Реферат по предмету "Биология"


Оргоноиды

Органоиды


Современная цитология относит к органоидам клетки рибосомы, эндоплазм этическую сеть, комплекс Гольджи, митохондрии, клеточный центр, пластиды, лизосомы. Рибосомы (рис. 5) - небольшие сферические тельца,


имеющие размеры от 150 до 350 А. Они описаны сравнительно недавно


благодаря применению электронного микроскопа в исследования


клеточных структур. Рибосомы расположены в цитоплазматическом


матриксе, а также связаны с мембранами эндоплазматической сети. Рибо-


сомы любых организмов - от бактерий до млекопитающих - характеризу-


ются сходством структтуры и состава. В состав входит белок и РНК.


Наибольшее количество рибосом обнаружено в клетках интенсивно


размножающихся тканей. На рибосомах осуществляется синтез белка.


Каждая из рибосом состоит из двух неравных частей - субъединиц. А (ангстрем) - единица длины, равная одной десятимиллионной доле миллиметра.


В меньшую субъединицу молекулами РНК доставляются аминокислоты, а растущая белковая цепочка локализуется в большей субъединице.


Рибосомы обычно объединены в группы - полисомы (или полирибосомы); чем обеспечивается, по видимому, согласование их деятельности.


Эндоплазматическая сеть, или вакуолярная система, обнаружена в


клетках всех растений и животных, подвергнутых исследованию под


электронным микроскопом. Она представляет собой систему мембран,


формирующих сеть канальцев и цистерн. Эндоплазм этическая сеть имеет большое значение в процессах внутриклеточного обмена, так как увеличивает площадь «внутренних поверхностей» клетки, делит ее на части, отличающиеся


физическим состоянием и химическим составом, обеспечивает изоляцию ферментных систем, что в спою очередь необходимо для их последовательного вступления в согласованные реакции. Непосредственным продолжением эндоплазматической сети является ядерная мембрана, отграничивающая ядро от цитоплазмы, и цитоплазматическая мембрана, расположенная на периферии клетки.


В совокупности внутриклеточные канальцы и цистерны образуют целостную систему, канализирующую клетку и называемую некоторыми исследователями вакуолярной системой. Наиболее развита вакуолярная система в клетках с интенсивным обменом веществ. Предполагают ее участие в активном перемещении жидкостей внутри клетки.


Часть мембран несет на себе рибосомы. В некоторых специальных, лишенных гранул, вакуолярных образованиях происходит синтез жиров, В других - гликогена. Ряд частей эндоплазматнческой сети связан с комплексом Гольджн (см, ниже) н имеет, по-видимому, отношение к выпол­няемым им функциям.


Образования вакуолярной системы очень лабильны и могут меняться в зависимости от физиологического состояния клетки, характера обмена и при дифферснцировке.


Комплекс Гольджи (рис. 6) виден в световом микроскопе как специфический дифференцированный участок цитоплазмы. В клетках высших животных он представляется состоящим из сеточки,, иногда в виде скопления чешуек, палочек и зернышек. Электронномикроскопические ис­следования позволили убедиться, что комплекс Гольджи построен также из мембран и напоминает строку полых рулонов, положенных друг на друга. В клетках растений и беспозвоночных животных комплекс Гольджи удалось обнаружить лишь с помощью электронного микроскопа и


доказать, что он образован небольшими тельцами -диктиосомами,


рассеянными по всей цитоплазме.


Полагают, что основная функция комплекса Гольджи - концентрация, обезвоживание и уплотнение продуктов внутриклеточной секреции и веществ» 'поступивших извне, предназначенных для выведения из клетки.


Митохондрии (от греч. mitos - нить, chondros - зернышко)-органоиды в виде гранул, палочек, нитей, видимых в световом микроскопе (рис. 7). Величина митохондрий сильно колеблется, достигая максимально в длину 7



Митохондрии встречаются во всех клетках растений и животных. Число их в клетках, выполняющих различную функцию, неодинаково и колеблется от 50 до 5000. Электронная микроскопия дала возможность изучить детали строения митохондрий. Стенка митохондрии состоит из двух мембран: наружной и внутренней; последняя имеет выросты внутрь - гребни или кристы, делящие митохондрию на отсеки. Основная функция митохондрий» выясненная., благодаря выделению их из клетки с помощью метода фракционного центрифугирования, это превращение энергии различных соединений в_энергию фосфатных связей (АТФ - аденозинтрифосфат и АДФ - аденозиндифосфат). В таком состоянии энергия становится наиболее доступной для использования в жизнедеятельности клетки, в частности для синтеза веществ.


