Реферат по предмету "Медицина"


Диагностика слуха

--PAGE_BREAK--

Рисунок 1. Вид окна «Картотека». Щелкните на картинке для увеличения
Окно «Картотека» (рис. 1) служит для создания карточки нового пациента, изменения данных в имеющейся карточке, удаления данной карточки из картотеки и перехода для работы в окно «Обследование».

В окне «Обследование» производится просмотр аудиограмм, составление заключения, запись и вывод на печать результатов текущего обследования, а также просмотр и вывод на печать результатов любого из записанных раннее обследований.

Подключение компьютера к аудиометру производится с помощью устройства интерфейсного.

Требования к компьютеру:

операционная система Windows 98/2000/XP

наличие свободного СОМ-порта

разрешение экрана монитора 800х600 или 1024х768

Комплект поставки

Аудиометр

Телефон аудиометрический ТА-01

Вибратор аудиометрический ВА-01

Кнопка пациента

Шнур сетевой

Руководство по эксплуатации

Бланк аудиограммы

Дополнительное оборудование

Термопринтер, в том числе:

термопринтер DPU-414

сетевой адаптер

устройство интерфейсное АА-02

кабель

термобумага

руководство пользователя

Комплект для работы с компьютером, в том числе:

дискета с программой АА-02

устройство интерфейсное АА-02

кабель

руководство пользователя

ВОЗМОЖНОСТИ ДИАГНОСТИКИ

Aудиологическая лаборатория проводит самые современные исследования слуховой функции с использованием двух- и многокомпонентной тимпанометрии (исследование функции барабанной перепонки), аудиометрии в расширенном диапазоне частот, УЗВ и другие сложные объективные методы исследования слуха больного.

Проводится транскраниальная импульсная биполярная электростимуляция головного мозга — воздействие на головной мозг и внутричерепные нервы сквозь кости черепа электроимпульсами (один из методов лечения снижения слуха). Все методы исследования направлены на раннюю диагностику нарушений слуха и возможную их коррекцию.

Вестибулологическая лаборатория, исследующая состояние органа равновесия, оснащена оборудованием для проведения комплексного вестибулологического исследования, т.е. исследования функции равновесия. С помощью этих исследований проводится диагностика ранних вестибулярных поражений и их уровня, а также разрабатываются комплексы реабилитационных мероприятий.

В микроэндоскопической лаборатории проводятся различные эндоскопические вмешательства при заболеваниях носа и околоносовых пазух, а также на слезно-носовых путях. Кроме того, изучаются этиологические и патологические иммунологические механизмы формирования различных заболеваний ЛОР-органов и их осложнений (хронический тонзиллит, фурункул носа, синуситы, ото- и риногенные внутричерепные осложнения). [4]

Оптимальный алгоритм диагностики нарушений слуха в лечебно-профилактических учреждениях

Клиническая аудиология в настоящее время располагает большим фактическим материалом по дифференциально диагностическим методам исследования слуховой функции. Не касаясь систематизации накопленных фактов, нам представляется целесообразным охарактеризовать диагностическую информативность того или иного аудиометрического теста, наиболее часто используемого в лечебно-диагностических учреждениях г.Москвы. Как известно, начальным звеном любого диагностического исследования является стандартная тональная пороговая аудиометрия, в диапазоне частот 125-8000 Гц. Аудиометрия должна проводиться на калиброванном аудиометре. Учитывая субъективный характер исследования, тональную пороговую аудиометрию целесообразно перепроверять камертональными тестами. Не загружая больного, с этой целью достаточно проведение двух камертональных тестов-это опыт Федеричи и опыт Вебера.

При этом не следует забывать, что положительным опыт Федеричи выпадает при нейросенсорной тугоухости и отрицательным – при кондуктивной тугоухости с костно-воздушным интервалом, превышающим 20 дБ. Латерализация звука в опыте Вебера при кондуктивной тугоухости будет происходить в хужеслышащее ухо, а при нейросенсорной тугоухости – в лучшеслышащее ухо.

