Реферат по предмету "Математика"


Практическое применение производной

Южно-Сахалинский Государственный Университет
Кафедра математики
Курсовая работа
Тема: Практическое применение производной
Автор: Меркулов М. Ю. Курс: 3 Преподаватель: Лихачева О. Н. Оценка:
Южно-Сахалинск
2002г
Введение
В данной работе я рассмотрю применения производной в различных науках и отраслях. Работа разбита на главы, в каждой из которых рассматривается одна из сторон дифференциального исчисления (геометрический, физический смысл и т. д.)
1. Понятие производной
1-1. Исторические сведения
Дифференциальное исчисление было создано Ньютоном и Лейбницем в конце 17 столетия на основе двух задач: 1) о разыскании касательной к произвольной линии 2) о разыскании скорости при произвольном законе движения Еще раньше понятие производной встречалось в работах итальянского математика Тартальи (около 1500 - 1557 гг.) - здесь появилась касательная в ходе изучения вопроса об угле наклона орудия, при котором обеспечивается наибольшая дальность полета снаряда. В 17 веке на основе учения Г.Галилея о движении активно развивалась кинематическая концепция производной. Различные изложения стали встречаться в работах у Декарта, французского математика Роберваля, английского ученого Л. Грегори. Большой вклад в изучение дифференциального исчисления внесли Лопиталь, Бернулли, Лагранж, Эйлер, Гаусс.
1-2. Понятие производной
Пусть y = f(x) есть непрерывная функция аргумента x, определенная в промежутке (a; b), и пусть х0 - произвольная точка этого промежутка Дадим аргументу x приращение ?x, тогда функция y = f(x) получит приращение ?y = f(x + ?x) - f(x). Предел, к которому стремится отношение ?y / ?x при ?x > 0, называется производной от функции f(x). y'(x)=[pic]
1-3. Правила дифференцирования и таблица производных
|C' = 0 |(xn) = nxn-1 |(sin x)' = cos x | |x' = 1 |(1 / x)' = -1 / x2|(cos x)' = -sin x | |(Cu)'=Cu' |(?x)' = 1 / 2?x |(tg x)' = 1 / cos2 x | |(uv)' = u'v + uv' |(ax)' = ax ln x |(ctg x)' = 1 / sin2 x | |(u / v)'=(u'v - uv') |(ex)' = ex |(arcsin x)' = 1 / ? (1-| |/ v2 | |x2) | | |(logax)' = (logae)|(arccos x)' = -1 / ? | | |/ x |(1- x2) | | |(ln x)' = 1 / x |(arctg x)' = 1 / ? (1+ | | | |x2) | | | |(arcctg x)' = -1 / ? | | | |(1+ x2) |
2. Геометрический смысл производной
2-1. Касательная к кривой
Пусть имеем кривую и на ней фиксированную точку M и точку N. Касательной к точке M называется прямая, положение которой стремится занять хорда MN, если точку N неограниченно приближать по кривой к M.
Рассмотрим функцию f(x) и соответствующую этой функции кривую y = f(x). При некотором значении x функция имеет значение y = f(x). Этим значениям на кривой соответствует точка M(x0, y0). Введем новый аргумент x0 + ?x, его значению соответствует значение функции y0 + ?y = f(x0 + ?x). Соответствующая точка - N(x0 + ?x, y0 + ?y). Проведем секущую MN и обозначим ? угол, образованный секущей с положительным направлением оси Ox. Из рисунка видно, что ?y / ?x = tg ?. Если теперь ?x будет приближаться к 0, то точка N будет перемещаться вдоль кривой , секущая MN - поворачиваться вокруг точки M, а угол ? - меняться. Если при ?x > 0 угол ? стремится к некоторому ?, то прямая, проходящая через M и составляющая с положительным направлением оси абсцисс угол ?, будет искомой касательной. При этом, ее угловой коэффициент:
[pic] То есть, значение производной f '(x) при данном значении аргумента x равно тангенсу угла, образованного с положительным направлением оси Ox касательной к графику функции f(x) в точке M(x, f(x)).
