29
Министерство образования и науки РФ
Череповецкий государственный университет
Инженерно-экономический институт
Реферат
по теме:
«Экология бетона и использование
вторичных ресурсов»
Выполнил студент
группы 5ЭН-22
Малинин М.С.
Принял преподаватель
Мейлах А.П.
г. Череповец
2007
СОДЕРЖАНИЕ
Теплоизоляция
Однослойная стена из ячеистобетонных блоков плотностью 400-500 кг/мі при толщине в 40 см имеет величину сопротивления теплопередачи равную 2,7-3,5 м20С/Вт.
Возгораемость и огнестойкость
Ячеистый бетон относится к негорючим строительным материалам. По ДИН 4102 он относится к несгораемому строительному материалу класса А1. Ячеистый бетон может использоваться для утепления строительных конструкций и теплоизоляции оборудования при температуре изолирующей поверхности до +4000 С. Многочисленные исследования проведенные в Швеции, Финляндии и Германии показали, что при повышении температуры до +4000С прочность ячеистого бетона увеличивается на 85%. Предел огнестойкости плит перекрытия и покрытия, согласно ГОСТ 30247.0-94, составляет 70 минут, т.е. соответствует REI 60.
Звукоизоляция
Конструкции дома из ячеистого бетона удовлетворяют нормативным требованиям по звукоизоляции по СНиП 11-12-77 "Защита от шума" и СТСЭВ4867-84 "Защита от шума в строительстве. Звукоизоляция ограждающих конструкций".
Морозостойкость
Ячеистый бетон благодаря своей капилярно-пористой структуре является морозостойким строительным материалом. Морозостойкость ячеистого бетона при попеременном замораживании и оттаивании достигает 50 циклов. Способность ячеистого бетона сохранять свои физико-механические свойства при многократном воздействии попеременного замораживания и оттаивания на воздухе над водой называется морозостойкостью и характеризуется его маркой по морозостойкости, которая принимается по установленному числу циклов попеременного замораживания и оттаивания.
Аккумуляция тепла
Ячеистый бетон способен аккумулировать тепло. Он накапливает тепло от отопления или солнечных лучей. При низких температурах, к примеру ночью, когда отопление становится более слабым, отдает накопленное тепло во внутренние помещения. Вместе с высокой степенью теплоизоляции, а также благодаря аккумуляции тепла обеспечивается постоянная и комфортная температура во всем доме. Зимой происходит экономия топлива, а в летнее время сохраняется приятная прохлада.
Микроклимат помещений
Оптимальная относительная влажность воздуха является решающей предпосылкой для приятного микроклимата в помещениях. Ячеистый бетон обладает, выражаясь профессионально, хорошей диффузией по отношению к влаге. Материал накапливает влагу из воздуха, транспортирует ее во внутренние помещения, таким образом влага попадает в воздух помещений в доме.
Экология
Ячеистый бетон является экологически чистым строительным материалом. Согласно исследованиям, проведенным в Германии институтом лучевой гигиены Федерального Управления по здравоохранению, уровень радиоактивности ячеистого бетона значительно ниже всех допустимых пределов. Кроме того, ячеистый бетон не выделяет токсичных веществ или вредных газов. По данным Минздрава РФ коэффициент экологичности, например, для стен из дерева равен 1.0; ячеистого бетона - 2.0; керамического кирпича - 10.0 и керамзитобетона 20.0.
Обрабатываемость
Материал легко пилится, режется, строгается и сверлится. Простота обработки ячеистого бетона позволяет изготавливать конструкции различной конфигурации, в том числе и арочные, обрабатывать поверхность, прорезать каналы и отверстия под электропроводку, розетки, трубопровода.
Экономичность
Стена из ячеистого бетона по стоимости в 2-3 раза ниже, чем стена из кирпича, а по качеству значительно выше. Экономично используются транспортные мощности. Применение грузоподъемных механизмов минимально. Точные размеры и ровная поверхность блоков дает значительную экономию отделочных материалов.
Проблема утилизации строительных отходов остро стоит во всем цивилизованном мире. По данным международной организации RILEM в странах ЕС, США и Японии к 2000 г. ежегодный объем только бетонного лома должен составить более 360 млн. т. Начиная с 70-х годов во многих странах ведутся широкомасштабные исследования в области переработки бетонных и железобетонных отходов, изучения технико-экономических, социальных и экологических аспектов использования получаемых вторичных продуктов. По сведениям из иностранных источников энергозатраты при добыче природного щебня в 8 раз выше, чем при получении щебня из бетона, а себестоимость бетона, приготавливаемого на вторичном щебне, снижается на 25 %.
