задач с интенсивным вводом-выводом. Таким образом, выбор нового задания из пакета заданий зависит от внутренней ситуации, складывающейся в системе, то есть выбирается выгодное задание. Следовательно, в вычислительных системах, работающих под управлением пакетных

ОС, невозможно гарантировать выполнение того или иного задания в течение определенного периода времени. Рис. 2. Централизованный характер вычислений в системах пакетной обработки. В системах пакетной обработки переключение процессора с одной задачи на другую происходит по инициативе самой активной задачи, например, когда она отказывается от процессора из-за необходимости выполнить операцию ввода-вывода. Поэтому существует высокая вероятность того, что одна задача может надолго занять

процессор, и выполнение интерактивных задач станет невозможным. Взаимодействие пользователя с вычислительной машиной, на которой установлена система пакетной обработки, сводится к тому, что пользователь приносит задание, отдает его диспетчеру-оператору, а в конце дня после выполнения всего пакета заданий получает результат. Очевидно, что такой порядок повышает эффективность функционирования аппаратуры, но снижает эффективность

работы пользователя. В системах разделения времени пользователям или одному пользователю предоставляется возможность интерактивной работы сразу с несколькими приложениями. Для этого каждое приложение должно регулярно взаимодействовать с пользователем. Понятно, что в пакетных системах возможности диалога пользователя с приложением ограничены. В системах разделения времени эта проблема решается за счет того, что

ОС принудительно периодически приостанавливает приложения, не дожидаясь, когда они сами освободят процессор. Всем приложениям попеременно выделяется квант процессорного времени, таким образом, пользователи, запустившие программы на выполнение, получают возможность поддерживать с ними диалог. Системы разделения времени призваны исправить основной недостаток систем пакетной обработки - изоляцию пользователя-программиста от процесса выполнения задач.

Каждому пользователю в этом случае предоставляется терминал, с которого он может вести диалог со своей программой. Так как в системах разделения времени каждой задаче выделяется только квант процессорного времени, ни одна задача не занимает процессор надолго, и время ответа оказывается приемлемым. Если квант небольшой, то у всех пользователей, одновременно работающих на одной и той же машине, складывается впечатление, что каждый из них использует машину единолично.

Ясно, что системы разделения времени обладают меньшей пропускной способностью, чем системы пакетной обработки, так как на выполнение принимается каждая запущенная пользователем задача, а не та, которая выгодна системе. Кроме того, производительность системы снижается из-за дополнительного расходования вычислительной мощности на более частое переключение процессора с задачи на задачу. Это вполне соответствует тому, что критерием эффективности систем разделения времени является не максимальная

пропускная способность, а удобство и эффективность работы пользователя. Вместе с тем, мультипрограммное выполнение интерактивных приложений повышает и пропускную способность компьютера пусть и не в такой степени, как пакетные системы . Аппаратура загружается лучше, поскольку пока одно приложение ждет сообщения пользователя, другие приложения могут обрабатываться процессором. 2.4. Многотерминальные системы - прообраз сети

Терминалы, выйдя за пределы вычислительного центра, рассредоточились по всему предприятию. Многотерминальный режим использовался не только в системах разделения времени, но и в системах пакетной обработки. При этом не только оператор, но и все пользователи получали возможность формировать свои задания и управлять их выполнением со своего терминала. Такие операционные системы получили название систем удаленного ввода заданий.

Терминальные комплексы могли располагаться на большом расстоянии от процессорных стоек, соединяясь с ними с помощью различных глобальных связей - модемных соединений телефонных сетей или выделенных каналов. Для поддержки удаленной работы терминалов в операционных системах появились специальные программные модули, реализующие различные в то время, как правило, нестандартные протоколы связи. Такие вычислительные системы с удаленными терминалами сохраняя централизованный характер обработки

данных, в какой-то степени являлись прообразом современных компьютерных сетей рис. 3 , а соответствующее системное программное обеспечение - прообразом сетевых операционных систем. Рис. 3. Многотерминальная система - прообраз вычислительной сети. Многотерминальные централизованные системы уже имели все внешние признаки локальных вычислительных сетей, однако по существу ими не являлись, так как сохраняли сущность централизованной обработки данных

автономно работающего компьютера. Действительно, рядовой пользователь работу за терминалом мэйнфрейма воспринимал примерно так же, как сейчас воспринимает работу за подключенным к сети персональным компьютером. Пользователь мог получить доступ к общим файлам и периферийным устройствам, при этом у него создавалась полная иллюзия единоличного владения компьютером, так как он мог запустить нужную ему программу в любой момент и почти сразу же получить результат. Некоторые далекие от вычислительной техники пользователи

даже были уверены, что все вычисления выполняются внутри их дисплея. 2.5. Первые сети - глобальные Хотя теоретические работы по созданию концепций сетевого взаимодействия велись почти с момента появления вычислительных машин, значимые практические результаты по объединению компьютеров в сети были получены лишь в конце 60-х, когда с помощью глобальных связей и техники коммутации пакетов удалось реализовать взаимодействие машин класса мэйнфреймов и суперкомпьютеров рис.4 .

