Реферат по предмету "Наука и техника"


Уравнения Курамото-Цузуки

Уравнения Курамото-Цузуки

Дубровский А.Д., Заверняева Е.В.
Введение

На текущий момент разработано ряд математических
моделей вида реакции-диффузии:


















(Q1, Q2 - нелинейные функции; λ
- параметр системы)











(1)






в областях:

Химии

Пример. Автокаталитическая реакция.











Для этой реакции соответствует задача:









Экологии

Теории морфогенеза

Физики плазмы

Теории горения

Другие

Требуется:

классифицировать качественное поведение решения
уравнений (1) в зависимости от различных правых частей

классифицировать системы вида (1)

В работе 1975 года Курамото и Цудзуки сделали вывод,
что у большинства диссипативных систем существует аналог термодинамической
ветви. При всех значениях параметра, исследуемые уравнения имеют однородное по
пространству стационарное решение. Это решение устойчиво при λλ0) определяется спектром линеаризованной задачи для
уравнения (1) в окрестности точки бифуркации λ0. Уравнение,
предложенное Курамото и Цудзуки, описывает поведение в окрестностиλ0,
вида:














(2)






Функция W(R, T) - характеристика отклонения решений
системы (1) от пространственно-однородного решения. Таким образом, уравнение
(2) описывает только случаи, когда при λ>λ0 решение
остается в малой окрестности термодинамической ветви.

Без ограничения общности, в уравнении (2) можно положить
с0=0, в этом можно убедится сделав замену переменных W=W´exp(i
c0 t). И так получается, вторая краевая задача при условии, что
потоки на границе равны нулю:














(3)






Упрощенная модель

Предположим, что в изучаемом решении системы (3) есть
только две моды:














(4)






Остальными пренебрежем, поскольку коэффициенты Фурье
решений быстро убывают с ростом их номера. Коэффициент k будем выбирать так,
чтобы выполнялись граничные условия задачи (3), например: k=π/l. Подставим
(4) в (3) и отбросим все члены, куда входит cos(πmx/l), m>1, считая,
что они пренебрежимо малы.














(5)






Пусть (для
удобства), то получается соотношения:














(6)






Сделаем замену переменных в (6)














(7)






Двухмодовая система

Рассмотрим систему (7).

Простейшие решения

ξ=0, η=0, θ=2c1k2t+const
– неустойчивый узел в системе (5).

ξ=0, η=0, θ= θ(t), c12k4+2c1c2k2-1=0
– две особых точки седло и устойчивый узел. Узел теряет устойчивость на линии
(c12+1)k4+2k2(1+c1c2)=0.


ξ=0, P(c1,c2,k)=(9c12+6c1c2-4-3c22)k4-2k2(3c1c2-4-3c22)-(4+3c22)

P(c1,c2,k)≤0, k-(4k2-1)2.


P(c1,c2,k)>0 – инвариантная
прямая, при k∞.
Сделаем замену переменных следующим образом:, получаем














(8)






Систему (8) имеет ограниченное решение при z>0.
Особые точки и решения, которые возникают при x=0 или y=0, рассмотрены выше.

Далее ограничим задачу, будем рассматривать систему
(8) только при k=1.

Режимы

Система (8) - модель, в которой возникают различные
режимы:

Стационарный

Простой предельный цикл

Пример. c1=3,c2=-4;k=1;



Сложный предельный цикл



Атрактор



Не исключено проявление квазиатрактора

Данное проявление связанно с существованием нескольких
различных в пространстве предельных областей, эти области могут находиться на
очень близком расстоянии. В результате при численном анализе, траектория может
скакать с одного решения на другое. Пример, существования двух областей
притяжения на рис. при c1=1.21, c2=-9, k=1.0.



Бифуркации

На рисунке показана карта бифуркаций в области обцыса
c1=[1; 8], ордината c2=[-5; -5.67], k=1 с шагом 0.01 по
параметрам c1 и c2.



Каждой точке соответствует пара c1, c2 и цвет,
обозначающий

красный - хаотическое поведение

синим - бифуркация удвоения периода

черным - остальные бифуркации пер
Список литературы

Лоскутов А.Ю., Михайлов А.С. "Введение в
синергетику": Учеб. руководство. - М.: Наука. Гл. ред. Физ.-мат. Лит.,
1990. - 272с. - ISBN 5-02-014475-4

Ахромеева Т.С., Курдюмов С.П., Малинецкий Г.Г.,
Самарский А.А. "О классификации решений системы нелинейных диффузионных
уравнений в окрестности точки бифуркации". - УДК 517.958

Малинецкий Г.Г. "Хаос. Структуры. Вычислительный
эксперимент: Введение в нелинейную динамику." - М.: Эдиториал УРСС, 2000.
- 256 с. - ISBN 5-8360-0132-4


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Удельные и великие князья в монгольский период
Реферат Каменный век Кавказа
Реферат Украина во время Первой Мировой войны
Реферат Проблемы и перспективы развития дополнительного образования в сфере физической культуры и спорта
Реферат Профессионально важные качества личности менеджера
Реферат Відображення у перекладі явища ретроспекції що створюється з допомо
Реферат Средства невербальной коммуникации в изучении иностранного языка (на примере немецкого языка)
Реферат 61 год прошел со дня победы в Великой Отечественной войне. Время неумолимо
Реферат Насилля серед молоді – результат впливу суспільства, а не сім’ї
Реферат Психологические аспекты профессиональной ориентации
Реферат Самоорганизация пространства-времени в процессе эволюции Вселенной
Реферат II. Дистанционное обучение в России: история и перспективы функционирования в обучении русскому языку в странах СНГ и Балтии
Реферат Современный сервис. Проблемы и перспективы
Реферат Подтекст как способ воплощения авторского замысла в творчестве А.П. Чехова
Реферат #G0 правительство российской федерации постановление от 25 февраля 2000 года n 163 Об утверждении перечня тяжелых работ и работ с вредными или опасными условиями труда, при выполнении которых запрещается применение труда лиц моложе восемнадцати лет