Реферат по предмету "Наука и техника"


Основные положения прочностной теории напряженного состояния

Основные
положения прочностной теории напряженного состояния

Ельцов Ю.А.

Ижевский
государственный технический университет

Статья
посвящена теоретическому определению нормальных и касательных напряжений в
грунтах. В статье даются основные предпосылки расчета. В известные теории
прочности вносятся поправки, которые с точки зрения автора дают более
объективные результаты расчетов, подтверждаемые экспериментальными замерами.

В известных
теориях прочности исходят из следующих основополагающих гипотез: сплошности
среды и равенства нулю начальных (внутренних) напряжений. Исключение внутренних
напряжений из рассмотрения не дает полного представления о действительном напряженном
состоянии и динамике его развития.

Исходное
(начальное) напряженное состояние - это система природных (естественных)
внутренне уравновешенных напряжений в твердом теле (среде).

Напряженно-дислоцируемое
(возбужденное) состояние, созданное сложением внешних силовых воздействий и
внутренних напряжений от температурных, химических и силовых факторов.

Измененное
(остаточное) напряженное состояние, возникшее после исключения или ослабления
силового воздействия (разгрузки).

Приобретенное
(остаточное) напряженное состояние, сформированное под влиянием геохимических,
геостатических и геодинамических релаксационных процессов.

Теория
прочности Кулона-Мора, характеризующая условия предельного напряженного
состояния исходя из принятых геометрических построений, в настоящее время
подвергается существенной критике, т.к. устанавливает сложный характер
зависимости компонент напряжений от параметров прочности.

В прочностной
теории напряжений основным условием является получение простых прямолинейных
зависимостей, согласующихся с экспериментальными. Это достигается новыми
приемами геометрических построений предельной линии сдвига и кругов напряжений.

При сложном
напряженном состоянии () построение
кругов напряжений и предельной линии сдвига ведется по схеме рис. 1.Б., когда
значения,
откладываются от конца отрезка, равного
полусумме поперечных напряжений и с поправкой
на отклонение центра на угол φ, тогда



;  (1)

где.

В этом случае
предельная линия сдвига, секущая круги напряжений, в точках с τmax, будет
прямой в пределах ≤ (одноосного
сжатия). Уравнение этой прямой, при подстановке и из (I) в
формулу Кулона

 (2)

будет иметь
вид:

,  (3)

где tg φ -
модуль трения; с v сцепление связности, характеризующее начальное трение
скольжение.

В условиях
осевой симметрии () уравнения
(1) приобретают вид:

,

. (4)

Отсюда
уравнение предельной линии сдвига запишется:

.  (5)

При одноосном
сжатии имеем:

.  (6)

При режиме преодоления
"упругих" связей, при одноосном сжатии,

 (7)

а при сложном
напряженном состоянии, где режим
преодоления структурных связей будет происходить когда:

 (8)

Внутренне
уравновешенное напряженное состояние (остаточные напряжения), в условиях характеризуется
напряжениями откладываемыми на отрезке "давление связности" (БО по
схеме рис.1.Б.)



 (9)

Растяжение
реализуется на преодоление сил связности и ведет к ослаблению сцепления
связности. Растягивающее напряжение откладывается
по отрицательному направлению оси, с
возможным переносом на ось (см. схему
рис.1 .А.). Согласно принятому построению

.  (10)

или

.

Произведено
уточнение исходных условий осевого растяжения трубчатых
образцов, находящихся под внутренним давлением:

,  (11)

,

где, см. (1),
здесь знак

минус опущен
при использовании отрицательного направления оси для удобства
написания и расчетов.

Тогда уравнение
предельной линии растяжения, аналогично (3), будет иметь вид

.  (12)

где и - параметры
предельной линии растяжения в условиях сложного напряженного состояния,
аналогичные сцеплению и углу внутреннего трения.



Рис. 1. Схемы
построений кругов напряжений и предельной линии сдвига.

А - в режиме
растяжения: Б - при сложном напряженном состоянии.

Выразив
внутреннее сопротивление cp через сопротивление одноосного растяжения, подобно
(6), имеем:

,  (13)

откуда

 (14)

Принятые схемы
построения предельной линии сдвига и кругов напряжений позволили установить
функциональные связи компонент напряжений от параметров прочности с и φ в
разных стадиях и режимах напряженного состояния: в исходном, внутренне уравновешенном;
при преодолении упругих и предельных сопротивлений от внешних воздействий; в
режимах одноосного сжатия и растяжения. Все основные уравнения проверены по
результатам испытаний разнородных материалов и показали удовлетворительную для
практики степень сходимости по сравнению с известными решениями.

Важным
достижением, подкрепленным опытными данными, является положение о том, что
касательные напряжения составляют половину от максимальных нормальных
напряжений. Известное же их равенство полуразности нормальных напряжений ведет
к нелинейности предельной линии сдвига и затрудняет установление связей между
рассматриваемыми параметрами напряженного состояния.

Сопоставление
различных теорий




По условию прочности автора





По Кулону-Мору-Хиллу







1. Геометрическое построение предельных
линий сдвига (ПЛС) не менее чем по 2-3 точкам при







1.1. Размеры откладываются
от начала координат, a - от
нового начала, смещенного на величину.


1.2. Координаты точек ПЛС находятся по
формулам:;.





1.1. Все размеры и откладываются
от одного начала координат.


1.2.,.







2. Вид ПЛС по экспериментальным
значениям и







2.1. Прямая в пределах и далее с
переломом и уменьшением угла до.





2.1. Прямая в пределах с переломом
и выполаживанием при (τ→const).








3. Геометрическое построение ПЛС не
менее чем по 2-3 точкам при







3.1. Построение при


3.2.;, где








3.1. Нет.


3.2. Нет решения.







4. Вид ПЛС по экспериментальным
значениям







4. 1. Прямая в пределах





4.1. Нет.







5. Решения и прогнозы







5.1. Однозначное определение прочности
(параметров и).


5.2. Остаточные напряжения отождествляются
с Lдавлением связности¦.


5.3. Связь между одноосным сжатием и
растяжением функционально
зависит от угла.


5.4. Прогнозируется предшествующее
давление испытанное материалом и степень его релаксации.


5.5. Напряженное состояние земной коры
обусловлено остаточными напряжениями и пригрузкой вышележащих пород.


5.6. Определяемые параметры прочности и
сопоставимы с экспериментальными.


5.7. Однозначное прогнозирование оползневых
склонов в состоянии длительной и предельной устойчивости.





5.1. Угол переменный,
что затрудняет решение прикладных задач.


5.2. Не устанавливаются.


5.3. Не устанавливается.


5.4. Не устанавливается.


5.5. Отмечается существенное расхождение
в значениях касательных напряжений.


5.6. Степень сопоставимости более
низкая.


5.7. Вариантное прогнозирование
устойчивости.





Список
литературы

Для подготовки
данной работы были использованы материалы с сайта http://www.laboratory.ru/


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.