В бывшем СССР внимание к этому вопросу было привлечено в конце 70-х годов. Тогда считалось, что утилизация имеющихся отходов позволила бы вовлечь в хозяйственный оборот около 40 млн. т. бетонного лома и около 1,2 млн. т. металла. Однако реальных мер для решения проблемы принято не было.
При сносе панельных домов первого периода индустриального домостроения, при производстве строительно-монтажных и сопутствующих работ образуется значительное количество строительных отходов, большая часть которых вывозится на полигоны и свалки, в том числе, несанкционированные, что отрицательно влияет на экологическую ситуацию в Московском регионе.
В то же время, отходы строительного производства представляют собой вторичное сырье, использование которого после переработки на вторичный щебень и песчано-гравийную смесь может снизить затраты на новое строительство объектов в городе и одновременно позволяет уменьшить нагрузку на городские полигоны, исключить образование несанкционированных свалок.
В настоящее время в г. Москве ежегодно образуется около 1500 тыс.тн. строительных отходов. Только 70-80 тыс.тн. перерабатывается в щебень, остальные вывозятся на полигоны, либо скапливаются на десятках несанкционированных свалок.
Переработка строительных отходов осуществляется, в основном, на дробильно-сортировочных установках.
Зарубежный опыт переработки строительных отходов
В мировой практике применяются два основных принципа организации переработки тяжелых строительных отходов и некондиционной продукции стройиндустрии:
o переработка образовавшихся отходов на месте их возникновения (на стройплощадке);
o переработка отходов на специальных комплексах.
Первый вариант не позволяет применять высокопроизводительное оборудование, обеспечивающее получение чистого и фракционированного продукта. Кроме этого, оно требует особых мер экологической защиты близлежащих жилых домов, исключает возможность непрерывной работы дробильной установки.
Второй вариант предусматривает дополнительные транспортные расходы на доставку отходов к месту переработки, которые компенсируются эффективной работой дробильно-сортировочного комплекса большой мощности, возможностью более глубокой переработки, отбором всех посторонних включений, возможностью организации постоянной логистики и маркетинга, относительно простым решением экологических проблем.
Например, в Германии в каждой земле существуют крупные перерабатывающие комплексы. Только в Берлине (где снос построенных во времена ГДР панельных пятиэтажек даже не планируется) их более 20.
Как правило, комплекс состоит из нескольких участков.
Участок приема отходов, где осуществляется их складирование, предварительная сортировка и разделка негабаритных плит или обломков до размеров, которые способна пропустить дробилка. Этот участок обычно обслуживают экскаваторы с гидрокусачками.
Участок подготовленного материала, где работают фронтальные погрузчики с емкостью ковша 4 - 5 м3 способные обеспечить непрерывную работу высокопроизводительной дробилки.
Перерабатывающая установка, включающая приемный бункер, дробильный агрегат, магнитный сепаратор и сортировочный узел. На крупных перерабатывающих предприятиях в состав установки входят также дробилка вторичного дробления, более полный набор грохотов, система воздушной сепарации легких частиц (остатки утеплителя, обоев, линолеума и др.), а иногда и установка для мойки вторичного щебня.
Склад готовой продукции может быть укомплектован поворотными конвейерами, отсыпающими щебень разных фракций в конические отвалы, или автоматизированными силосными складами, где в силосах хранится щебень, распределяемый по фракциям и но прочности, откуда он автоматически отгружается заказчику в заданном процентном соотношении.
Обычно комплексы оборудованы автомобильными весами для взвешивания поступающего материала и отпускаемой продукции.
В качестве первичных дробильных агрегатов чаще всего используют щековые дробилки, а также роторные агрегаты ударно-отражательного действия, причем последние часто не требуют установки дробилки второй ступени.
Работающие за рубежом комплексы не только выполняют важную экологическую и экономическую задачи государственного значения, но также являются высокорентабельными предприятиями. Их доходы складываются из платы за приемку материала на переработку (поставщик экономит транспортные расходы на доставку к месту свалки и плату за свалку) и доходов от продажи вторичного щебня, который дешевле природного и ему обеспечен сбыт. Производительность комплексов в зависимости от их комплектации и загрузки составляет 100-800 тыс. т в год.
