Теория образования оксидов азота при горении.
Условия образования оксидов при горении до сих пор не разработаны в
достаточной мере и требуют глубокой проработки весьма сложной химической
кинетики процесса в сочетании с детальным изучением тепломассообмена и его
влияния на кинетику. В 1960-70 гг. в большинстве публикаций в качестве
основной модели образования NO принималась «термическая» схема. Согласно
этой схеме выход NO определяется реакцией между атомом кислорода и
молекулой азота. При этом количество атомарного кислорода определяется
диссоциацией молекулы О2 . Эти процессы имеют очень большой энергетический
барьер Е = 561 кДж/моль и, следовательно, определяются температурой
процесса. Однако исследования за последнии 20 лет показали:
1) образование NO в пламенах имеет место не после окончания реакции горения, а не посредственно в зоне горения и зависит от ряда других химических реакций в пламенах. При этом собственно образование NO происходит не только в результате реакции атомарного кислорода с молекулой азота, но и в ряде других ;
2) образование О в пламенах происходит не только за счёт диссоциации О2 , но и в ряде других реакций, концентрация атомарного кислорода в зоне горения на 1-2 порядка выше равновесного, определяемого из условий диссоциации молекулярного кислорода и в пламенах углеводородов составляет 0,4-0,8% ;
3) максимальная температура в ядре зоны горения существенно ниже расчётной теоретической вследствие наличия сверхравновесных концентраций промежуточных продуктов реакций и теплообменных процессов ;
4) зависимость выхода NO от температуры значительно слабее, чем это предполагалось ранее.
К настоящему времени приближенно до детальной разработки процесса можно
отметить 3 основных группы источников образования оксида азота при горении,
которые рассмотрим ниже.
«Термические» оксиды азота.
Условия протекания цепной реакции окисления атмосферного азота свободным
кислородом при горении, формальная кинетика которой описывается уравнением
:
[pic],
В результате ряда работ различных учённых было получено уравнение для
равновесного количества NO.
[pic]
|Температура, К |300 |700 |800 |1800 |2500 |
|Равновесная |0,00127 |0,38 |2,54 |4700 |31700 |
|концентрация, [CNO], | | | | | |
|мг.м^3 | | | | | |
Так же была разработана цепная схема окисления азота, в которой активную
роль играют свободные атомы кислорода и азота :
[pic]
При этом концентрация атомарного кислорода остается неизменной, а скорость
процесса определяется реакцией 2 схемы.
Энергетический барьер этой реакции складывается из двух составляющих :
а) энергии, требующейся на образование одного атома кислорода (Е1);
б) энергии активации реакции атома кислорода с молекулой азота (Е2);
Таким образом,
Е=Е1+Е2=494/2+314=516 кДж/моль.
Так как энергия активация этой реакции очень высока, то она предопределяет
исключительно сильную зависимость скорости образования оксида азота от
температуры.
Так же стоит отметить, что концентрация оксидов азота линейно увеличивается
с увеличением концентрации атомарного кислорода и экспоненциально с
увеличением температуры.
На основе имеющихся научных исследований были сформулированы методы
подавления образования «термических» NO путем снижения скорости реакции их
образования :
снижение общего уровня температур в топке путем рециркуляции продуктов
сгорания с Т