Касательная к пространственной линии имеет определение, аналогичное определению касательной к плоской кривой. В этом случае, если функция задана уравнением z = f(x, y), угловые коэффициенты при осях OX и OY будут равны частным производным f по x и y.
2-2. Касательная плоскость к поверхности
Касательной плоскостью к поверхности в точке M называется плоскость, содержащая касательные ко всем пространственным кривым поверхности, проходящим через M - точку касания.
Возьмем поверхность, заданную уравнением F(x, y, z) = 0 и какую-либо обыкновенную точку M(x0, y0, z0) на ней. Рассмотрим на поверхности некоторую кривую L, проходящую через M. Пусть кривая задана уравнениями x = ?(t); y = ?(t); z = ?(t). Подставим в уравнение поверхности эти выражения. Уравнение превратится в тождество, т. к. кривая целиком лежит на поверхности. Используя свойство инвариантности формы дифференциала, продифференцируем полученное уравнение по t:
[pic] Уравнения касательной к кривой L в точке M имеют вид:
[pic] Т. к. разности x - x0, y - y0, z - z0 пропорциональны соответствующим дифференциалам, то окончательное уравнение плоскости выглядит так:
F'x(x - x0) + F'y(y - y0) + F'z(z - z0)=0 и для частного случая z = f(x, y):
Z - z0 = F'x(x - x0) + F'y(y - y0) Пример: Найти уравнение касательной плоскости в точке (2a; a; 1,5a) гиперболического параболоида
[pic] Решение:
Z'x = x / a = 2; Z'y = -y / a = -1 Уравнение искомой плоскости:
Z - 1.5a = 2(x - 2a) - (Y - a) или Z = 2x - y - 1.5a
3. Использование производной в физике
3-1. Скорость материальной точки
Пусть зависимость пути s от времени t в данном прямолинейном движении материальной точки выражается уравнением s = f(t) и t0 -некоторый момент времени. Рассмотрим другой момент времени t, обозначим ?t = t - t0 и вычислим приращение пути: ?s = f(t0 + ?t) - f(t0). Отношение ?s / ?t называют средней скоростью движения за время ?t, протекшее от исходного момента t0. Скоростью называют предел этого отношения при ?t > 0.
Среднее ускорение неравномерного движения в интервале (t; t + ?t) - это величина =?v / ?t. Мгновенным ускорением материальной точки в момент времени t будет предел среднего ускорения:
[pic] То есть первая производная по времени (v'(t)).
Пример: Зависимость пройденного телом пути от времени задается уравнением s = A + Bt + Ct2 +Dt3 (C = 0,1 м/с, D = 0,03 м/с2). Определить время после начала движения, через которое ускорение тела будет равно 2 м/с2.
Решение: v(t) = s'(t) = B + 2Ct + 3Dt2; a(t) = v'(t) = 2C + 6Dt = 0,2 + 0,18t =
2;
1,8 = 0,18t; t = 10 c
3-2. Теплоемкость вещества при данной температуре
Для повышения различных температур T на одно и то же значение, равное T1 - T, на 1 кг. данного вещества необходимо разное количество теплоты Q1 - Q, причем отношение
[pic] для данного вещества не является постоянным. Таким образом, для данного вещества количество теплоты Q есть нелинейная функция температуры T: Q = f(T). Тогда ?Q = f(t + ?T) - f(T). Отношение
[pic] называется средней теплоемкостью на отрезке [T; T + ?T], а предел этого выражения при ?T > 0 называется теплоемкостью данного вещества при температуре T.
3-3. Мощность
Изменение механического движения тела вызывается силами, действующими на него со стороны других тел. Чтобы количественно характеризовать процесс обмена энергией между взаимодействующими телами, в механике вводится понятие работы силы. Чтобы охарактеризовать скорость совершения работы, вводят понятие мощности:[pic].