Эти дорогостоящие компьютеры хранили уникальные данные и программы, обмен которыми позволил повысить эффективность их использования. Рис. 4. Объединение удаленных супер-ЭВМ глобальными связями. Но еще до реализации связей компьютер-компьютер , была решена более простая задача - организация связи удаленный терминал-компьютер . Терминалы, находящиеся от компьютера на расстоянии многих сотен, а то и тысяч километров, соединялись

с компьютерами через телефонные сети с помощью модемов. Такие сети позволяли многочисленным пользователям получать удаленный доступ к разделяемым ресурсам нескольких мощных компьютеров класса супер-ЭВМ. И только потом были разработаны средства обмена данными между компьютерами в автоматическом режиме. На основе этого механизма в первых сетях были реализованы службы обмена файлами, синхронизации баз данных, электронной почты и другие, ставшие теперь традиционными,

сетевые службы. В 1969 году министерство обороны США инициировало работы по объединению в общую сеть суперкомпьютеров оборонных и научно-исследовательских центров. Эта сеть, получившая название ARPANET послужила отправной точкой для создания первой и самой известной ныне глобальной сети - Internet. Сеть ARPANET объединяла компьютеры разных типов, работавшие под управлением различных ОС с дополнительными модулями, реализующими коммуникационные протоколы, общие для всех компьютеров

сети. Такие ОС можно считать первыми сетевыми операционными системами. Сетевые ОС в отличие от многотерминальных позволяли не только рассредоточить пользователей, но и организовать распределенное хранение и обработку данных между несколькими компьютерами, связанными электрическими связями. Любая сетевая операционная система, с одной стороны, выполняет все функции локальной операционной системы, а с другой стороны, обладает некоторыми дополнительными средствами, позволяющими ей взаимодействовать

по сети с операционными системами других компьютеров. Программные модули, реализующие сетевые функции, появлялись в операционных системах постепенно, по мере развития сетевых технологий, аппаратной базы компьютеров и возникновения новых задач, требующих сетевой обработки. В 1974 году компания IBM объявила о создании собственной сетевой архитектуры для своих мэйнфреймов, получившей название SNA System Network

Architecture, системная сетевая архитектура . В это же время в Европе активно велись работы по созданию и стандартизации сетей X.25. Таким образом, хронологически первыми появились глобальные сети Wide Area Networks, WAN , то есть сети, объединяющие территориально рассредоточенные компьютеры, возможно, находящиеся в различных городах и странах. Именно при построении глобальных сетей были впервые предложены

и отработаны многие основные идеи и концепции современных вычислительных сетей, такие, например, как многоуровневое построение коммуникационных протоколов, технология коммутации пакетов и маршрутизация пакетов в составных сетях. 3. Локальные сети 3.1. Место и роль локальных сетей Связь на небольшие расстояния в компьютерной технике существовала еще задолго до появления первых персональных компьютеров. К большим компьютерам mainframes , присоединялись многочисленные терминалы или интеллектуальные

дисплеи . Правда, интеллекта в этих терминалах было очень мало, практически никакой обработки информации они не делали, и основная цель организации связи состояла в том, чтобы разделить интеллект машинное время большого мощного и дорогого компьютера между пользователями, работающими за этими терминалами. Это называлось режимом разделения времени, так как большой компьютер последовательно во времени решал задачи множества пользователей. В данном случае достигалось совместное использование самых дорогих в

то время ресурсов - вычислительных рис 5 Рис. 5. Подключение терминалов к центральному компьютеру Затем были созданы микропроцессоры и первые микрокомпьютеры. Появилась возможность разместить компьютер на столе у каждого пользователя, так как вычислительные, интеллектуальные ресурсы подешевели. Но зато все остальные ресурсы оставались еще довольно дорогими. А что значит голый интеллект без средств хранения информации и ее документирования?

Не будешь же каждый раз после включения питания заново набирать выполняемую программу или хранить ее в маловместительной постоянной памяти. На помощь снова пришли средства связи. Объединив несколько микрокомпьютеров, можно было организовать совместное использование ими компьютерной периферии магнитных дисков, магнитной ленты, принтеров . При этом вся обработка информации проводилась на месте, но ее результаты передавались на централизованные

ресурсы. Здесь опять же совместно использовалось самое дорогое, что есть в системе, но уже совершенно по-новому. Такой режим получил название режима обратного разделения времени рис. 6 . Как и в первом случае, средства связи снижали стоимость компьютерной системы в целом. Рис. 6. Объединение в сеть первых микрокомпьютеров Затем появились персональные компьютеры, которые отличались от первых микрокомпьютеров тем, что имели

полный комплект достаточно развитой для полностью автономной работы периферии магнитные диски, принтеры, не говоря уже о более совершенных средствах интерфейса пользователя мониторы, клавиатуры, мыши и т.д Периферия подешевела и стала по цене вполне сравнимой с компьютером. Казалось бы, зачем теперь соединять персональные компьютеры рис. 7 ? Что им разделять, когда и так уже все разделено и находится на столе у каждого пользователя?

Интеллекта на месте хватает, периферии тоже. Что же может дать сеть в этом случае? Рис. 7. Объединение в сеть персональных компьютеров Самое главное - это опять же совместное использование ресурса. То самое обратное разделение времени, но уже на принципиально другом уровне. Здесь уже оно применяется не для снижения стоимости системы, а с целью более эффективного использования

ресурсов имеющихся в распоряжении компьютеров. Например, сеть позволяет объединить объем дисков всех компьютеров, обеспечив доступ каждого из них к дискам всех остальных как к собственным. Но нагляднее всего преимущества сети проявляются, в том случае, когда все пользователи активно работают с единой базой данных, запрашивая информацию из нее и занося в нее новую например, в банке, в магазине, на складе . Никакими дискетами тут уже не обойдешься пришлось бы целыми днями переносить данные с каждого

компьютера на все остальные, содержать целый штат курьеров. А с сетью все очень просто любые изменения данных, произведенные с любого компьютера, тут же становятся видными и доступными всем. В этом случае особой обработки на месте обычно не требуется, и в принципе можно было бы обойтись более дешевыми терминалами вернуться к первой рассмотренной ситуации , но персональные компьютеры имеют несравнимо более удобный интерфейс пользователя, облегчающий работу персонала.