Таким образом, уже тональная пороговая аудиометрия и камертональные опыты позволяют определить характер тугоухости: кондуктивная, смешанная или кохлеарная.

При возрастной инволюции слуха и при развитии нейросенсорной тугоухости в первую очередь страдает высокочастотный диапазон (8-20 кГц), поэтому для раннего выявления слуховых нарушений оправдано применение аудиометрии в расширенном диапазоне частот. Такие исследования проводятся только по воздушному звукопроведению, т.к. костные вибраторы коммерческих аудиометров, ввозимых в нашу страну, ограничены частотным диапазоном до 8 кГц. Однако не следует забывать, что впервые исследование слуховой чувствительности в расширенном диапазоне частот по костному звукопровеению было осуществлено Б.М. Сагаловичем и О.И. Симбирцевой в лаборатории патофизиологии и акустики МНИИ уха, горла и носа МЗ РФ. Диагностическая ценность этих методов подтверждена многочисленными исследованиями. Для определения топики слуховых нарушений необходимо опредление слуховой чувствительности к ультразвуку по методу Б.М. Сагаловича. Метод позволяет дифференцировать истинную нейросенсорную тугоухость и вторичную (псевдонейросенсорную), различные виды кондуктивной тугоухости, а также гидропс лабиринта.

Из надпороговых исследований наиболее информативным является метод определения порогов слухового дискомфорта и речевая аудиометрия с определеним порога недифференцированной речи, 50% разборчивости речи,100% разборчивости речи и разборчивости речи при максимальном звучании речевого сигнала с целью выявления скрытого ФУНГа. Методы, обеспечивают дифференциальную диагностику кохлеарных, ретрокохлеарных и кондуктивных нарушений. Включение объективных методов исследования слуховой функции в диагностический алгоритм должно обосновываться конкретными задачами. Для раннего выявления слуховой недостаточности у новорожденных – регистрация вызванной отоакустической эмиссии и слуховых вызванных потенциалов. Для раннего выявления кондуктивной тугоухости различного генеза – акустическая импедансометрия и т.д.

Итак, многолетний опыт работы, позволяет нам очертить диагностический алгоритм, необходимый для адекватной диагностики слуховых нарушений. Это пороговая аудиометрия, в стандартном и расширенном диапазоне частот, камертональные пробы Федеричи и Вебера., определение слуховой чувствительности к ультразвуку, а также регистрация порогов слухового дискомфорта, речевая аудиометрия. Включение объективных методов исследования в диагностический алгоритм должно осуществляться по строгим показаниям.

Описанный диагностический алгоритм слуховых нарушений может проводиться как в стационарных, так и в амбулаторных условиях г.Москвы с учетом достаточного технического оснащения лечебно-диагностических учреждений.

Возможности доклинической диагностики поражения органа слуха на основе регистрации вызванной отоакустической эмиссии.

Особое место в диагностике состояния слухового анализатора в настоящее время занимают объективные методы исследования слуха, новейшим и перспективным из которых является регистрация и анализ вызванной отоакустической эмиссии, феномен которой открыт Д.Кемпом в 1978 г. Ранее существовавшие объективные методы не позволяли непосредственно судить о функциональном состоянии наружных волосковых клеток и гидромеханике улитки, и только регистрация отоакустической эмиссии дает возможность прицельного изучения этих важнейших аспектов, так как основная роль в ее генерации принадлежит электромеханической активности наружных волосковых клеток.

