2
Підготували: Карапенко Р.
Колот А.
6-„Г” клас
Реферат
з Хімії
на тему:
2
Підготували: Карапенко Р.
Колот А.
6-„Г” клас
p=16; p=8
e=16; 1S2 2S2 2p6 3S2 3p4 -- Електронна Формула -- 1S22S22p4 e=8
n=16 n=8
Підготували: Карапенко Р.
Колот А.
Дніпропетровськ - 2006
Історія відкриття
Історія відкриття кисню, як і азоту, звязана з вивченням, що продовжувалися кілька століть, атмосферного повітря. Про те, що повітря по своїй природі не однорідний, а включає частини, одна з яких підтримує горіння і подих, а інша - ні, знав ще в VIII столітті китайський алхімік Мао Хоа, а пізніше в Європі - Леонардо Да Вінчі. У 1665 англійський натураліст Р. Гук писав, що повітря складається з газу, що міститься в селітрі, а також з неактивного газу, що складає велику частину повітря. Про те, що повітря містить елемент, що підтримує життя, у 18 столітті було відомо багатьом хімікам. Шведський аптекар і хімік Карл Шееле почав вивчати склад повітря в 1768. Протягом трьох років він розкладав нагріванням селітри (KNO3, NaNO3) і інші речовини й одержував "вогненне повітря", що підтримує подих і горіння. Але результати своїх досвідів Шееле обнародував тільки в 1777 році в книзі "Хімічний трактат про повітря і вогонь". У 1774 англійський священик і натураліст Дж. Прістлі нагріванням "паленої ртуті" (оксиду ртуті Hg) одержав газ, що підтримує горіння. Будучи в Парижі, Прістлі, що не знав, що отриманий їм газ входить до складу повітря, повідомив про своє відкриття А. Лавуазьє й іншим ученим. До цього часу був відкритий і азот. У 1775 Лавуазьє прийшов до висновку, що звичайне повітря складається з двох газів - газу, необхідного для подиху і підтримуючого горіння, і газу "протилежного характеру" - азоту. Лавуазьє назвав підтримуючий горіння газ oxygene - "утворюючий кислоти" (від грецьк. oxys - кислий і gennao - народжую; звідси і російська назва "кисень"), тому що він тоді вважав, що всі кислоти містять кисень. Давно уже відомо, що кислоти бувають і безкисневими, але назва, дана елементу Лавуазьє, залишилося незмінною.
Протягом майже півтора століть 1/16 частина маси атома кисню служила одиницею порівняння мас різних атомів між собою і використовувалася при чисельній характеристиці мас атомів різних елементів (так називана киснева шкала атомних мас).
Поширення в природі
Кисень - найпоширеніший на Землі елемент, на його частку (у складі різних зєднань, головним чином силікатів), приходиться близько 47,4% маси твердої земної кори. Морські і прісні води містять величезна кількість звязаного кисню - 88,8% (по масі), в атмосфері зміст вільного кисню складає 20,95 % (по обсязі). Елемент кисень входить до складу більш 1500 зєднань земної кори.
Одержання
В даний час кисень у промисловості одержують за рахунок поділу повітря при низьких температурах. Спочатку повітря стискають компресором, при цьому повітря розігрівається. Стиснутому газу дають остудитися до кімнатної температури, а потім забезпечують його вільне розширення. При розширенні температура газу різко знижується. Охолоджене повітря, температура якого на кілька десятків градусів нижче температури навколишнього середовища, знову піддають стиску до 10-15 МПа. Потім знову відбирають теплоту, що виділилася. Через кілька циклів "стиск-розширення" температура падає нижче температури кипіння і кисню, і азоту. Утвориться рідке повітря, що потім піддають перегонці (дистиляції). Температура кипіння кисню (-182,9°C) більш ніж на 10 градусів вище, ніж температура кипіння азоту (-195,8°C). Тому з рідини азот випаровується першим, а в залишку накопичується кисень. За рахунок повільної (фракційної) дистиляції вдається одержати чистий кисень, у якому зміст домішки азоту складає менш 0,1 обємного відсотка.
