Узнать стоимость написания работы
Оставьте заявку, и в течение 5 минут на почту вам станут поступать предложения!
Реферат

Реферат по предмету "Экономико-математическое моделирование"


Моделювання поведінки виробників та споживачів



1. МОДЕЛІ ПОВЕДІНКИ СПОЖИВАЧІВ

В теорії споживання вважається, що споживач керується принципом рацiональностi: вiн завжди прагне максимізувати свою корисність, i єдине, що його стримує, -- це обмежений дохід:

max u(x) (1.1)

px = M

де х=(х1,...,хn)? - вектор-стовпчик обсягів споживчих товарів, що придбав споживач за заданих цін; n - число різноманітних товарів; u(х) - функція корисності споживача; р = (p1,…,pn) - вектор-рядок цін товарів; М - обсяг доходу споживача.

Це задача на умовний екстремум, i її розвязок зводиться до знаходження безумовного екстремуму функції Лагранжа:

L(x,л)=u(x)-л(px-M).

Необхідними умовами локального екстремуму є:

(1.2)

(1.3)

Точка екстремуму справді визначає точку максимуму, оскільки матриця Гессе U(х)=є вiдємно визначеною. З виразу (1.3) бачимо, що споживач за фіксованого доходу так обирає набір , що в цій точці відношення граничної корисності дорівнює відношенню цін:

Якщо розвязати (1.2), (1.3) відносно , отримаємо функцію попиту споживача:

2. РІВНЯННЯ СЛУЦЬКОГО

Розглянемо, як зміниться попит споживача, що визначається моделлю (1.1), якщо зміниться ціна одного з товарів. Нехай ціна n-го товару зросла на . Це приводить до такої зміни попиту на товари

(2.1)

де р - вектор-рядок цін; U - матриця Гессе; - вектор-стовпчик попиту на товари; - множник Лагранжа; - індекс n за дужками біля матриці означає, що взято й n-й стовпчик.

Проаналізуємо зміст складових, що входять у рівняння (2.1).

Зміна попиту за збільшення ціни з компенсацією доходу. Нехай дохід споживача збільшився на таку величину , яка компенсує споживачеві збільшення ціни на n-й товар (благо) на .

Збільшення ціни з компенсацією доходу приводить до такої зміни попиту:

(2.2)

Тобто друга складова у правій частині рівняння (2.1) -- це зміна попиту, якщо зростання ціни n-го товару на компенсується збільшенням доходу на .

Зміна попиту за зміни доходу. Якщо дохід змінюється на , то відповідно змінюється попит:

(2.3)

Обєднуючи вирази (2.1), (2.2), (2.3), отримаємо рівняння Слуцького, яке є серцевиною теорії корисності:

(2.4)

Оскільки вивчається зміна попиту за зростання ціни на n-й товар, що не компенсується підвищенням доходу, то друга складова в (2.4) (з відємним знаком) знімає штучний приріст по спричинений компенсуючим зростанням доходу.

Ефект доходу полягає у змiнi споживання внаслідок зміни реального доходу, яка виникла через зміну цін.

Ефект заміщення полягає у змiнi споживання внаслідок зміни відносних цін.

Графік представлено на малюнку 2.1

Малюнок 2.1 - Графік

3. МОДЕЛІ ПОВЕДІНКИ ВИРОБНИКІВ

Моделі оптимального (раціонального) вибору виробника (фірми). Нехай виробнича фірма випускає один продукт (чи багато продуктів, але з постійною структурою). Позначимо річний випуск у натурально-речовiй формі через Х - кількість одиниць продукту одного виду, вектор-стовпчик можливих обсягів різних видів ресурсів через х = 1, ..., хn)?. Тоді технологія фірми визначатиметься її виробничою функцією, яка виражає звязок між випуском i витратами ресурсів:

Х=F(х).

Припускається, що F(х) двiчi неперервно диференційована, неокласична, i матриця її других похідних є вiдємно визначеною.

Якщо - вектор-рядок цін ресурсів, а р - ціна продукції, то кожному вектору витрат х вiдповiдає прибуток:

(3.1)

У (3.1) - вартість річного випуску фірми, або її річний дохід, - витрати виробництва чи вартість витрат ресурсів за рік.

Якщо не вводити інших обмежень, крім невідємних обсягів витрат ресурсів, то задача знаходження максимуму прибутку набере вигляду:

(3.2)

Це задача нелiнiйного програмування з n умовами невідємності: Необхідними умовами існування екстремуму є умови Куна-Таккера:

(3.3)

Якщо в оптимальному розвязку використовуються всi види ресурсів, тобто , то умови (3.3) матимуть вигляд:

(3.4)

тобто в оптимальній точці вартість граничного продукту даного ресурсу повинна дорівнювати його цiнi.

Розглянемо задачу знаходження максимуму випуску за заданого обсягу витрат

(3.5)

Це задача нелiнiйного програмування з одним лiнiйним обмеженням i умовою невiдємностi змінних. Побудуємо функцію Лагранжа

і знайдемо її максимум за умови невiдємностi змiнних. Для цього необхідно, щоб виконувались умови Куна-Таккера:

(3.6)

Як бачимо, якщо покласти , умови (3.6) збiгаються з умовами (3.3).




Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Ислам - теория и практика
Реферат Мотивы искусственной регламентации и живой жизни в рассказе И. А. Бунина «Господин из Сан-Франциско»
Реферат Определение состава стиральных порошков
Реферат Разработка источников диффузионного легирования для производства кремниевых солнечных элементов
Реферат Договор ВОИС по авторскому праву
Реферат «православная культура: ценности классической науки, образования и искусства»
Реферат Повышение эффективности технологии разработки глубокозалегающего Тундрового месторождения Кольск
Реферат Психолого-педагогические основы формирования умений педагогического воздействия и воздействия в процессе самовоспитания
Реферат Эмили дю Шатле
Реферат Происхождение человека
Реферат Маркетинговые исследования препарата "Алфавит"
Реферат Jonathan Swifths Proposal Analysis Essay Research Paper
Реферат The Most Important Day Of My Life
Реферат Озоновый слой
Реферат Comparing Teenager Essay Research Paper It has