В клинической практике используют, в основном, различные классы вызванной отоакустической эмиссии, в частности, задержанную вызванную отоакустическую эмиссию (ЗВОАЭ), которая представляет собой акустический сигнал, излучаемый, в основном на 8-12 мс после включения акустической стимуляции и продолжающийся 10-30 мс. Однако, вопрос о критериях оценки и даже выявляемости ЗВОАЭ до настоящего времени не получил окончательного разрешения. Было обследовано 58 нормально слышащих лиц в возрасте от 17 до 70 лет. Средняя суммарная амплитуда ЗВОАЭ составила 5,39?1,19 дБ уровня звукового давления (УЗД). Разброс абсолютных значений суммарной амплитуды ЗВОАЭ оказался весьма значительным: от 22,8 дБ УЗД до –10 дБ УЗД. Принимая во внимание в качестве общепринятого критерия достоверности наличия ЗВОАЭ значение суммарной амплитуды 3 дБ УЗД, общая выявляемость ЗВОАЭ составила 89,66% (по литературным данным — от 70 до 100%). С целью выявления возможных возрастных различий параметров ЗВОАЭ обследованные были разделены на две возрастные группы: от 17 до 49 лет (1-я группа — 35 человек) и от 50 до 70 лет (2-я группа – 23). Анализ данных регистрации ЗВОАЭ показал, что различие значений выявляемости и средней суммарной амплитуды между возрастными группами статистически недостоверно (р?0,05). Учитывая факт значительного межиндивидуального разброса абсолютных значений суммарной амплитуды вне зависимости от возраста, этот параметр вряд ли может рассматриваться в качестве критерия ЗВОАЭ. Сходные результаты получены при анализе параметров отдельных частотных компонентов ЗВОАЭ (0,5; 1,0; 2,0 и 4,0 кГц). Учитывая это обстоятельство, мы предприняли исследование влияния подавления феномена ЗВОАЭ в ответ на ипсилатеральную акустическую стимуляцию.

В качестве стимула использовался широкополосный щелчок, в качестве маскера – чистые тоны частотой от 0,5 до 4,0 кГц интенсивностью от 10 до 45 дБ нПС, предъявляемые как одномоментно со стимулом, так и предшествующие ему с интервалом 3 мс. Полученные результаты использовали для построения настроечных кривых (НК) изосуппрессии. В результате анализа усредненных НК суммарной амплитуды и амплитуды отдельных частотных компонентов ЗВОАЭ выявлены их характерные особенности для каждой возрастной группы. Обнаружены существенные отличия показателей предшествующей маскировки по сравнению с одновременной и в каждом случае – между возрастными группами. Они касались интенсивности маскирующих тонов, необходимых для достижения 50%-ной суппрессии ЗВОАЭ, ширины НК, соответствия пиков НК определенным частотам маскирующих тонов.

В тех наблюдениях, когда профиль НК изосуппрессии не соответствовал возрастной группе (сужен частотный диапазон НК, пики НК смещены в низкочастотную часть спектра маскирующих тонов, увеличена интенсивность маскирующих тонов, необходимых для достижения 50%-ной суппрессии амплитуды ЗВОАЭ) или тест ЗВОАЭ был недостоверен при наличиии аудиометрических кривых, соответствующих возрастной норме, можно думать о возможной доклинической форме сенсоневральной тугоухости.

Как измерить остроту слуха?

Проблема

Дефекты слуха, возникающие из-за врожденных аномалий, болезней, преклонного возраста, — сущий бич для миллионов людей. Для многих из них единственным средством помощи остается слуховой аппарат — нехитрое электронное устройство, предназначенное для усиления звука. Но беда в том, что, усиливая громкость звука, слуховые аппараты не делают его более разборчивым: многие владельцы слуховых аппаратов жалуются, что слышат звук, но ничего не могут разобрать в той какофонии, которая слышится из наушника, не могут понять речь собеседника, выделить ее из фоновых шумов. И это вовсе не из-за плохого качества аппарата, а из-за принципиальной проблемы: слуховые усилители компенсируют потерю чувствительности слуха, но не потерю его разрешающей способности, т.е. способности различать звуки. А именно эта способность больше всего страдает при дефектах слуха.