Пути образования новых митохондрии до сих пор неясны. Картины, видимые в световой микроскоп, говорят в пользу того, что митохондрии могут размножаться путем перешнуровки или почкования и что при делении клетки они более или менее равномерно распределяются между дочерними клетками. Создается убеждение, что между митохондриями клеток различных генераций существует преемственность. Работы по­следних лет свидетельствуют о наличии в митохондриях дезоксирибону-клеиновой кислоты (ДНК).


Клеточный центр (центросома) (рис. 8)-органоид, отчетливо видимый в световой микроскоп и состоящий из одной или двух мелких гранул - центриолей. С помощью электронного микроскопа установлено, что каждая центриоль - это цилиндрическое тельце длиной 0,3-0,5 м и ди­аметром около 0,15 р. Стенки цилиндра состоят из 9 параллельно расположенных трубочек. От центриолей под углом отходят отростки, ко­торые, по-видимому, являются дочерними центриолями.


Клеточный центр иногда занимает геометрический центр клетки (откуда происходит название органоида); чаще же он оттеснен ядром или включениями к периферии, но обязательно располагается вблизи ядра по одной оси с центром ядра и центром клетки.



Активная роль клеточного центра обнаруживается при делении клетки. По-видимому, с его структурами связаны участки цитоплазмы, способные к активному движению. В этом убеждает то обстоятельство, что у основания органоидов клетки, выполняющих функцию движения, находится образование сходное с центриолью. Такая структура свойственна блефаропластам простейших (из класса жгутиковых), базаль-ньгм тельцам у основания ресничек в специальных эпителиальных клетках многоклеточных, у основами хвостового отдела сперматозоида. Такие органоиды получили название кинетосом от греч. kinetikos- относящийся к движению, soma - тело).



Пластиды - органоиды, характерные для клеток растений и отсутствующие в клетках животных. Не имеют пластид также клетки грибов, бактерий и сине-зеленых водорослей. В клетках листа цветковых растений насчитывается от 20 до 100 пластид, Размеры их колеблются от 1 до» 12 μ. В световом микроскопе пластиды (рис 9) имеют вид палочек, чешуек, зерен. Пластиды обладают различной окраской (пигментом) или


бесцветны. В зависимости от характера пигмента различают хлоропласты (зеленого цвета), хромопласты (желтого, оранжевого и красного цвета). Одни виды пластид могут переходить в другие. Хлоропласты характерны для зеленых клеток растений, в них осуществляется «фотосинтез. Хромопласты определяют окраску плодов, лепестков цветов и других окрашенных частей растений. Тонкое строение пластид, в частности хлоропластов высших растений, изучено с помощью электронной микроскопии. Хлоропласт имеет двойную наружную мембрану. Внутренняя структура также состоит из мембран, между которыми находятся граны. Они представляют собой зерна, образованные плотно прилегающими друг к другу мешочками из двойных мембран. Хлоропласты, по-видимому, могут размножаться делением. Обращает на себя внимание, что пластиды ранних стадий развития - пропластиды - напоминают митохондрии с малым числом крист.



Сходство в структуре между хлоропластами и митохондриями, очевидно, обусловлено значительным сходством их функций. Как говорилось выше, в митохондриях происходит трансформация энергии, освобождающейся в результате диссимиляции. В хлоропластах происходит фотосинтез (см. ниже), сопровождающийся трансформацией солнечной энергии в химическую.


Лизосомы (от греч. lysis - растворение, soma -тело)-шаровидные образования, имеющие диаметр от 0,2 до 0,8 μ. В лиэосомах содержатся ферменты, разрушающие большие молекулы сложных органических соединений, поступающих в клетку. Поступившие в клетку вещества под­готавливаются для синтеза собственных белков данной клетки. Тончайшие мембраны лизосомы изолируют их содержимое от остальной цитоплазмы. Повреждение лизосом и выход ферментов из них в цитоплазму


приводят к быстрому растворению (лизису) всей клетки. Пищеварительные вакуоли в теле простейших и в фагоцитах образуются, по-види­мому, в результате слияния лизосом.