К тому же возможность сложной обработки информации на месте часто может заметно уменьшить объем передаваемых данных. Рис. 8. Использование локальной сети для организации совместной работы компьютеров Без сети также невозможно обойтись в том случае, когда необходимо обеспечить согласованную работу нескольких компьютеров. Эта ситуация чаще всего встречается, когда эти компьютеры используются не для вычислений и работы с базами данных, а в задачах управления, измерения, контроля, там, где компьютер сопрягается

с теми или иными внешними устройствами рис. 8 . Примерами могут служить различные производственные технологические системы, а также системы управления научными установками и комплексами. Здесь сеть позволяет синхронизовать действия компьютеров, распараллелить и соответственно ускорить процесс обработки данных, то есть сложить уже не только периферийные ресурсы, но и интеллектуальную мощь. Именно указанные преимущества локальных сетей и обеспечивают их популярность и все более широкое

применение, несмотря на все неудобства, связанные с их установкой и эксплуатацией. Способов и средств обмена информацией за последнее время предложено множество от простейшего переноса файлов с помощью дискеты до всемирной компьютерной сети Интернет, способной объединить все компьютеры мира. Какое же место в этой иерархии отводится локальным сетям?

Чаще всего термин локальные сети или локальные вычислительные сети понимают буквально, то есть это такие сети, которые имеют небольшие, локальные размеры, соединяют близко расположенные компьютеры. Однако достаточно посмотреть на характеристики некоторых современных локальных сетей, чтобы понять, что такое определение не точно. Например, некоторые локальные сети легко обеспечивают связь на расстоянии нескольких десятков километров. Это уже размеры не комнаты, не здания, не близко расположенных зданий,

а, может быть, даже целого города. С другой стороны, по глобальной сети вполне могут связываться компьютеры, находящиеся на соседних столах в одной комнате, но ее почему-то никто не называет локальной сетью. Близко расположенные компьютеры могут также связываться с помощью кабеля, соединяющего разъемы внешних интерфейсов или даже без кабеля по инфракрасному каналу. Но такая связь тоже почему-то не называется локальной.

Неверно и довольно часто встречающееся определение локальной сети как малой сети, которая объединяет небольшое количество компьютеров. Действительно, как правило, локальная сеть связывает от двух до нескольких десятков компьютеров. Но предельные возможности современных локальных сетей гораздо выше максимальное число абонентов может достигать тысячи. Называть такую сеть малой неправильно. Некоторые авторы определяют локальную сеть как систему для непосредственного соединения многих компьютеров

. При этом подразумевается, что информация передается от компьютера к компьютеру без каких-либо посредников и по единой среде передачи. Однако говорить о единой среде передачи в современной локальной сети не приходится. Например, в пределах одной сети могут использоваться как электрические кабели различных типов витая пара, коаксиальный кабель , так и оптоволоконные кабели. Определение передачи без посредников также не корректно, ведь в современных локальных сетях используются

репитеры, трансиверы, концентраторы, коммутаторы, маршрутизаторы, мосты, которые порой производят довольно сложную обработку передаваемой информации. Не совсем понятно, можно ли считать их посредниками или нет, можно ли считать подобную сеть локальной. Наверное, наиболее точно было бы определить как локальную такую сеть, которая позволяет пользователям не замечать связи. Еще можно сказать, что локальная сеть должна обеспечивать прозрачную связь.

По сути, компьютеры, связанные локальной сетью, объединяются, в один виртуальный компьютер, ресурсы которого могут быть доступны всем пользователям, причем этот доступ не менее удобен, чем к ресурсам, входящим непосредственно в каждый отдельный компьютер. Под удобством в данном случае понимается высокая реальная скорость доступа, скорость обмена информацией между приложениями, практически незаметная для пользователя.

При таком определении становится понятно, что ни медленные глобальные сети, ни медленная связь через последовательный или параллельный порты не подпадают под понятие локальной сети. Из данного определения следует, что скорость передачи по локальной сети обязательно должна расти по мере роста быстродействия наиболее распространенных компьютеров. Именно это и наблюдается если еще десять лет назад вполне приемлемой считалась скорость обмена в 10

Мбит с, то сейчас уже среднескоростной считается сеть, имеющая пропускную способность 100 Мбит с, активно разрабатываются, а кое-где используются средства для скорости 1000 Мбит с и даже больше. Без этого уже нельзя, иначе связь станет слишком узким местом, будет чрезмерно замедлять работу объединенного сетью виртуального компьютера, снижать удобство доступа к сетевым ресурсам. Таким образом, главное отличие локальной сети от любой другой - высокая скорость передачи информации

по сети. Но это еще не все, не менее важны и другие факторы. В частности, принципиально необходим низкий уровень ошибок передачи, вызванных как внутренними, так и внешними факторами. Ведь даже очень быстро переданная информация, которая искажена ошибками, просто не имеет смысла, ее придется передавать еще раз. Поэтому локальные сети обязательно используют специально прокладываемые высококачественные и хорошо защищенные от помех линии связи.

Особое значение имеет и такая характеристика сети, как возможность работы с большими нагрузками, то есть с высокой интенсивностью обмена или, как еще говорят, с большим трафиком . Ведь если механизм управления обменом, используемый в сети, не слишком эффективен, то компьютеры могут подолгу ждать своей очереди на передачу. И даже если эта передача будет производиться затем на высочайшей скорости и безошибочно, для пользователя сети такая задержка доступа ко всем сетевым ресурсам неприемлема.