Бетоны не являются после их разрушения и даже длительного хранения химически активными продуктами. Рассмотрим их с позиций использования материала:
первая характеризует процессы разрушения, хранения и использования;
вторая - применение высокоплотных и прочных бетонов как материала для сооружения стойких хранилищ.
Вопросами повторного использования бетона активно начали заниматься в 70-е и 80-е годы. Прежде всего, эта работа начата в европейских странах, где цена земли под отвалы наиболее высока.
На территории бывшего СССР работы начаты в Москве, в начале 80-х годов, где также существовал фактор высокой стоимости земли под отвалы. Первое применение дробленого бетона началось с использованием его в качестве подсыпки под временные дороги и для заполнения пустот и оврагов.
В НИИЖБе была сформулирована задача, каким образом более эффективно использовать дробленый бетон для его повторного использования в качестве крупного заполнителя. В связи с ограниченностью материала в статье приведены только отдельные результаты по методам активации щебня из дробленого бетона.
Активизация составляющих бетонной смеси позволил бы существенно улучшить основные технические свойства бетона. Эффект активизации заполнителей состоит в разрушении слабых зерен щебня или удалении остатков цементного камня, образовании свежих сколов, что приводит к повышению технических характеристик бетонов за счет улучшения качества контактной зоны.
В качестве методов активизации были применены механические, тепловые воздействия для активизации процесса дробления.
В таблице 1 представлены показатели качества щебня из дробленого бетона. Использовалось простое перемешивание без дополнительной обработки щебня в смесительных установках, самоизмельчение или обработка в шаровых мельницах с металлическими шарами. Качество активированного щебня оценивалось по показателю дробимости, водопоглощению, насыпной массе.
Таблица 1
Показатели качества щебня из дробленого бетона
Щебень |
Фракция, |
Насыпная |
Водопоглощение, % |
Показатель дробимости |
||
в сухом состоянии |
в насыщенном водой состоянии |
|||||
Без обработки |
5-10 |
1170 |
7 |
22,5 |
29,2 |
|
После само-измельчения |
5-10 |
1310 |
4,3 |
13,3 |
16.8 |
|
После помола в шаровой мельнице |
5-10 |
1350 |
3,8 |
11.2 |
13,4 |
|
Полученные результаты подтвердили высказанное предположение о возможности существенного улучшения качества щебня за счет избавления от растворной составляющей.
Наилучшие результаты достигнуты в случае помола дробленого бетона стальными шарами после предварительного низкотемпературного обжига. В данном случае был получен щебень, практически свободный от растворного компонента, а его свойства - дробимость, водопоглощение и насыпная плотность близки к аналогичным показателям исходного щебня.
Для создания рабочего оборудования по утилизации бетона и, прежде всего, его дроблению учитывался зарубежный опыт. При этом основным рассматривался ударный метод с использованием гидравлических молотов.
В таблице 2 представлены некоторые технические характеристики гидравлических молотов систем: "Кент Айе Еуропа", Нидерланды; "Крупп", ФРГ, и "Атлас Копко", Швеция.
Таблица 2
Технические характеристики гидравлических молотов зарубежного производства
Тип |
Масса без рабочего наконечника |
Общая длина, MM |
Расход масла, л/мин |
Число ударов в 1мин |
Давление масла, МПа |
Диаметр шлангов, мм |
Рабочий наконечник |
|||
Диаметр, мм |
Длина, мм |
Масса, кг |
||||||||
Фирма "Кент Айе Еуропа" (Нидерланды) |