Ще більш чистий кисень можна одержати при електролізі водяних розчинів лугів (NaOH чи KOH) чи солей кисневмісних кислот (звичайно використовують розчин сульфату натрію Na2SO4). У лабораторії невеликі кількості не дуже чистого кисню можна одержати при нагріванні перманганату калію KMn4:
2KMn42
Підготували: Карапенко Р.
Колот А.
6-„Г” клас
= K2Mn4 + Mn2 + O2.
Більш чистий кисень одержують розкладанням пероксиду водню Н2O2 у присутності каталітичних кількостей твердого діоксида марганцю Mn2:
2Н22
Підготували: Карапенко Р.
Колот А.
6-„Г” клас
O2 = 2Н2O + O2.
Кисень утвориться при сильному (вище 600°C) прожарюванні нітрату натрію NaNO3:
2NaNO32
Підготували: Карапенко Р.
Колот А.
6-„Г” клас
=2NaNO2 + O2,
при нагріванні деяких вищих оксидів:
4Cr32
Підготували: Карапенко Р.
Колот А.
6-„Г” клас
= 2Cr2O3 + 3O2;
2Pb22
Підготували: Карапенко Р.
Колот А.
6-„Г” клас
= 2Pb + O2;
3Mn22
Підготували: Карапенко Р.
Колот А.
6-„Г” клас
= Mn3O4 + O2.
Раніше кисень одержували розкладанням Бертолетової солі KCl3 у присутності каталітичних кількостей диоксида марганцю Mn2:
2KCl32
Підготували: Карапенко Р.
Колот А.
6-„Г” клас
= 2KCl + 3O2.
Однак бертолетова сіль утворить вибухові суміші, тому її для одержання кисню в лабораторіях тепер не використовують. Зрозуміло, зараз нікому в голову не прийде використовувати для одержання кисню прожарювання оксиду ртуті Hg, тому що кисень, що утвориться в цій реакції, забруднений отрутними парами ртуті.
Джерелом кисню в космічних кораблях, підвідних човнах і т.п. замкнутих приміщеннях служить суміш пероксиду натрію Na2O2 і супероксиду калію KO2. При взаємодії цих зєднань з вуглекислим газом звільняється кисень:
2Na22
Підготували: Карапенко Р.
Колот А.
6-„Г” клас
O2 + 2CO2 = 2Na2CO3 + O2,
4K2
Підготували: Карапенко Р.
Колот А.
6-„Г” клас
2 + 2CO2 = 2K2CO3 + 3O2.
Якщо використовувати суміш Na2O2 і K2, узятих у молярному відношенні 1:1, то на кожен моль поглиненого з повітря вуглекислого газу буде виділятися 1 моль кисню, так що склад повітря не буде змінюватися за рахунок поглинання при подиху кисню і виділення CO2.
Особливості будови молекули O2
Атмосферний кисень складається з двохатомних молекул. Міжатомне відстань у молекулі O2 0,12074 нм. Молекулярний кисень (газоподібний і рідкий) - парамагнітна речовина, у кожній молекулі O2 знаходиться по 2 неспарених електрони.
Енергія дисоціації молекули O2 на атоми досить висока і складає 493,57 кдж/моль.
Фізичні і хімічні властивості
При нормальних умовах щільність газу кисню 1,42897 кг/м3. Температура кипіння рідкого кисню (рідина має блакитний колір) -182,9°C. При температурах від -218,7°C до -229,4°C існує твердий кисень з кубічними ґратами (модифікація), при температурах від -229,4°C до -249,3°C - модифікація з гексагональними ґратами і при температурах нижче -249,3°C - кубічна -модифікація. При підвищеному тиску і низьких температурах отримані й інші модифікації твердого кисню.
При 20°C розчинність газу O2: 3 ,1 мл на 100 мл води, 22 мл на 100 мл етанолу, 23,1 мл на 100 мл ацетону. Існують органічні фторовмісні рідини (наприклад, перфторбутилтетрагідрофуран), в яких розчинність кисню значно вища.
Висока міцність хімічного звязку між атомами в молекулі O2 призводить до того, що при кімнатній температурі газоподібний кисень хімічно досить малоактивний.