Ему ведь не важно, почему приходится ждать. Механизм управления обменом может гарантированно успешно работать только в том случае, когда заранее известно, сколько компьютеров или, как еще говорят, абонентов, узлов , допустимо подключить к сети. Иначе всегда можно включить столько абонентов, что вследствие перегрузки забуксует любой механизм управления. Наконец, сетью можно назвать только такую систему передачи данных, которая позволяет объединять до нескольких десятков компьютеров, но никак не два, как в случае

связи через стандартные порты. Таким образом, сформулировать отличительные признаки локальной сети можно следующим образом Высокая скорость передачи информации, большая пропускная способность сети. Приемлемая скорость сейчас - не менее 10 Мбит с. Низкий уровень ошибок передачи или, что то же самое, высококачественные каналы связи . Допустимая вероятность ошибок передачи данных должна быть порядка 10-8 - 10-12. Эффективный, быстродействующий механизм управления обменом по сети.

Заранее четко ограниченное количество компьютеров, подключаемых к сети. При таком определении понятно, что глобальные сети отличаются от локальных прежде всего тем, что они рассчитаны на неограниченное число абонентов. Кроме того, они используют или могут использовать не слишком качественные каналы связи и сравнительно низкую скорость передачи. А механизм управления обменом в них не может быть гарантированно быстрым.

В глобальных сетях гораздо важнее не качество связи, а сам факт ее существования. Нередко выделяют еще один класс компьютерных сетей - городские, региональные сети, которые обычно по своим характеристикам ближе к глобальным сетям, хотя иногда все-таки имеют некоторые черты локальных сетей, например, высококачественные каналы связи и сравнительно высокие скорости передачи. В принципе городская сеть может быть локальной со всеми ее преимуществами.

Правда, сейчас уже нельзя провести четкую границу между локальными и глобальными сетями. Большинство локальных сетей имеет выход в глобальную. Но характер передаваемой информации, принципы организации обмена, режимы доступа к ресурсам внутри локальной сети, как правило, сильно отличаются от тех, что приняты в глобальной сети. И хотя все компьютеры локальной сети в данном случае включены также и в глобальную сеть, специфики

локальной сети это не отменяет. Возможность выхода в глобальную сеть остается всего лишь одним из ресурсов, разделяемых пользователями локальной сети. По локальной сети может передаваться самая разная цифровая информация данные, изображения, телефонные разговоры, электронные письма и т.д. Кстати, именно задача передачи изображений, особенно полноцветных динамических, предъявляет самые высокие требования к быстродействию сети. Чаще всего локальные сети используются для разделения совместного

использования таких ресурсов, как дисковое пространство, принтеры и выход в глобальную сеть, но это всего лишь незначительная часть тех возможностей, которые предоставляют средства локальных сетей . Например, они позволяют осуществлять обмен информацией между компьютерами разных типов. Полноценными абонентами узлами сети могут быть не только компьютеры, но и другие устройства, например, принтеры, плоттеры, сканеры. Локальные сети дают также возможность организовать систему параллельных

вычислений на всех компьютерах сети, что многократно ускоряет решение сложных математических задач. С их помощью, как уже упоминалось, можно управлять работой технологической системы или исследовательской установки с нескольких компьютеров одновременно. Однако сети имеют и довольно существенные недостатки, о которых всегда следует помнить Сеть требует дополнительных, иногда значительных материальных затрат на покупку сетевого оборудования, программного обеспечения, на прокладку соединительных кабелей и обучение

персонала. Сеть требует приема на работу специалиста администратора сети , который будет заниматься контролем работы сети, ее модернизацией, управлением доступом к ресурсам, устранением возможных неисправностей, защитой информации и резервным копированием. Для больших сетей может понадобиться целая бригада администраторов. Сеть ограничивает возможности перемещения компьютеров, подключенных к ней, так как при этом может понадобиться перекладка соединительных кабелей. Сети представляют собой прекрасную среду для распространения компьютерных

вирусов, поэтому вопросам защиты от них придется уделять гораздо больше внимания, чем в случае автономного использования компьютеров. Ведь достаточно инфицировать один и все компьютеры сети будут поражены. Сеть резко повышает опасность несанкционированного доступа к информации с целью ее кражи или уничтожения, Информационная защита требует проведения целого комплекса технических и организационных мероприятий. Ничто не дается даром. И надо хорошо подумать, стоит ли подключать к сети все компьютеры компании,

или часть из них лучше оставить автономными. Возможно, что сеть вообще не нужна, так как породит гораздо больше проблем, чем позволит решить. 3.2.Топология локальных сетей Под топологией компоновкой, конфигурацией, структурой компьютерной сети обычно понимается физическое расположение компьютеров сети друг относительно друга и способ соединения их линиями связи. Важно отметить, что понятие топологии относится, прежде всего, к локальным сетям, в которых структуру

связей можно легко проследить. В глобальных сетях структура связей обычно скрыта от пользователей и не слишком важна, так как каждый сеанс связи может производиться по собственному пути. Топология определяет требования к оборудованию, тип используемого кабеля, допустимые и наиболее удобные методы управления обменом, надежность работы, возможности расширения сети. И хотя выбирать топологию пользователю сети приходится нечасто, знать об особенностях основных топологий,