||||||||||
Н-08Х |
110 |
984 |
12-25 |
450-750 |
8-10 |
12,7 |
45 |
484 |
9,5 |
|
Н-1ХА |
140 |
1150 |
25-35 |
590-820 |
9-11 |
12,7 |
57 |
580 |
10 |
|
Н-ЗХА |
400 |
1364 |
45-65 |
500-730 |
9-11 |
12,7 |
75 |
685 |
21 |
|
Н-4Х |
500 |
1644 |
50-80 |
400-550 |
9-11 |
12,7 |
90 |
780 |
32 |
|
Н-5Х |
1000 |
1750 |
30-50 |
300-500 |
19-21 |
19 |
96 |
862 |
41 |
|
Н-7Х |
950 |
1781 |
90-140 |
400-570 |
12-14 |
19 |
106 |
921 |
58 |
|
Н-8Х |
1000 |
1872 |
90-140 |
400-570 |
14-16 |
19 |
106 |
809 |
50 |
|
Н10ХВ |
1400 |
2156 |
160-200 |
400-500 |
12-14 |
25,4 |
126 |
1110 |
96 |
|
Н-12Х |
1750 |
2276 |
170-210 |
400-500 |
12-14 |
25,4 |
136 |
П98 |
114 |
|
Н-16Х |
2100 |
2535 |
175-225 |
350-450 |
13-15 |
25,4 |
146 |
1295 |
145 |
|
Н-20Х |
3100 |
2663 |
205-260 |
350-450 |
15-17 |
25,4 |
156 |
1367 |
179 |
|
Н-25Х |
4200 |
3000 |
200-250 |
300-380 |
18-20 |
31,7 |
165 |
1400 |
210 |
|
Фирма "Крупп" (ФРГ) |
||||||||||
НМ-51 |
91 |
- |
28 |
1100 |
12 |
- |
45 |
- |
- |
|
НМ-61 |
133 |
- |
20-40 |
500-1000 |
10-13 |
- |
55 |
- |
- |
|
НМ-110 |
180 |
- |
50 |
1000 |
10-13 |
- |
65 |
- |
- |
|
НМ-200 |
395 |
- |
55 |
650 |
15 |
- |
80 |
- |
- |
|
НМ-301 |
345 |
- |
45-85 |
550-1000 |
12-15 |
- |
80 |
- |
- |
|
НМ-551 |
730 |
- |
50-110 |
350-750 |
13-17 |
- |
100 |
- |
- |
|
НМ-600 |
925 |
- |
85 |
500 |
15 |
- |
100 |
- |
- |
|
НМ-701 |
1210 |
- |
120 |
550-1100 |
17 |
- |
115 |
- |
- |
|
НМ-702 |
1210 |
- |
170 |
550-1100 |
12 |
- |
115 |
- |
- |
|
НМ-800 |
1480 |
- |
120 |
450-900 |
18 |
- |
135 |
- |
- |
|
Фирма "Атлас Копко" (Швеция) |
||||||||||
ТЕХ-1000Н |
110 |
- |
15-35 |
480-1260 |
10-15 |
- |
45 |
25-500 |
5-8 |
|
ТЕХ-200Н |
215 |
- |
25-70 |
300-900 |
10-15 |
- |
65 |
300-1200 |
14-39 |
|
ТЕХ-250Н |
275 |
- |
25-70 |
300-900 |
10-15 |
- |
65 |
300-1200 |
14-39 |
|
ТЕХ-250 HS |
290 |
- |
70 |
900 |
10 |
- |
65 |
300-120 |
14-39 |
|
Рис.1. Гидравлический молот НМ 900
Рис.2. Гидравлический молот ТЕХ 200 Н
Стоит обратить внимание, что для разрезки бетонных полос в фирмах "Кристенсен", США, "Макс Рот", ФРГ, использовались машины для распиливания бетона. На рис. 3 показана одна из таких машин. Однако в целом они не нашли комплексного применения для полной утилизации бетона и железобетона.
Рис. 3 Машина СК ЗОЕ с электроприводом для резания бетона и железобетона фирмы "Кристенсен" (США)
Давление сжатого воздуха Мпа - 0,7
Частота вращения двигателя, о6с - 27
Максимальный диаметр алмазного круга, мм - 900
Максимальная глубина резания, мм - 380
Диаметр рабочего вала, мм - 35
Габариты, мм:
Длина - 530
Ширина - 450
Высота - 700
Масса, кг - 42
Длина направляющих, мм - 1200 и 600
Расход охлаждающей жидкости, л - 1500
При разработке отечественного оборудования для дробления бетона был выбран способ давления с помощью рычажного пресса. Преимущества такой схемы по величине давления разрушения представлены на рис. 4. Величина давления по сравнению с ударной нагрузкой примерно в 2 раза меньше.
Рис. 4. Зависимость между напряжением s и деформацией е при различных скоростях нагружения: I, II, III, IV - возрастающие значения скоростей деформирования.
А как следует из схемы разрушения, показанной на рис. 5, происходит довольно равномерное отделение бетона от арматуры вследствие медленного (ползучего) разрушения контактной зоны между арматурой и бетоном [5].
Рис.5. Схема загружения бетонных и железобетонных изделий при разрушении: а, в - схемы положения нагрузок; б, г - схемы разрушения бетона и железобетона.