У природі він повільно вступає в перетворення при процесах гниття. Крім того, кисень при кімнатній температурі здатний реагувати з гемоглобіном крові (точніше з залізом ІІ гема), що забезпечує перенос кисню від органів подиху до інших органів.
З багатьма речовинами кисень вступає у взаємодію без нагрівання, наприклад, з лужними і лужноземельними металами (утворяться відповідні оксиди типу Lі2O, CaО і інші, пероксиди типу Na2O2, BaО 2 та ін. і супероксиди типу KО 2, RbО 2 та ін.), викликає утворення іржі на поверхні сталевих виробів.
Без нагрівання кисень реагує з білим фосфором, з деякими альдегідами й іншими органічними речовинами.
При нагріванні, навіть невеликому, хімічна активність кисню різко зростає. При підпалюванні він реагує з вибухом з воднем, метаном, іншими пальними газами, з великою кількістю простих і складних речовин. Відомо, що при нагріванні в атмосфері кисню чи на повітрі багато простих і складних речовин згоряють, причому утворюються різні оксиди, наприклад:
S+O22
Підготували: Карапенко Р.
Колот А.
6-„Г” клас
= SO2
С + O2
Підготували: Карапенко Р.
Колот А.
6-„Г” клас
2 = СО2
4Fe + 3O22
Підготували: Карапенко Р.
Колот А.
6-„Г” клас
= 2Fe2O3
2Cu + O22
Підготували: Карапенко Р.
Колот А.
6-„Г” клас
= 2Cu
4NH32
Підготували: Карапенко Р.
Колот А.
6-„Г” клас
+ 3O2 = 2N2 + 6H2O
2H22
Підготували: Карапенко Р.
Колот А.
6-„Г” клас
S + 3O2 = 2H2O + 2SO2
Якщо суміш кисню і водню зберігати в скляній судині при кімнатній температурі, то екзотермічна реакція утворення води
2Н22
Підготували: Карапенко Р.
Колот А.
6-„Г” клас
+ O2= 2Н2O + 571 кДж
протікає вкрай повільно; з розрахунку, перші крапельки води повинні зявитися в судині приблизно через мільйон років. Але при внесенні в судину із сумішшю цих газів Платини чи Палладія (що грають роль каталізатора), а також при підпалюванні реакція протікає з вибухом.
З азотом N2 кисень чи реагує при високій температурі (близько 1500-2000 C), чи при пропущенні через суміш азоту і кисню електричного розряду. При цих умовах оборотно утвориться оксид азоту (ІІ):
N22
Підготували: Карапенко Р.
Колот А.
6-„Г” клас
+ O2 = 2NO
Утворений NO потім реагує з киснем з утворенням бурого газу (диоксида азоту):
2NO + O2
Підготували: Карапенко Р.
Колот А.
6-„Г” клас
2 = 2NO2
З неметалів кисень прямо ні при яких умовах не взаємодіє з галогенами, з металів - зі шляхетними металами: Сріблом, Золотом, Платиною й ін.
Бінарні сполуки кисню, у яких ступінь окислювання атомів кисню дорівнює -2, називають оксидами (колишня назва - окисли). Приклади оксидів: оксид вуглецю (ІV) CO2,оксид сірки (VІ) SO3, оксид міді (І) Cu2O, оксид алюмінію Al2O3, оксид марганцю (VІІ) Mn2O7.
Кисень утворює також сполуки, у яких його ступінь окислювання дорівнює -1. Це - пероксиди (стара назва - перекиси), наприклад, пероксид водню Н2O2, пероксид барію ВаО2, пероксид натрію Na2O2 і інші. У цих сполуках міститься пероксидне угруповання --O--O--.
З активними лужними металами, наприклад, з калієм, кисень може утворювати також супероксиди, наприклад, KО2 (супероксид калію), RbО2 (супероксид рубідію). У супероксидах ступінь окислювання кисню -1/2. Можна відзначити, що часто формули супероксидів записують як K2O4, Rb2O4 і т.д.