их достоинствах и недостатках надо. Среди топологических схем наиболее популярными являются см. рис. 9 1. Шина 2. Звезда 3. Кольцо 4. Многокаскадные и многосвязные сети Рис. 9. Примеры сетевых топологий К первым трем типам топологии относятся 99 всех локальных сетей. Наиболее популярный тип сети - Ethernet, может строиться по схемам 1 и 2. Вариант 1 наиболее дешев, так как требует по одному интерфейсу на машину и не нуждается в каком-либо

дополнительном оборудовании. Сети Token Ring и FDDI используют кольцевую топологию 3 на рис. 9 , где каждый узел должен иметь два сетевых интерфейса. Эта топология удобна для оптоволоконных каналов, где сигнал может передаваться только в одном направлении но при наличии двух колец, как в FDDI, возможна и двунаправленная передача . Нетрудно видеть, что кольцевая топология строится из последовательности соединений точка-точка.

Используется и немалое количество других топологий, которые являются комбинациями уже названных. Примеры таких топологий представлены на рис. 10. Вариант А на рис. 10 представляет собой схему с полным набором связей все узлы соединены со всеми , такая схема используется только в случае, когда необходимо обеспечить высокую надежность соединений. Эта версия требует для каждого из узлов наличия n-1 интерфейсов при полном числе узлов n.

Вариант Б является примером нерегулярной топологии, а вариант В - иерархический случай связи древовидная топология . Если топологии на рис. 9 чаще применимы для локальных сетей, то топологии на рис. 10 более типичны для региональных и глобальных сетей. Выбор топологии локальной или региональной сети существенно сказывается на ее стоимости и рабочих характеристиках.

Рис. 10. Различные сетевые топологические схемы Современные вычислительные системы используют и другие топологии решетки А , кубы В , гипердеревья Б , гиперкубы и т.д. см. рис. 11 . Но так как некоторые вычислительные системы кластеры базируются на сетевых технологиях, ниже приводятся и такие примеры. В некоторых системах топология может настраиваться на решаемую задачу. Рис. 11. Современные топологические схемы 3.3. Требования к каналам передачи данных

В качестве кабеля используются коаксиальный кабель, витая пара, волоконно-оптический кабель. За последние двадцать лет пропускная способность каналов выросла с 56 кбит c до 1 Гбит с. Разработаны технологии, способные работать в случае оптических кабелей со скоростью 50 Тбит с. Вероятность ошибки при этом сократилась с 10-5 на бит до пренебрежимо низкого уровня. Современный же лимит в несколько Гбит с связан главным образом с тем, что люди не научились делать

быстродействующие преобразователи электрических сигналов в оптические. Сопоставление возможностей различных технологий передачи данных представлено на рис. 12. Радиоканалы покрывают диапазон от десятков килобит в секунду до десятков мегабит в сек. Рис. 12. Сравнение возможностей витой пары, коаксиального кабеля, много- и одномодовых волокон 3.4. Появление стандартных технологий локальных сетей В середине 80-х годов положение дел в локальных сетях

стало меняться. Утвердились стандартные технологии объединения компьютеров в сеть - Ethernet, Arcnet, Token Ring, Token Bus, несколько позже - FDDI. Все стандартные технологии локальных сетей опирались на тот же принцип коммутации, который был с успехом опробован и доказал свои преимущества при передаче трафика данных в глобальных компьютерных сетях - принцип коммутации пакетов. Стандартные сетевые технологии сделали задачу построения локальной

сети почти тривиальной. Для создания сети достаточно было приобрести сетевые адаптеры соответствующего стандарта, например Ethernet, стандартный кабель, присоединить адаптеры к кабелю стандартными разъемами и установить на компьютер одну из популярных сетевых операционных систем, например Novell NetWare. После этого сеть начинала работать, и последующее присоединение каждого нового компьютера не вызывало никаких проблем - естественно, если на нем был установлен сетевой адаптер той же технологии.

В 80-е годы были приняты основные стандарты на коммуникационные технологии для локальных сетей в 1980 году - Ethernet, в 1985 - Token Ring, в конце 80-х - FDDI. Это позволило обеспечить совместимость сетевых операционных систем на нижних уровнях, а также стандартизировать интерфейс ОС с драйверами сетевых адаптеров. Конец 90-х выявил явного лидера среди технологий локальных сетей - семейство

Ethernet, в которое вошли классическая технология Ethernet 10 Мбит c, а также Fast Ethernet 100 Мбит c и Gigabit Ethernet 1000 Мбит c. Простые алгоритмы работы предопределили низкую стоимость оборудования Ethernet. Широкий диапазон иерархии скоростей позволяет рационально строить локальную сеть, применяя ту технологию, которая в наибольшей степени отвечает задачам предприятия и потребностям пользователей.

Важно также, что все технологии Ethernet очень близки друг другу по принципам работы, что упрощает обслуживание и интеграцию построенных на их основе сетей. 3.5. Роль персональных компьютеров в эволюции компьютерных сетей Начало 80-х годов связано с еще одним знаменательным для истории сетей событием - появлением персональных компьютеров. Эти устройства стали идеальными элементами для построения сетей с одной стороны, они были

достаточно мощными для работы сетевого программного обеспечения, а с другой - явно нуждались в объединении вычислительной мощности для решения сложных задач, а также разделения дорогих периферийных устройств и дисковых массивов. Поэтому персональные компьютеры стали активно использоваться в локальных сетях, причем не только в качестве клиентских компьютеров, но и в качестве центров хранения и обработки данных, то есть сетевых серверов, потеснив с этих ролей мини-компьютеры и мэйнфреймы.