Чтобы создавать приборы, которые могут не только усиливать звуки, но и обеспечивать сносную возможность их различения, нужна, помимо прочего, точная диагностика: измерение как чувствительности, так и разрешающей способности слуха пациента. Что касается чувствительности, то здесь нет проблем: аудиометр — прибор для тестирования чувствительности слуха — есть в любом приличном аудиологическом кабинете. С измерением же разрешающей способности дело обстоит куда хуже. До сих пор основным методом оценки этого свойства слуха остается так называемая речевая аудиометрия. Всякий, кто бывал на обследовании у отоларинголога, знает, что это такое. Врач шепчет какие-то слова и просит пациента повторить их. Может пациент повторять слова — слух хорош, не может — плох. Достоинство такой процедуры — ее простота, но больше ничего хорошего в ней, пожалуй, нет. Ведь успешность повторения слов зависит не только от остроты слуха пациента, но и от дикции врача, используемых слов (одни звуки распознаются легче, другие — труднее), знакомства пациента с набором слов (можно угадать слово по его части) и множества других причин, к слуху никак не относящихся. Конечно, можно использовать записанные на магнитофон стандартные наборы слов, произносимых профессиональными дикторами, с выверенной громкостью. Но все это — полумеры. Ведь такой способ в принципе не дает оценку разрешающей способности слуха в строгих физических единицах.

Между тем для современной физиологии вовсе не секрет, чем обусловлена разрешающая способность слуха. Орган слуха начинает анализ звуков с того, что разлагает их на составляющие частоты. Чувствительные слуховые клетки настроены каждая на свою частоту: если сигнал содержит некоторую частоту звуковых колебаний, то откликается соответствующая группа клеток. Чем острее частотная настройка, тем тоньше, детальнее анализ. При многих дефектах слуха острота частотной настройки падает, из-за этого и снижается способность отличать одну частоту от другой, один звук от другого, сигнал от шума.

Все это известно. И есть способы измерения остроты частотной настройки слуха. Большинство из них основано на эффекте маскировки, суть которого проста. При одновременном включении двух звуковых сигналов — тихого и громкого — тихий звук (тест) будет заглушен, замаскирован громким (маскером). Но эффективность маскировки зависит от соотношения частот маскера и теста. Если эти частоты близки, то маскировка происходит даже при не очень большой громкости маскера, потому что и маскер, и тест воздействуют на одни и те же чувствительные клетки. Когда частоты различны, маскировка слабее, и чтобы заглушить тест, нужен намного более громкий маскер. Если показать на графике, как эффективность маскировки зависит от частоты, то получится V- образная кривая (рис.1); она-то и показывает остроту частотной настройки: чем кривая уже, тем настройка острее. А для полноты картины нужно построить много таких кривых, используя разные тестовые частоты. Вообще-то в современных исследованиях используются разные, в том числе весьма изощренные, сигналы со сложным частотным составом, но основной принцип метода именно таков. Если же известно, как измерить остроту частотной настройки слуха, то почему это не применяется на практике? Видимо, вследствие громоздкости метода. Измерения такого рода называют многоточечными, потому что для получения одного значения остроты частотной настройки нужно выполнить много измерений, чтобы по полученным точкам провести кривую, как на рис.1, и оценить ширину этой кривой. А ведь каждая точка кривой тоже добывается в результате многих проб, в которых испытывают маскеры разной громкости. И кривых таких нужно получить не одну, а несколько (на разных тестовых частотах). В результате объем измерений растет, как снежный ком. Для исследовательских целей, когда можно многократно работать с постоянными испытуемыми, постепенно накапливая необходимый объем данных, это приемлемо. Но в практических условиях затевать такую канитель, чтобы обследовать слух у пациента, — мало реально.




 

Рис.1
Кривые, построенные по результатам измерения остроты частотной настройки слуха методом маскировки. На кривой (в центре) показано, с какой интенсивностью должен звучать маскирующий сигнал для того, чтобы заглушить тестовый на частоте 1 кГц (отмечен звездочкой). Ширина кривой на некотором стандартном уровне — показатель остроты частотной настройки (отмечен стрелками). Полное исследование предполагает построение еще нескольких таких кривых при других частотах тестовых сигналов.