Із самим активним неметалом фтором кисень утворить зєднання в позитивних ступенях окислювання. Так, у зєднанні O2F2 ступінь окислювання кисню +1, а в зєднанні O2F - +2. Ці зєднання належать не до оксидів, а до фторидам. Фториди кисню можна синтезувати тільки непрямим шляхом, наприклад, діючи фтором F2 на розведені водяні розчини КОН.
Застосування кисню
Застосування кисню дуже різноманітно. Основна кількість одержуваного з повітря кисню використовуються в металургії. Кисневе (а не повітряне) дуття в домнах дозволяє істотно підвищувати швидкість доменного процесу, заощаджувати кокс і одержувати чавун кращої якості. Кисневе дуття застосовують у кисневих конвертерах при переділі чавуна в сталь. Чистий кисень чи повітря, збагачене киснем, використовується при одержанні і багатьох інших металів (міді, нікелю, свинцю й ін.). Кисень використовують при різанні і зварюванні металів. При цьому застосовують "балонний" кисень. У балоні кисень може знаходитися під тиском до 15 Мпа. Балони з киснем пофарбовані в блакитний колір.
Рідкий кисень - потужний окислювач, його використовують як компонент ракетного палива. Просочені рідким киснем такі матеріали, як деревні опилки, вата, вугільний порошок та ін. (ці суміші називають оксиліквітами ), використовують як вибухові речовини, застосовувані, наприклад, при прокладці доріг у горах.
Біологічна роль кисню
Кисень в атмосфері Землі почав накопичуватися в результаті діяльності первинних фотосинтезуючих організмів, що зявилися, імовірно, близько 2,8 млрд. років тому. Вважають, що 2 млрд. років тому атмосфера вже містила близько 1% кисню; поступово з відбудовної вона перетворювалася в окисну і приблизно 400 млн. років тому придбала сучасний склад. Наявність в атмосфері кисню в значній мірі визначило характер біологічної еволюції. Аеробний (за участю О2) обмін речовин виник пізніше анаеробного (без участі O2), але саме реакції біологічного окислювання, більш ефективні, чим древні енергетичні процеси шумування і гліколізу, постачають живі організми здебільшого необхідної їм енергії. Виключення складають облігатні анаероби, наприклад, деякі паразити, для яких кисень є отрутою.
Використання кисню, що володіє високим окислювально-відновним потенціалом, як кінцевого акцептор електронів у ланцюзі дихальних ферментів, привело до виникнення біохімічного механізму подиху сучасного типу. Цей механізм і забезпечує енергією аеробні організми.
Кисень - основний біогенний елемент, що входить до складу молекул усіх найважливіших речовин, що забезпечують структуру і функції кліток - білків, нуклеїнових кислот, вуглеводів, ліпідів, а також безлічі низькомолекулярних сполук. У кожній рослині чи тварині кисню набагато більше, ніж будь-якого іншого елемента (у середньому близько 70%).
Мязова тканина людини містить 16% кисню, кісткова тканина - 28.5%; усього в організмі середньої людини (маса тіла 70 кг) міститься 43 кг кисню. В організм тварин і людини кисень надходить в основному через органи подиху (вільний кисень) і з водою (звязаний кисень). Потреба організму в кисні визначається рівнем (інтенсивністю) обміну речовин, що залежить від маси і поверхні тіла, віку, статі, характеру харчування, зовнішніх умов і ін.
Невеликі кількості кисню використовують у медицині: киснем (з так званими кисневими подушками) дають якийсь час дихати хворим, у яких утруднений подих. Потрібно, однак, мати на увазі, що тривале вдихання повітря, збагаченого киснем, небезпечно для здоровя людини. Високі концентрації кисню викликають у тканинах утворення вільних радикалів, що порушують структуру і функції біополімерів. Подібною дією на організм володіють і іонізуючі випромінювання. Тому зниження вмісту кисню (гіпоксія) у тканинах і клітках при опроміненні організму іонізуючою радіацією має захисну дію - так називаний кисневий ефект. Цей ефект використовують у променевій терапії: підвищуючи вміст кисню в пухлині і знижуючи його зміст у навколишніх тканинах підсилюють променеву поразку пухлинних кліток і зменшують ушкодження здорових. При деяких захворюваннях застосовують насичення організму киснем під підвищеним тиском - гіпербаричну оксигенацію.