С точки зрения архитектуры персональные компьютеры ничем не отличались от мини-компьютеров типа PDP-11, но их стоимость была существенно ниже. Если с появлением мини-компьютера возможность иметь собственную вычислительную машину получили отделы предприятий или университеты, то создание персонального компьютера дало такую возможность отдельному человеку. Создание персональных компьютеров послужило мощным катализатором для бурного роста локальных сетей, поскольку появилась отличная материальная основа в виде десятков

и сотен машин, принадлежащих одному предприятию и расположенных в пределах одного здания. Компьютеры стали использоваться не только специалистами, что потребовало разработки дружественного программного обеспечения, и предоставление соответствующих функций стало прямой обязанностью операционных систем. В результате поддержка сетевых функций стала для ОС персональных компьютеров необходимым условием. 3.6.

Новые возможности пользователей локальных сетей Разработчики локальных сетей привнесли в организацию работы пользователей много нового. Так, стало намного проще, чем в глобальных сетях, получать доступ к сетевым ресурсам - в локальной сети пользователю не приходится запоминать сложные идентификаторы разделяемых ресурсов. Для этих целей система предоставляет список ресурсов в удобной для восприятия форме, например в виде древовидной графической структуры дерева ресурсов .

Еще один прием, позволяющий оптимизировать работу в локальной сети, состоит в том, что после соединения с удаленным ресурсом пользователь получает возможность обращаться к нему с помощью тех же команд, которые он применял при работе с локальными ресурсами. Следствием и в то же время движущей силой такого прогресса стало появление огромного количества непрофессиональных пользователей, освобожденных от необходимости изучать специальные и достаточно сложные команды для сетевой работы.

Может возникнуть вопрос - почему все эти преимущества пользователи получили только с появлением локальных сетей? Главным образом, это связано с использованием в локальных сетях качественных кабельных линий связи, на которых даже сетевые адаптеры первого поколения обеспечивали скорость передачи данных до 10 Мбит с. При небольшой протяженности, свойственной локальным сетям, стоимость таких линий связи была вполне приемлемой. Поэтому экономное расходование пропускной способности каналов, одна из основных задач,

возложенных на технологии первых глобальных сетей, никогда не выходило на первый план при разработке протоколов локальных сетей. В таких условиях основным механизмом прозрачного доступа к ресурсам локальных сетей стали периодические широковещательные объявления серверов о своих ресурсах и услугах. На основании таких объявлений клиентские компьютеры составляли списки имеющихся в сети ресурсов и предоставляли их пользователю. 4. Глобальные сети 4. 1. Структура глобальной сети.

Глобальные сети, которые также называются территориальными компьютерными сетями, служат для того, чтобы предоставлять свои сервисы большому количеству абонентов, разбросанных по большой территории. Ввиду большой протяженности каналов связи построение глобальной сети требует очень больших затрат, в которую входят стоимость кабелей и работ по их прокладке, затраты на коммутационное оборудование и промежуточную усилительную аппаратуру, обеспечивающую необходимую полосу пропускания канала, а также

эксплутационные затраты на постоянное поддержание в работоспособном состоянии разбросанной по большой территории аппаратуры сети. Типичными абонентами глобальной компьютерной сети является локальные сети предприятий, расположенные в разных городах и странах, которым нужно обмениваться данными между собой. Услугами глобальных сетей пользуются также и отдельные компьютеры. Крупные компьютеры класса мэйнфреймов обычно обеспечивают доступ к корпоративным данным, в то время

как персональные компьютеры используются для доступа к корпоративным данным и публичным данным Internet. Широкое распространение корпоративных сетей, которое сегодня стало очевидной тенденцией, приводит к существенным изменениям в архитектуре объединенных вычислительных сетей, в том числе Интернета. Сегодняшние корпоративные вычислительные сети изначально возникли как островки локальных сетей, связанные друг с другом тоненькими мостиками межсетевых коммуникаций.

Простая магистраль Ethernet с небольшой полосой пропускания вполне удовлетворяла тем требованиям, которые предъявлялись к ней при таком взаимодействии между сетями. Однако по мере того, как все большая часть информации и услуг сосредотачивалась на мощных централизованных серверах, перегруженные маршрутизаторы сетевой магистрали превратились в ее самое узкое место и начали существенно ограничивать взаимодействие между сетями.

При построении территориально распределенной сети могут использоваться различные технологии. Для подключения удаленных пользователей самым простым и доступным вариантом является использование телефонной связи. Там, где это возможно, могут использоваться сети ISDN. Для объединения узлов сети в большинстве случаев используются глобальные сети передачи данных. Даже там, где возможна прокладка выделенных линий например, в пределах одного города использование

технологий пакетной коммутации позволяет уменьшить количество необходимых каналов связи и - что немаловажно - обеспечить совместимость системы с существующими глобальными сетями. Использовать Internet как среду передачи данных стоит только тогда, когда другие способы недоступны и финансовые соображения перевешивают требования надежности и безопасности. Если вы будете использовать Internet только в качестве источника информации, лучше пользоваться технологией

соединение по запросу dial-on-demand , т.е. таким способом подключения, когда соединение с узлом Internet устанавливается только по вашей инициативе и на нужное вам время. Это резко снижает риск несанкционированного проникновения в вашу сеть извне. Простейший способ обеспечить такое подключение - использовать дозвон до узла Internet по телефонной линии или, если возможно, через

ISDN. Другой, более надежный способ обеспечить соединение по запросу - использовать выделенную линию и протокол X.25 или - что гораздо предпочтительнее - Frame Relay. В этом случае маршрутизатор с вашей стороны должен быть настроен так, чтобы разрывать виртуальное соединение при отсутствии данных в течении определенного времени и вновь устанавливать его только тогда, когда данные появляются с вашей стороны.

