Реферат по предмету "Иностранный язык"


Euclid Essay Research Paper Greek MathematicsCentered on

Euclid Essay, Research Paper

Greek Mathematics

Centered on Geometry (Euclid)

The ancient Greeks have contributed much to the development of the Western World as we know it today. The Greeks questioned all and yearned for the answers to many of life s questions. Their society revolved around learning, which allowed them to devote the majority of their time to enlightenment. In answering their questions, they developed systematic activities such as philosophy, psychology, astronomy, mathematics, and a great deal more. Socrates (469-399 BC) was an ancient Greek philosopher whose ideas mark the turning point in the history of knowledge and formal thought. Plato (428-347:348 BC) one of Socrates students founded the Academy. The Academy was key in spreading thought and knowledge because of it s devotion to teaching the sciences. Aristotle (384-322 BC), Plato s brightest student, founded Biology and is given credit for his accomplishments in varying fields. Out of all of the great Greek accomplishments which influence the world today, I chose the one which I believe is the most important, Euclidean Geometry and its effects.

Euclid (365-300 BC) is often considered synonymous with geometry. Euclid s works have been so influential that they serve as the basis for most geometrical teachings for the past 2000 years. His works supercede all other works of its kind. Euclid s interests in spatial knowledge lead him to detailed definitions, postulates, and axioms that are used today. Data is a collection of given measurements and postulates that Euclid collected. Data expresses that lines, angles, and ratios can be given in magnitude; rectilinear figures may be given in species or form; and points and lines may be given in position. Euclid s 94 propositions state that when certain aspects of a figure are given, other aspects can be found by using concrete formulas. For example, proposition 66 states, If a triangle have one angle given, the area of the rectangle contained by the sides including the angle has to the area of that triangle a given ratio. Divisions of Figures consists of 36 propositions concerning the divisions of various figures into two or more equal parts in given ratios. Optics is an elaboration on Platonic thought stating that discrete rays cause vision, and that vision can be explained by geometry. Euclid states that, Things seen under a greater angle appear greater, and those under a lesser angle appear less, while those under equal angles appear equal. Euclid used this statement and his mathematical formulas to explain elusions in size comparison. Conics, Porisms, Psiedese, and Surface Loci are lost works attributed to Euclid. These four works are the link between elementary geometry, and higher mathematics. Catoptrica explains the theory of mirrors and brought about Euclid s Elements of Music. Elements of Music is a brief excursion into the uses of mathematics in music and sound.

Euclid s most important works are summarized in the Elements, which consists of 13 detailed books. Elements presents all of the Greek geometrical knowledge of Euclid s day in a logical fashion. These books give us a little insight into Euclid and were designed and are used as learning tools. Including theorems and constructions of plane geometry, solid geometry theory of proportions, incommensurable, commensurable, number theory, and the basis for what is known as geometrical algebra. Proclus (Greek Philosopher) defined Elements as those theorem whose understanding leads to knowledge of the rest. Elements is a detailed explanation of geometric shapes, and measurements using the number theory. The impact of the Elements has been so great that translated forms are widely studied today. Since Euclid based his entire geometric study on points, straight lines, and circles, his work leaves three main geometrical questions open. The three famous problems left unsolved were squaring a circle, doubling the cube, and trisecting the angle. But the Greeks say other Greek philosophers later solved these unsolved mysteries. Euclidean Geometry was not elaborated upon greatly until 1667 when Girolamo Saccheri wrote Euclid Freed of Every Flaw. Girolamo Saccheri through his works started the basis for elliptical geometry (obtuse angles) and hyperbolic geometry (acute angles) which was a continuation on Euclid s work eventually forming Non Euclidean Geometry.

Although a large part of mathematics can be attributed to Euclid, there are other Greek philosophers who have also contributed greatly to the study of mathematics. Pythagoras of Somos regarded numbers as sums of units. Pythaagoras is considered the father of irrational numbers, and the Pythagorean Theorem. Eudorus of Cnides solved Pathagorases dilemma of incommensurable magnitudes with the theory of proportion. Plato the teacher of many, considered geometry as the model of certain reasoning. Euclid during the 3rd century compiled and edited existing ideas. Pappus used Euclid s writings as the basis for trigonometry, which is recorded in Almagest. Altogether the Greeks formalized geometry started the basis for modern trigonometry and set the grounds for the algebra of today, without all of the great mathematical contributions the world would be much different.

The mathematics ideas of ancient Greece are used in every aspect of life. The ideas of Greek mathematicians can be seen wherever you travel. From simple things such as buildings, to complex computers and engineering of all kinds, it is evident that their influence is ever present.

I am very impressed with the extent to which the ancient Greeks have influenced not only history but also our future. Euclidean Geometry and mathematics derived from it are used daily all over the world bringing order to the construction and understanding of almost everything.




Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Инфекционные заболевания, передающиеся в условиях зуботехнической лаборатории
Реферат Формирование познавательного интереса у первоклассников с задержкой психического развития на фоне церебрального паралича на уроках обучения грамоте
Реферат Жизнеобеспечение населения и организация материально-технического обеспечения при затоплениях, вызванных прорывом плотин, дамб и других ГТС
Реферат Смертность населения Российской Федерации за период 1997–1999 гг
Реферат Реферат перевода с английского языка из книги “A History of England” by Keith Feiling
Реферат Философия Венгрии
Реферат Организация психокоррекционной работы со страхами и тревожностью у детей старшего дошкольного и младшего
Реферат Архитектурное наследие русского зарубежья храмы-памятники Николаю II
Реферат Коллективизация - трагедия российского государства
Реферат Мои впечатления от первых глав романа А.С. Пушкина Евгений Онегин. 12
Реферат Описание внешности человека по картине И. Ижакевича Мама идет
Реферат Мужчины не любят женщин, не знающих мужское тело
Реферат Особенность организации финансов коммерческих предприятий в производственной сфере
Реферат Назначение, композиция "Домостроя"
Реферат Разработка управляющей программы для станков с ЧПУ при контурной фрезерной обработке "пластины"