Хімічні властивості
Хімічна активність сірки також доволі висока. При нагрівання вона реагує майже з усіма елементами.
1. Взаємодія з металами.
2Cu + S = Cu22
Підготували: Карапенко Р.
Колот А.
6-„Г” клас
S
2. Взаємодія з неметалами.
S + O22
Підготували: Карапенко Р.
Колот А.
6-„Г” клас
= SO2^
H22
Підготували: Карапенко Р.
Колот А.
6-„Г” клас
+ S = H2S ^
Застосування. Найбільша маса сірки і природних сульфідів витрачається на вироблення сульфатної кислоти.
Оксиди сульфуру
Сульфур утворює два кислотні оксиди: оксид сульфуру (IV) SO2 і оксид сульфуру (VI) SO3.
Оскид сульфуру (IV) SO2 (діоксид сульфуру, сірчастий газ) - це безбарвний важкий газ (у 2,2 раза важчий за повітря), з різким запахом, що викликає кашель. Негорючий. Дуже легко розчиняється у воді (в 1л води при 200С розчиняється 43 л SO2.
Застосування. Найважливіша галузь застосування оксиду сульфуру (IV) SO2 - це виробництво сульфатної кислоти H2SO4.
Фізіологічна дія. Оксид сульфуру (IV) SO2 токсичний. Невелика концентрація його у повітрі викликає подразнення слизових оболонок дихальних органів і очей.
Вплив на навколишнє середовище. Діоксид сульфуру SO2 один з основних забрудників повітря, він отруює навколишнє середовище.
Звідки ж береться діоксид сульфуру SO2 у повітрі?
Природним джерелом SO2 є окислення сірководню H2S атмосферним киснем й озоном:
2H22
Підготували: Карапенко Р.
Колот А.
6-„Г” клас
S + 3O2 = 2SO2 + 2H2O
H22
Підготували: Карапенко Р.
Колот А.
6-„Г” клас
S + O3 = SO2 + H2O
Діоксид сульфуру SO2, потрапляючи у повітря, викликає утворення “кислотних дощів”, шкідливих для усього живого.
Оксид сульфуру (IV) SO3 (триоксид сульфуру) - безбарвна рідина, яка за температури, нижчої від 170С, кристалізується, перетворюючись на довгі шовковисті кристали. Дуже легка речовина, сильний окисник. Токсичний, уражує слизові оболонки й дихальні шляхи, викликає тяжкі опіки шкіри, енергійно руйнує органічні сполуки. Зберігають його у запаяних скляних посудинах.
Оксид сульфуру (VІ) на повітрі димить, бурхливо взаємодіє з водою з виділенням великої кількості теплоти, утворюючи сульфатну кислоту:
SO32
Підготували: Карапенко Р.
Колот А.
6-„Г” клас
+ H2O = H2SO4
Застосовується оксид сульфуру (IV) SO3 у виробництві сульфатної кислоти H2SO4. У лабораторній практиці він використовується як водовбирний засіб.
Сульфатна кислота
Сульфатна кислота H2SO4 (безводна, 100%-ва) - важка безбарвна оліїста рідина. Густина її концентрованого розчину (w(H2SO4) = 98%) за стандартних умов 1,84 г/см3. вона нелегка, запаху не має. Надзвичайно гігроскопічна. Активно вбирає вологу. Змішується з водою у будь-яких співвідношеннях. Розчинення сульфатної кислоти у воді супроводжується виділенням великої куль ості теплоти, що може призвести до закипання води і розбризкування кислоти.
Розбавлена сульфатна кислота виявляє всі хімічні властивості, характерні для кислот:
ь Зміна кольору індикатора.
ь Дисоціація кислоти.
І ступінь H2SO4 Н+ + HSO -4 - гідрогенсульфат-іон
ІІ ступінь HSO -4 Н+ + SO -24 - сульфат-іон.