Широко распространенные способы подключения с использованием PPP или HDLC такой возможности не дают. Если же вы хотите предоставлять свою информацию в Internet - например, установить WWW или FTP сервер, соединение по запросу оказывается неприменимым. В этом случае следует не только использовать ограничение доступа с помощью Firewall, но и максимально изолировать сервер Internet от остальных ресурсов.

Хорошим решением является использование единственной точки подключения к Internet для всей территориально распределенной сети, узлы которой связаны друг с другом с помощью виртуальных каналов X.25 или Frame Relay. В этом случае доступ из Internet возможен к единственному узлу, пользователи же в остальных узлах могут попасть в Internet с помощью соединения по запросу. Для передачи данных внутри корпоративной сети также стоит

использовать виртуальные каналы сетей пакетной коммутации. Основные достоинства такого подхода - универсальность, гибкость, безопасность - были подробно рассмотрены выше. В качестве виртуальной сети при построении корпоративной информационной системы может использоваться как X.25, так и Frame Relay. Выбор между ними определяется качеством каналов связи, доступностью услуг в точках подключения и - не в последнюю очередь - финансовыми соображениями.

На сегодня затраты при использовании Frame Relay для междугородной связи оказываются в несколько раз выше, чем для сетей X.25. С другой стороны, более высокая скорость передачи информации и возможность одновременно передавать данные и голос могут оказаться решающими аргументами в пользу Frame Relay. На тех участках корпоративной сети, где доступны арендованные линии, более предпочтительной является технология Frame Relay. В этом случае возможно как объединение локальных сетей и подключение

к Internet, так и использование тех приложений, которые традиционно требуют X.25. Кроме того, по этой же сети возможна телефонная связь между узлами. Для Frame Relay лучше использовать цифровые каналы связи, однако даже на физических линиях или каналах тональной частоты можно создать вполне эффективную сеть, установив соответствующее канальное оборудование. Хорошие результаты дает применение модемов Motorola 326x

SDC, имеющих уникальные возможности коррекции и компрессии данных в синхронном режиме. Благодаря этому удается - ценой внесения небольших задержек - значительно поднять качество канала связи и достичь эффективной скорости до 80 кбит сек и выше. На физических линиях небольшой протяженности могут использоваться также short-range модемы, обеспечивающие достаточно высокие скорости. Однако здесь необходимо высокое качество линии, поскольку short-range модемы

никакой коррекции ошибок не поддерживают. Широко известны short-range модемы RAD, а также оборудование PairGain, позволяющее достичь скорости 2 Мбит с на физических линиях длиной около 10 км. Для подключения удаленных пользователей к корпоративной сети могут использоваться узлы доступа сетей X.25, а также собственные коммуникационные узлы. В последнем случае требуется выделение нужного количества телефонных номеров или каналов

ISDN , что может оказаться слишком дорого. Если нужно обеспечить подключение большого количества пользователей одновременно, то более дешевым вариантом может оказаться использование узлов доступа сети X.25, даже внутри одного города. Сети передачи данных часто строят по иерархически-узловому принципу. Несколько оптимально рассредоточенных по регионам магистральных узлов коммутации позволяют обеспечить включение десятков и сотен узлов коммутации, расположенных в областных и районных центрах.

Наличие большого количества узлов позволяет абонентам включаться в сеть с минимальными затратами, используя внутригородские и местные телефонные сети. В современных СПД узлы сети соединены выделенными некоммутируемыми каналами связи с наличием обходных путей, что обеспечивает абонентам гарантированное время установления соединения не более 1 секунды достоверность передачи информации вероятность ошибки не хуже 10Е-8 по битам время доведения пакета не более 1.0 сек. с вероятностью не

менее 0,98 вероятность установления и поддержания виртуального соединения не ниже 0,98 передачу информации и доступ к информационным ресурсам сети в режиме реального времени. 4.2. Наследие телефонных сетей Глобальные компьютерные сети очень многое унаследовали от других, гораздо более старых и глобальных сетей - телефонных. Главным результатом создания первых глобальных компьютерных сетей был отказ от принципа коммутации каналов, на протяжении многих десятков лет успешно использовавшегося

в телефонных сетях. Выделяемый на все время сеанса связи составной канал с постоянной скоростью не мог эффективно использоваться пульсирующим трафиком компьютерных данных, у которого периоды интенсивного обмена чередуются с продолжительными паузами. Эксперименты и математическое моделирование показали, что пульсирующий и в значительной степени не чувствительный к задержкам компьютерный трафик гораздо эффективней передается по сетям, использующим принцип коммутации пакетов, когда данные разделяются на

небольшие порции, которые самостоятельно перемещаются по сети за счет встраивания адреса конечного узла в заголовок пакета. Так как прокладка высококачественных линий связи на большие расстояния обходится очень дорого, в первых глобальных сетях часто использовались уже существующие каналы связи, изначально предназначенные совсем для других целей. Например, в течение многих лет глобальные сети строились на основе телефонных каналов тональной частоты, способных в каждый момент времени вести передачу только

одного разговора в аналоговой форме. Поскольку скорость передачи дискретных компьютерных данных по таким каналам была очень низкой десятки килобит в секунду , набор предоставляемых услуг в глобальных сетях такого типа обычно ограничивался передачей файлов, преимущественно в фоновом режиме, и электронной почтой. Помимо низкой скорости такие каналы имеют и другой недостаток - они вносят значительные искажения в передаваемые сигналы. Поэтому протоколы глобальных сетей, построенных с использованием каналов связи