Цитоплазматическая мембрана поддерживает постоянство внутренней среды клетки, отличающейся от окружающей клетку внешней среды. Цитоплазматическая мембрана принимает непосредственное участие в процессах обмена клетки сор средой - поступлении веществ в клетку и выведении их из клетки. В тканях растений между соседними клетками образуются цитоплазм этические мостики- плазмодесмы. Через плазмодесмы обеспечивается связь цитоплазмы рядом лежащих клеток. Цитоплазматическая мембрана снаружи может быть покрыта, как, например, в растительных клетках, клеточной оболочкой.



Клеточная оболочка не является обязательной составной частью клетки. Оболочки в растительных клетках состоят из клетчатки (целлюлозы) или пектина. Наружные оболочки яйцевых клеток морских животных и амфибий состоят преимущественно из муцина. Эпителиальные и некоторые другие клетки покрыты снаружи веществами, содержащими гиалуроновую кислоту. Предполагается, что вещества, входящие в состав клеточной оболочки, выделяются клеточной поверхностью.


Клеточные оболочки служат для соединения клеток друг с другом, для концентрации определенных веществ на поверхности клетки, а также могут выполнять другие функции.


Включения


Включения представляют собой продукты жизнедеятельности клетки:


Ими могут быть плотные частицы - гранулы, жидкие капли - вакуоли, а также кристаллы. Некоторые вакуоли и гранулы окружены мембранами. В зависимости от выполняемых функций включения условно делят на три группы: трофического, секреторного и специального значения.


Включения трофического значения - это капельки жира, гранулы крахмала, гликогена, белка. В небольших количествах они присутствуют во всех клетках и используются в процессе ассимиляции. Но в некоторых специальных клетках они накапливаются в большом количестве. Так, много крахмальных зерен в клетках клубней картофеля, гранул гликогена- в клетках печени. Количественное содержание этих включений меняется в зависимости от физиологического состояния клетки и всего организма. У голодного животного клетки печени содержат значительно меньше гликогена, чем у сытого.


Включения секреторного значения образуются преимущественно в клетках желез и предназначены для выделения из клетки. Количество этих включений в клетке также зависит от физиологического состояния организма. Так, клетки поджелудочной железы голодного животного богаты каплями секрета, а сытого - бедны ими.


Включения специального значения встречаются в цитоплазме высоко-дифференцированных клеток, выполняющих специализированную функ­цию, Примером их может служить гемоглобин, диффузно рассеянный в эритроцитах.


Мембранный принцип строения внутриклеточных структур


При изучении различных клеток животных, растений и бактерии всегда обнаруживается, что клеточные органоиды имеют в основе своей мем­бранные структуры. Они характерны для зндоплазматической сети, комплекса Гольджи, оболочек и крист митохондрий, пластид, ядерной обо­лочки и клеточной мембраны. По современным представлениям элементарная мембрана является универсальной структурной единицей клеточных органоидов. Как показали химические исследования, рентгеноструктурный анализ, а также изучение клеток с помощью электронного микроскопа, элементарная мембрана (рис. 10) состоит из трех слоев. Толщина каждого слоя около 25 А. Оба наружных слоя состоят из плотно прилегающих друг к другу, лежащих в один ряд белковых молекул, часть которых обладает ферментативными свойствами. Средний слой составляют два ряда липидных молекул. Каждая молекула липида имеет две части: водорастворимую конневую группу (глицерин и фосфатная группа) и водонерастворимую концевую группу (жирные кислоты). В клеточных мембранах липидныс молекулы располагаются воднонерастворимыми концами друг к другу, а водорастворимым; концами направлены наружу, к белковым слоям.



Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Боевая служба роты в группе патрулирования при обеспечении режима карантинных мероприятий в условиях
Реферат Боевая служба роты в группе досмотра железнодорожного транспорта при обеспечении режима карантинных
Реферат Військова токсикологія радіологія та медичний захист
Реферат Влияние радиоактивных веществ на организм человека WinWord972000
Реферат Дослідження стійкості роботи обєктів економіки в особливий період
Реферат Сатира в повести «Собачье сердце»
Реферат Группа блокирования
Реферат Формирование интереса к физике у учащихся 7 класса при изучении темы Давление твердых тел жидко
Реферат Гражданская оборона 2
Реферат Философия истории Ф. Гегеля
Реферат Военная география
Реферат Действия караула по охране Важного Государственного объекта при происшествиях на охраняемом объекте
Реферат Дія хімічної зброї
Реферат Воздушно десантные войска
Реферат Евакуаційні заходи при виникненні надзвичайних ситуацій