ь Взаємодія з основами.
ь Взаємодію з оксидами металів.
MgO + H2SO4 = MgSO4 + H2O
ZnO + H2SO4 = ZnSO4 + H2O
ь 5. Взаємодія з солями.
Na2CO3 + H2SO4 = Na2SO4 + CO2 + H2O
2KNO3 + H2SO4 = K2SO4 + 2HNO3
ь 6. Взаємодія з металами.
Mg + H2SO4 = MgSO4 + H2
Zn + H2SO4 = ZnSO4 + H2
Fe + H2SO4 = FeSO4 + H2
Застосування сульфатної кислоти і сульфатів
Сульфатна кислота є важливим продуктом хімічної промисловості. Вона у великих кількостях застосовується у виробництві мінеральних добрив, волокон, пластмас, барвників, вибухових речовин, у металургії в процесі добування міді. Нікелю, урану та інших металів. Використовується також як осушувач газів.
Серед сульфатів велике практичне значення мають мідний і залізний купороси CuSO4 5H2O i FeSO4 7H2O.
Чесна Сірка і Нечиста Сила
Сульфур входить до складу безлічі сполук усередині нас і ззовні. Серед них є отрути та протиотрути, речовини агресивні й захисні, причетні до чистоти й повязані з нечистотами. Колись сірку вважали знаряддям кари для грішників, міткою нечистої сили, містичним началом металів. У наші дні відомості про отруйність пестицидів, що містять Сульфур, із науки перекочовують у міфи інду-стріальної епохи. Історія продовжується.
Властивості простих речовин |
Прості речовини |
||
кисень |
озон |
||
Агрегатний стан за стандартних умов |
Газ |
Газ |
|
Колір |
Безбарвний |
Синій |
|
Запах |
Без запаху |
Різкий, своєрідний |
|
Розчинність (у 100 обємах Н2О при 200С) |
3 обєми |
49 обємів |
|
Густина газу за н.у. |
1,43 г/л |
2,14 г/л |
|
Температура кипіння |
-1930С |
-1120С |
|
Температура плавлення |
-2190С |
-1920С |
|
Фізіологічна дія |
Неотруйна |
Дуже отруйний |
|
Хімічні властивості |
Окисник |
Дуже сильний окисник |
|
Реакційна здатність |
Висока |
Дуже висока |
Застосування озону зумовлене його винятковими окисними властивостями. Озон використовується для озонування питної води, що значно ефективніше, ніж хлорування; для знешкодження промислових стічних вод; вибілювання тканин, мінеральний масел; як дезинфікуючий засіб у медицині; як окисник ракетного палива.
Проте буває й інша причина алотропії - різна структура кристалів. З таким типом алотропії можна ознайомитися на прикладі сірки.
Сірка за стандартних умов - крихка кристалічна речовина жовтого кольору. Погано проводить теплоту і не проводить електричного струму. У воді не розчиняється краще розчиняється в деяких розчинниках (у сірковуглеці CS2, бензині, етері та ін.).
І в розчинах, і в кристалах сірка складається з циклічних молекул S8, які за формою нагадують корону. Але в кристалах ці молекули можуть бути упаковані по-різному.
Якщо молекули розташовані щільно, утворюється алотропна форма ромбічна сірка. Менш щільне упакування молекул спричинює виникнення іншої алотропної форми - моноклінної сірки.
Якщо сірку розплавити і швидко охолодити, утворюється ще одна алотропна форма: пластична сірка - коричнева губоподібна маса.
Властивості ромбічної і моноклінної сірки
Властивості простих речовин |
Сірка |
||
ромбічна |
моноклінна |
||
Колір |
Лимонно-жовтий |
Блідо-жовтий, майже безбарвний |
|
Густина |
2,07 г/л |
1,96 г/л |
|
Температура плавлення |
112,80С |
119,30С |
! |
Как писать рефераты Практические рекомендации по написанию студенческих рефератов. |
! | План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом. |
! | Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач. |
! | Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты. |
! | Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ. |
→ | Виды рефератов Какими бывают рефераты по своему назначению и структуре. |