Реферат по предмету "Математика"


Оценивание параметров и проверка гипотез о нормальном распределении

Оценивание параметров и проверка гипотез  о нормальном распределении
Расчетная работа
Выполнил Шеломанов Р.Б.
Кафедра математической статистики и эконометрики

Московский
государственный университет экономики, статистики и информатики

Москва 1999

ЗАДАНИЕ № 23


Продолжительность горения электролампочек  (ч) следующая:




750





750





756





769





757





767





760





743





745





759







750





750





739





751





746





758





750





758





753





747







751





762





748





750





752





763





739





744





764





755







751





750





733





752





750





763





749





754





745





747







762





751





738





766





757





769





739





746





750





753







738





735





760





738





747





752





747





750





746





748







742





742





758





751





752





762





740





753





758





754







737





743





748





747





754





754





750





753





754





760







740





756





741





752





747





749





745





757





755





764







756





764





751





759





754





745





752





755





765





762






По выборочным данным, представленным в заданиях №1-30,
требуется:

1* Построить интервальный вариационный ряд
распределения;

Построение интервального
вариационного ряда  распределения


Max: 769

Min:  733

R=769-733=36

H= R / 1+3,32 lg
n=36/(1+3,32lg100)=4,712

A1= x min -
h/2=730,644

B1=A1+h; B2=A2+h




2* Вычислить выборочные характеристики по вариационному
ряду:

среднюю арифметическую (x ср.), центральные моменты (мю к, к=1,4), дисперсию (S^2), среднее квадратическое отклонение (S), коэффициенты асимметрии (Ас) и эксцесса (Ек),
медиану (Ме), моду (Мо), коэффициент вариации(Vs);

Вычисление выборочных
характеристик распределения


 Di=(xi- xср)

 xср =å xi mi/å mi

 xср  =  751,7539  

Вспомогательная таблица ко второму пункту расчетов




Выборочный центральный момент К-го порядка
равен

                            M k =                     ( xi - x)^k mi/        mi  


       

В нашем примере:




Центр момент 1





0,00







Центр момент 2





63,94







Центр момент 3





-2,85







Центр момент 4





12123,03






 

Выборочная дисперсия S^2  равна центральному моменту второго порядка:

В нашем примере:

S^2= 63,94

Ввыборочное среднее квадратическое отклонение:

В нашем примере:

S=  7,996

Выборочные коэффициенты асимметрии Ас и эксцесса   Fk   по формулам

Ac = m3/ S^3;

В нашем примере:

Ас =-0,00557


Ek = m4/ S^4 -3;

В нашем примере:

Ek = -0,03442

Медиана Ме - значение признака  x (e), приходящееся на середину ранжированного ряда
наблюдений  ( n = 2l -1). При
четном числе наблюдений( n= 2l)  медианой Ме
является средняя арифметическая двух значений, расположенных в середине
ранжированного ряда:          Me=( x(e) + x( e+1) /2

Если исходить из интервального ряда, то медиану
следует вычислять по ормуле

Me= a me +h * ( n/2
- mh( me-1) / m me

где mе- означает номер медианного интервала, ( mе -1)
- интервала, редшествующего медианому.

В нашем примере:

Me=751,646

Мода Мо  для совокупности наблюдений равна тому значению признака ,
которому соответствует наибольшая частота.

Для одномодального интервального ряда вычисление моды
можно производить по формуле

Mo= a mo + h * ( m
mo- m(mo-1))/2 m mo- m( mo-1) - m( mo+1)

где мо означает номер модального интервала (
интервала с наибольшей частотой), мо-1, мо+1- номера предшествующего модальному
и следующего за ним интервалов.

В нашем примере:

Mo =
751,49476

Так как  Хср,
Mo  Me  почти не отличаются друг от
друга, есть основания предполагать теоретическое распределение нормальным.

Коэффициент вариации       Vs = S/ x *
100 %= 3.06%

В нашем примере:

Vs=
1,06%

3* Построить гистограмму, полигон и кумуляту.