низкого качества, отличаются сложными процедурами контроля и восстановления данных. Типичным примером таких сетей являются сети X.25, разработанные еще в начале 70-х, когда низкоскоростные аналоговые каналы, арендуемые у телефонных компаний, были преобладающим типом каналов, соединяющих компьютеры и коммутаторы глобальной вычислительной сети. Развитие технологии глобальных компьютерных сетей во многом определялось прогрессом телефонных сетей. С конца 60-х годов в телефонных сетях все чаще стала применяться

передача голоса в цифровой форме, что привело к появлению высокоскоростных цифровых каналов, соединяющих АТС и позволяющих одновременно передавать десятки и сотни разговоров. Была разработана специальная технология плезиохронной цифровой иерархии Plesiochronous Digital Hierarchy, PDH , предназначенная для создания так называемых первичных, или опорных, сетей. Такие сети не предоставляют услуг конечным пользователям, они являются фундаментом, на котором

строятся скоростные цифровые каналы точка-точка , соединяющие оборудование другой так называемой наложенной сети, которая уже работает на конечного пользователя. Первоначально технология PDH, поддерживающая скорости до 140 Мбит с, была внутренней технологией телефонных компаний. Однако со временем эти компании стали сдавать часть своих каналов

PDH в аренду предприятиям, которые использовали их для создания собственных телефонных и глобальных компьютерных сетей. Появившаяся в конце 80-х годов технология синхронной цифровой иерархии Synchronous Digital Hierarchy, SDH расширила диапазон скоростей цифровых каналов до 10 Гбит c, а технология спектрального мультиплексирования DWDM Dense Wave Division Multiplexing - до сотен гигабит и даже нескольких терабит в секунду.

Сегодня глобальные сети по разнообразию и качеству предоставляемых услуг догнали локальные сети, которые долгое время лидировали в этом отношении, хотя и появились на свет значительно позже. 4.3. Оборудование сетей. Сеть - это достаточно сложная структура, использующая различные типы связи, коммуникационные протоколы и способы подключения ресурсов. С точки зрения удобства построения и управляемости сети следуют ориентироваться на однотипное оборудование

одного производителя. Однако практика показывает, что поставщиков, предлагающих максимально эффективные решения для всех возникающих задач, не существует. Работающая сеть всегда является результатом компромисса - либо это однородная система, неоптимальная с точки зрения цены и возможностей, либо более сложное в установке и управлении сочетание продуктов различных производителей. Далее мы рассмотрим средства построения сетей нескольких ведущих производителей

и дадим некоторые рекомендации по их использованию. Все оборудование сетей передачи данных можно условно разделить на два больших класса - периферийное, которое используется для подключения к сети оконечных узлов, и магистральное или опорное, реализующее основные функции сети коммутацию каналов, маршрутизацию и т.д . Четкой границы между этими типами нет - одни и те же устройства могут использоваться в разном качестве

или совмещать те и другие функции. Следует отметить, что к магистральному оборудованию обычно предъявляются повышенные требования в части надежности, производительности, количества портов и дальнейшей расширяемости. Периферийное оборудование является необходимым компонентом всякой корпоративной сети. Функции же магистральных узлов может брать на себя глобальная сеть передачи данных, к которой подключаются ресурсы. Как правило, магистральные узлы в составе корпоративной сети появляются только в тех случаях,

когда используются арендованные каналы связи или создаются собственные узлы доступа. Периферийное оборудование сетей с точки зрения выполняемых функций также можно разделить на два класса. Во-первых, это маршрутизаторы routers , служащие для объединения однородных LAN как правило, IP или IPX через глобальные сети передачи данных. В сетях, использующих IP или IPX в качестве основного протокола - в частности, в той же

Internet - маршрутизаторы используются и как магистральное оборудование, обеспечивающее стыковку различных каналов и протоколов связи. Маршрутизаторы могут быть выполнены как в виде автономных устройств, так и программными средствами на базе компьютеров и специальных коммуникационных адаптеров. Второй широко используемый тип периферийного оборудования - шлюзы gateways , реализующие взаимодействие приложений, работающих в разных типах сетей. В корпоративных сетях используются в основном шлюзы

OSI, обеспечивающие взаимодействие локальных сетей с ресурсами X.25 и шлюзы SNA, обеспечивающие подключение к сетям IBM. Полнофункциональный шлюз всегда представляет собой программно-аппаратный комплекс, поскольку должен обеспечивать необходимые для приложений программные интерфейсы. Литература 1.Олифер В.Г Олифер Н.А. Основы сетей передачи данныхИздательство

Интернет-университет информационных технологий Год выпуска 2005 Версия 2-е издание ISBN 5-9556-0035-3 2. Новиков Ю.В Кондратенко С.В. Основы локальных сетей Интернет-университет информационных технологий - ИНТУИТ.ру,2005г 360стр. 3. Флинт Д. Локальные сети ЭВМ Пер. с англ. М. Финансы и статистика, 1986 357 с.

4. Емельянов Г.А Шварцман В.О. Передача дискретной информации Учебник для вузов М. Радио и связь, 1982 240 с. 5. Новиков Ю.В Кондратенко С.В. Локальные сети. Архитектура, алгоритмы, проектирование. М. ЭКОМ, 2000 312 с. 6. Семёнов Ю.А. ГНЦ ИТЭФ , book.itep.ru



Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.