К тому же острота частотной настройки — важный, но не единственный фактор, определяющий остроту слуха. Она не всегда позволяет предсказать, как будет восприниматься сигнал сложного частотного состава. Дело в том, что возможны сложные взаимодействия между нервными клетками: отклик каждой из них на звуковой сигнал зависит не только от ее собственных свойств, но и от того, что происходит в соседних клетках. Ситуация в целом получается трудно предсказуемой.

Идея

А что если не вырисовывать отдельные кривые частотной настройки и не пытаться по ним предсказать результат анализа сложных звуков, а попробовать сразу получить конечный результат: тестировать слух сложными сигналами и измерять способность к их различению? За аналогией далеко ходить не нужно: достаточно из кабинета врача- отоларинголога перейти в кабинет окулиста. Там оценка остроты, т.е. разрешающей способности, зрения — первейшая процедура. При этом измеряется именно способность различать реальные изображения. Можно ли опыт, накопленный в физиологии зрения, использовать для диагностики слуха? Можно, несмотря на множество принципиальных различий между зрительной и слуховой системами. Эта идея и легла в основу нашей работы.

Как измеряют остроту зрения? Самый строгий способ — тестировать зрение с помощью изображений-решеток, которые состоят из чередующихся светлых и темных полос (рис.2). Испытуемому показывают решетки с разной частотой полос. Если частота решетки невелика, то испытуемый видит, что это полосатый рисунок, а не ровный фон. Если же частота выше некоторого предела, полосы становятся неразличимыми, сливаются в ровный серый фон. Максимальная частота полос, при которой еще различается решетчатый рисунок, — строгая мера остроты зрения. Ответ получается в точных физических единицах: количестве циклов решетки на градус угла поля зрения.


Рис.2 Изображения-«решетки», используемые для тестирования остроты зрения.
На левой паре «решеток» полосы расположены редко, поэтому замена одной «решетки» на другую хорошо заметна. Средняя пара — «решетки» с высокой частотой полос; если смотреть с большого расстояния, то полосы сольются в серый фон, и подмена останется незамеченной. На «решетках» правой пары полосы, хотя и расположены с низкой частотой, мало контрастны; если контраст еще понизить, то смена одной «решетки» на другую тоже будет не заметна. Цель этих измерений состоит в том, чтобы найти пороговый контраст для тест-объектов с разной частотой полос, а также предельную различимую частоту «решетки» и тем самым получить полный и точный показатель разрешающей способности зрения.

Но как установить, какую частоту решетки испытуемый различает, а какую — нет? Простейший способ — придать рисунку из темных и светлых полос вид узнаваемой фигуры, например буквы: если пациент сумеет правильно назвать букву, значит различает рисунок. Но такое упрощение идет в ущерб точности: в букве или картинке расстояние между полосами не может быть везде одинаковым, как в простой решетке. Есть, однако, изящный прием, позволяющий точно сказать, различает ли испытуемый решетчатый рисунок. Это проба на инверсию фазы решетки. Испытуемому показывают решетку определенной частоты, и в некоторый момент светлые и темные полосы этой решетки меняются местами (рис.2). Если рисунок решетки различим, то испытуемый увидит, что что-то сдвинулось, изменилось на экране. Если же полосы не различимы, то испытуемый в этот момент не заметит ничего: ведь за исключением положения полос, решетки до и после замены абсолютно одинаковы, так что серый фон, в который слились полоски, каким был, таким и останется. Итак: предельная частота решетки, при которой можно заметить инверсию ее фазы, — точная мера остроты зрения.

Этот же прием позволяет измерить и другой важнейший показатель — контрастную чувствительность. Можно менять не частоту полос решетки, а контрастность рисунка. Минимальный (пороговый) контраст, при котором различима инверсия фазы решетки, укажет, какова контрастная чувствительность. А чтобы провести измерение во всей полноте, можно варьировать и контраст, и частоту решетки. Зависимость порогового контраста от частоты решетки (частотно-контрастная кривая) — полный и точный показатель разрешающей способности зрения.

Можно ли так же просто и строго, используя тот же оправдавший себя прием, измерять разрешающую способность слуха? Попробуем сделать это. Для начала разберемся, какие сигналы играют для слуха ту же роль, что контрастные решетки для зрения.