Графическое изображение
вариационных рядов


       

Для визуального подбора теоретического распределения,
а также выявления положения среднего значения (x ср.) и характера рассеивания (S^2 и S) вариационные
ряды изображают графически.

Полигон и кумулята применяются для изображения как
дискретных, так и интервальных рядов, гистограмма – для изображения только
интервальных рядов. Для построения этих графиков запишем вариационные ряды
распределения (интервальный и дискретный) относительных частот (частостей)   

Wi=mi/n, накопленных относительных частот Whi и найдем отношение Wi/h, заполнив
таблицу 1.4.

Интервалы         
xi           Wi           
Whi          Wi/h

                    
Ai-bi

                          1                  2            
3              4               5

                 
4,97-5,08         5,03         0,02         0.02         
0,18 

                 
5,08-5,19         5,14         0,03         0,05          0,27

                 
5,19-5,30         5,25         0.12         0,17          1,09

                 
5,30-5,41         5,36         0,19         0,36          1,73

                  5,41-5,52         5,47        
0,29         0,65          2,64

                 
5,52-5,63         5,58         0,18         0,83          1,64

                 
5,63-5,74         5,69         0,13         0,96          1,18

                 
5,74-5,85         5,80         0,04         1,00          0,36




                           -            1,00          
-           






   

Для построения гистограммы относительных частот
(частостей) на оси абсцисс откладываем частичные интервалы, на каждом из которых
строим прямоугольник, площадь которого равна относительной частоте  Wi  данного i-го интервала. Тогда высота элементарного
прямоугольника должна быть равна Wi/h,. Следовательно, позади под гистограммой равна сумме
всех носительных частот, т.е. единице.

Из гистограммы можно получить полигон того же
распределения. Если середины верхних оснований прямоугольников соединить
отрезками прямой.

4* Сделать вывод о форме ряда распределения по виду
гистограммы и полигона, а также по значениям коэффициентов Ас и Ек.

Анализ
графиков и выводы

Гистограмма и полигон являются аппроксимациями кривой
плотности (дифференциальной функции) теоретического распределения (генеральной
совокупности). Поэтому по их виду можно судить о гипотическом законе
распределения.

Для построения кумуляты дискретного ряда по оси
абсцисс откладывают значения признака  xi, а по оси ординат – накопленные относительные частоты
Whi. Для интервального ряда по оси абсцисс откладывают
интервалы .

С кумулятой сопоставляется график интегральной функции
распределения F(x).

В нашем примере коэффициенты асимметрии и эксцесса не
намного отличаются от нуля. Коэффициент асимметрии оказался отрицательным
(Ас=-0,005), что свидетельствует о небольшой левосторонней асимметрии данного
распределения. Эксцесс оказался также отрицательным (Ек= -0,034). Это говорит о
том, что кривая, изображающая ряд распределения, по сравнению с нормальной,
имеет несколько более плоскую вершину. Гистограмма и полигон напоминают кривую
нормального распределения (рис.1.1 и 1.2.). Все это дает возможность выдвинуть
гипотезу о том, что распределение продолжительности горения электролампочек
является нормальным.

Примечание:
Кумулята, гистронрамма и полигон находятся в приложениях к работе.

5* Рассчитать плотность и интегральную функцию теоретического
нормального распределения и построить эти кривые на графиках гистограммы и
кумуляты соответственно.

Расчет теоретической
нормальной кривой распределения


Приведем один из способов расчета теоретического
нормального распределения по двум найденным выборочным характеристикам x и S эмпирического
ряда.

При расчете теоретических частот m^тi за оценку
математического ожидания  (мю) и
среднего квадратического отклонения G  нормального закона распределения принимают
значения соответствующих выборочных характеристик x ср. и S, т.е. (мю)=Xср.=
751,7539; G=S=7,99.

Теоретические частоты находят по формуле:        M^i=npi,

где  n – объем; Pi –
величина попадания значения нормально распределенной случайной величины в i-й интервал.

Вероятность Pi  определяется по формуле

                  
Pi=P(ai


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.