4. Дифференциальное исчисление в экономике
4-1. Исследование функций
Дифференциальное исчисление - широко применяемый для экономического анализа математический аппарат. Базовой задачей экономического анализа является изучение связей экономических величин, записанных в виде функций. В каком направлении изменится доход государства при увеличении налогов или при введении импортных пошлин? Увеличится или уменьшится выручка фирмы при повышении цены на ее продукцию? В какой пропорции дополнительное оборудование может заменить выбывающих работников? Для решения подобных задач должны быть построены функции связи входящих в них переменных, которые затем изучаются с помощью методов дифференциального исчисления. В экономике очень часто требуется найти наилучшее или оптимальное значение показателя: наивысшую производительность труда, максимальную прибыль, максимальный выпуск, минимальные издержки и т. д. Каждый показатель представляет собой функцию от одного или нескольких аргументов. Таким образом, нахождение оптимального значения показателя сводится к нахождению экстремума функции. По теореме Ферма, если точка является экстремумом функции, то производная в ней либо не существует, либо равна 0. Тип экстремума можно определить по одному из достаточных условий экстремума: 1) Пусть функция f(x) дифференцируема в некоторой окрестности точки x0. Если производная f '(x) при переходе через точку x0 меняет знак с + на -, то x0 - точка максимума, если с - на +, то x0 - точка минимума, если не меняет знак, то в этой точке нет экстремума. 2) Пусть функция f(x) дважды дифференцируема в некоторой окрестности точки x0, причем f '(x0) = 0, f ''(x0) ? 0, то в точке x0 функция f(x0) имеет максимум, если f ''(x0) 0. Кроме того, вторая производная характеризует выпуклость функции (график функции называется выпуклым вверх [вниз] на интервале (a, b), если он на этом интервале расположен не выше [не ниже] любой своей касательной).
Пример: выбрать оптимальный объем производства фирмой, функция прибыли которой может быть смоделирована зависимостью:
?(q) = R(q) - C(q) = q2 - 8q + 10 Решение:
?'(q) = R'(q) - C'(q) = 2q - 8 = 0 > qextr = 4
При q ?'(q)
При q > qextr = 4 > ?'(q) > 0 и прибыль возрастает При q = 4 прибыль принимает минимальное значение. Каким же будет оптимальный объем выпуска для фирмы? Если фирма не может производить за рассматриваемый период больше 8 единиц продукции (p(q = 8) = p(q = 0) = 10), то оптимальным решением будет вообще ничего не производить, а получать доход от сдачи в аренду помещений и / или оборудования. Если же фирма способна производить больше 8 единиц, то оптимальным для фирмы будет выпуск на пределе своих производственных мощностей.
4-2. Эластичность спроса
Эластичностью функции f(x) в точке x0 называют предел
[pic] Спрос - это количество товара, востребованное покупателем. Ценовая эластичность спроса ED - это величина, характеризующая то, как спрос реагирует на изменение цены. Если |ED|>1, то спрос называется эластичным, если |ED|


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Артур Шопенгауэр О ничтожестве и горестях жизни. Смерть и ее отношение к неразрушимости нашего существа
Реферат Арабо-исламская философия в средние века
Реферат Аргументация, дефиниция и логические умозаключения
Реферат Аристотель 9
Реферат Устройство компьютера и его основные блоки
Реферат Спецслужбы Израиля
Реферат Проект модернізації колії
Реферат Аппараты для воздействия на водонефтяные эмульсии магнитным полем
Реферат Атлантида Платона и Атлантида современности
Реферат Условия осадконакопления переходной зоны от северо-западного шельфа к глубоководной впадине Черного моря в позднеплейстоцен-голоценовое время
Реферат 29 января в Чувашии состоялось официальное открытие Года учителя. На открытии Года учителя выступил президент Чувашской Республики Н. В. Федоров
Реферат Билеты по философии (Шпаргалка)
Реферат Государственный надзор и контроль по ОТ Ионизирующие излучения и способы защиты от них
Реферат Государственное управление занятостью населения
Реферат Аннотация рабочей программы дисциплины свиноводство для направления подготовки 111100 «Зоотехния» профили: Технология производства продукции животноводства (по отраслям)