Реферат по предмету "Математика"


Характеристика поля; автоморфизм Фробениуса.

Пусть k - произвольное поле, его единица. Рассмотрим отображение , действующее по формуле t(n) = ne. Это отображение является гомоморфизмом колец. Пусть I Z его ядро. Возможны два случая:
1. I ={0}. В этом случае говорят, что характеристика поля k равна 0. Поскольку тогда при n 0 элементы ne обратимы, t можно продолжить до инъективного отображения T: Q k, положив: T(n/m) = ne* . Значит k содержит подполе Im T . 2. I{0}. Тогда I = pZ и k содержит Im T в качестве подкольца. В этом случае говорят, что характеристика поля k равна p. Заметим, что число p обязательно простое, так как в противном случае Z/pZ содержит делители нуля. Итак, если char(k) =0, то k содержит подполе, изоморфное полю рациональных чисел Q, а если char(k) =p, то k содержит подполе, изоморфное конечному полю GF(p). Примеры. 1. Поля Q, R, C - очевидно имеют характеристику 0. 2. Поле, содержащее конечное число элементов, очевидно имеет положительную характеристику. Рассмотрим следующий пример. Пусть множество X содержит 4 элемента: 0, 1, a, b, которые складываются и перемножаются в соответствие со следующими таблицами: Нетрудно проверить, что относительно введенных операций X является полем, причем 0 - нейтральный элемент для операции сложения, а 1 - нейтральный элемент для умножения. Поскольку 2*x = x + x = 0, поле X имеет характеристику 2. Отметим, что (X,+) , а . Поскольку поле X содержит 4 элемента, в наших обозначениях это - GF(4). 3. Приведем пример бесконечного поля положительной характеристики. Пусть k - произвольное поле. Построим новое поле k(x) - поле рациональных функций над k. По определению, элементами этого поля, то есть рациональными функциями, являются отношения многочленов ( то есть дроби) r = p/q, где p,q k[x], причем q 0. Считается, что , если. Отсюда следует, что : (dp)/(dq) = p/q так что дроби можно приводить к общему знаменателю, что дает возможность их складывать: p/q + u/v = (pv)/(qv) + (qu)/(qv) =(pv+qu)/qv. Умножение дробей определяется естественным образом: (p/q)*(u/v) = (pu)/(qv). Отметим, что k[x] k(x) - каждый многочлен p отождествляется с дробью p/1. Ясно, что эта конструкция действительно дает поле. Если в качестве k взять конечное поле GF(q) характеристики p, то мы придем к бесконечному полю GF(q)(x), которое также имеет характеристику p. Продолжение алгебраических тождеств в произвольные поля. Любое тождество A = B, где A и B целые алгебраические выражения ( то есть построенные из переменных с использованием только операций сложения, вычитания и умножения ) с целыми коэффициентами может быть перенесено в любое поле k, путем замены каждого целого z Z на соответствующий элемент t(z) k (см. начало лекции). В случае поля характеристики 0 такое перенесение возможно и для выражений с рациональными коэффициентами, так как t продолжается до отображения Q в k. Например, формула Тейлора для многочленов: имеет смысл в любом поле характеристики 0, но в поле положительной характеристики некоторые из факториалов, стоящих в знаменателе, могут обратиться в 0 и в таком виде формула не имеет смысла. Однако, если переписать ее в виде: она будет иметь смысл и в поле характеристики q, если каждое целое число s, входящее в нее, заменить на остаток от деления на q. Формула бинома Ньютона: имеет смысл в любом поле, поскольку биномиальные коэффициенты - целые числа. Лемма. Если p простое число, то p | при s=1,2, .,p-1. Действительно, = - целое число, так что каждый множитель знаменателя сокращается с некоторым множителем числителя. Так как s Z и значит =pk при s > 0. Следствие. В поле k характеристики p имеет место формула: . В самом деле, все промежуточные слагаемые в формуле бинома входят с нулевыми коэффициентами: =0. Гомоморфизм Фробениуса. Пусть k - поле характеристики p. Рассмотрим отображение , действующее по формуле: Ф(a) = . Только что мы проверили, что Ф(a+b) = Ф(a)+Ф(b). Кроме того, очевидно, что Ф(ab) = Ф(a)Ф(b). Это означает, что Ф - гомоморфизм поля k в себя. Поскольку = 0 a = 0, Ф инъективен. Если поле k конечно отсюда следует, что Ф взаимно однозначно, то есть является изоморфизмом поля k с самим собой (автоморфизмом) . Ф называется автоморфизмом Фробениуса. Если k = GF(p), то поскольку - циклическая группа порядка ( p-1), для всякого , то есть Ф(а) = а. Возвращаясь к случаю произвольного поля k характеристики p заметим, что так как уравнение в поле k имеет не более p корней, этими корнями будут в точности все элементы , так что для элементов и не входящих в GF(p), Ф(а) а. Например, для рассмотренного выше поля GF(4) характеристики 2 (см. пример 2), имеем:
Ф(0) = 0 ; Ф(1) = 1 ; Ф(а) = b ; Ф(b) = а. Если q любой многочлен над полем GF(p), k - некоторое поле характеристики p и , тоФ()) = Ф() , а потому, если - корень q, то Ф() также является его корнем, причем отличным от исходного, если . (Отметим очевидную аналогию с комплексным корнем многочлена с вещественными коэффициентами; здесь роль автоморфизма Ф играет комплексное сопряжение).
Пример. Пусть q = - многочлен над полем GF(2), =а. Используя таблицы примера 3, легко проверить, что . Значит, Ф() = = b также будет корнем этого многочлена, причем не совпадающим с a. Это можно проверить «в лоб» или использовать формулы Виета: a + b = 1 и ab = 1. Замечание. В случае бесконечного поля положительной характеристики гомоморфизм Ф может не быть сюръективным. Например, для поля GF(p)(x), построенного в примере 3, гомоморфизм Ф, очевидно, действует по формуле: Ф(r(x)) = r() и потому элемент r = x не входит в его образ.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Межличностные отношения в различных группах и коллективах
Реферат 1. Коммуник поведение. Специфика русского Комм
Реферат Комедия А. С. Грибоедова "Горе от ума"
Реферат Лексический состав поэтического языка А.С. Пушкина
Реферат Рекреационный потенциал Российской Федерации
Реферат Маркетинговый анализ ассортимента лекарственных средств в педиатрии
Реферат Walking Back Essay Research Paper Walking back
Реферат Абдулова Людмила Юрьевна
Реферат Легенда об основании Молдавского княжества
Реферат Дом де Пентьевр
Реферат Wuthering Heights And Frankenstein 2
Реферат Проект предприятия общественного питания при промышленном предприятии в соответствии с действующими стандартами и нормами
Реферат Объективные и субъективные признаки усталости, утомления и переутомления, их причины, методы устранения и профилактика
Реферат Ocean Enviroment Essay Research Paper Ocean EnvironmentThe
Реферат Зимний дуб