По такому принципу были запроектированы установки по первичному дроблению бетона, как для плоских изделий, так и для колонн и ригелей. В таблице 3 представлены основные технические характеристики установок для дробления некондиционных или отслуживших свой срок разрушенных железобетонных изделий.
Таблица 3
Техническая характеристика установок первичного дробления некондиционного бетона
Показатель |
С передвижным гидравлическим составом |
Со стационарным гидравлическим прессом |
||||
УПН 24-3,5-0,6 |
УПН 12-3,5-0,6 |
УПН 10-2-0,6 |
УПН 7(12)-3-0,6 |
|||
Производительность, м3/ч, при переработке: |
||||||
Бетонных отходов |
10 |
10 |
8 |
8 |
||
Фракция дробленого материала, мм |
0-250 |
0-250 |
0-250 |
0-250 |
||
Установленная мощность, кВт, при разрушающем усилии пресса 2000 кН |
87,5 |
87 |
79,5 |
79,5 |
||
Габариты установки, м |
||||||
Длина |
32,4 |
24,5 |
25.3 |
20,7 |
||
Высота |
6,2 |
6,2 |
4,1 |
4,1 |
||
Масса установки, т |
141,5 |
100 |
71,5 |
|
||
В т.ч. масса обслуживающих площадок и металлоконструкций |
25 |
20 |
15 |
12 |
||
На рис. 6 представлена одна из отечественных установок на комбинате КЖБК-2 (бывшего московского главка "Главмоспромстройматериалов").
Рис. 6. Установка первичного дробления УПН 12-3,5-1,5 на заводе ЖБИ-7 Главмоспромстройматериалов.
Технологическая линия по производству фракционированного вторичного заполнителя может быть мобильной и быть гибко вписана в любом межцелевом промежутке завода железобетонных изделий (рис.7).
Исследования последних лет, выполненные в НИИЖБе, МХТИ им. Д. И. Менделеева и МолдНИИстройпроекте, показали, что производство щебня из бетонолома - не самый эффективный способ использования вторичного бетона. Возможна плановая регенерация растворной части или в целом керамзитобетонов, суть которой - в тепловом ограниченном воздействии и создании CAO SiO2 на основе раздробленных фракций бетонолома диаметром 50-70 мм.
В качестве объектов исследования были выбраны следующие материалы:
бетонолом из керамзитобетона классов В5; В10; В30;
бетонолом из карамзитобетона класса В22,5.
Оптимизация режимов обжига бетонолома класса В5 и удельной поверхности вяжущего на его основе осуществлялась при температурах 500, 650, 800°С с интервалами по времени от 30 до 90 минут. Результаты оптимизации температуры обжига бетонолома и удельной поверхности вяжущего на его основе приведены в табл.4. В таблице 4 представлены основные результаты для температур обжига 500, 650 и 800°С.
Таблица 4
Пределы прочности растворов при сжатии и изгибе на вяжущих, полученных из бетонолома класса В5 при различных режимах обжига и удельной поверхности вяжущего
Температура обжига в градусах Цельсия |
Время обжига, мин. |
Удельная поверхность, S, см2/г |
Кол-во Воды мл |
Расплыв конуса, мм |
Прочность растворa R, МПа |
||
изгибе |
сжатии |
||||||
500 |
60 |
3922 |
235 |
110 |
1,34 |
3,79 |
|
500 |
60 |
6066 |
232 |
110 |
2,04 |
5,94 |
|
500 |
60 |
8009 |
226 |
109 |
2,39 |
7,42 |
|
650 |
90 |
4100 |
235 |
107 |
1,84 |
6,4 |
|
650 |
90 |
6000 |
232 |
109 |
2,09 |
8,34 |
|
650 |
90 |
8035 |
218 |
109 |
2,41 |
10,03 |
|
650 |
60 |
4080 |
230 |
108 |
2,09 |
5,72 |
|
650 |
60 |
6010 |
236 |
107 |
2,32 |
8,2 |
|
650 |
60 |
8144 |
226 |
108 |
2,46 |
11,3 |
|
650 |
30 |
4000 |
233 |
109 |
1,96 |
7.31 |
|
650 |
30 |
6100 |
233 |
109 |
2,05 |
7,43 |
|
650 |
30 |
8020 |
229 |
109 |
! |
Как писать рефераты Практические рекомендации по написанию студенческих рефератов. |
! | План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом. |
! | Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач. |
! | Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты. |
! | Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ. |
→ | Виды рефератов Какими бывают рефераты по своему назначению и структуре. |