Уже говорилось, что первейшая операция, выполняемая ухом, — разложение звука на составляющие его частоты. Рецепторная поверхность органа слуха (кортиев орган) устроена так, что разные ее точки откликаются на разные звуковые частоты, так что вдоль рецепторной поверхности представлена вся шкала звуковых частот: на одном конце — самые высокие частоты, на другом — самые низкие. Что же нужно сделать, чтобы на этой поверхности появилась «решетка» — чередующиеся участки возбужденных и невозбужденных клеток? Ответ очевиден: нужно воздействовать таким звуком, в частотном спектре которого представлены периодически чередующиеся пики и провалы (рис.3). А чтобы измерить разрешающую способность слуха, нужно менять расстояние между спектральными пиками, т.е. «плотность» спектральной решетки, и найти тот предел, при котором ухо еще способно различать, что спектр сигнала не сплошной, а «решетчатый». Если же хотим измерить еще и контрастную чувствительность, будем менять «контраст» спектральной решетки, т.е. высоту пиков и глубину провалов, и найдем тот порог, при котором «решетчатый» спектр отличим от равномерного (рис. 4).



Рис.3 Рецепторная поверхность органа слуха (кортиев орган) схематически представлена в виде полоски, вдоль которой распространяются звуковые волны (вверху).


Каждая точка (чувствительная слуховая клетка кортиева органа) реагирует на звук своей частоты, так что вся шкала звуковых частот (от 20 до 20 тыс. Гц) представлена вдоль полоски. Чтобы создать «решетку» из возбужденных и невозбужденных участков (темные и светлые участки), нужно воздействовать звуком, в частотном спектре которого есть пики и провалы на соответствующих частотах.


Рис.4 Спектры сигналов, используемые для измерения разрешающей способности слуха.
Верхняя пара — прямая и инверсная спектральные решетки с низкой плотностью и высоким контрастом пиков и провалов звукового сигнала. Если один сигнал заменить на другой, это хорошо слышно. Средняя пара — спектры с низким контрастом; в этом случае замену одного сигнала на другой уловить трудно. Внизу — спектры с высоким контрастом, но и с высокой плотностью пиков: пики сливаются в сплошной спектр, поэтому замену одного сигнала другим тоже трудно услышать.

Тут нужно небольшое пояснение: применительно к спектральным решеткам мы использовали термин «плотность», тогда как для зрительных решеток мы говорили об их частоте. По сути это совершенно одно и то же, но дело в том, что применительно к звуку термин «частота» используется для обозначения частоты звуковых волн. Чтобы избежать путаницы, условимся для спектральных решеток использовать термин «плотность», считая, что эта величина тем выше, чем меньше частотный интервал между пиками (пики расположены плотнее).

Но как узнать, различает ухо «решетчатый» рисунок спектра или нет? Да точно так же, как и для зрения: используя тест инверсии фазы решетки (рис.4). Включим звуковой сигнал, имеющий «решетчатый» спектр. (Кстати, все сигналы с более или менее широким частотным спектром воспринимаются как шумы различного тембра; так же звучит и наш сигнал.) Затем неожиданно заменим его на другой — тоже «решетчатый», с той же шириной спектра, той же громкости, но с противоположным положением спектральных пиков и провалов на частотной шкале. Он тоже звучит как шум, но с чуть другим тембром. Услышал испытуемый, что в звуке что-то изменилось, — значит, смог различить спектральную структуру сигнала. Если же плотность пиков настолько велика, что они сливаются для него в сплошной спектр, или контраст решетки слишком мал — испытуемый не уловит никакого изменения: ведь за исключением положения спектральных пиков на частотной шкале, сигналы до и после переключения абсолютно идентичны.

Итак, показатели разрешающей способности слуха — та максимальная плотность спектральной «решетки» и тот минимальный ее контраст, при которых улавливается инверсия фазы этой «решетки».

Чем привлекателен такой способ измерения остроты слуха? Во-первых, в отличие от речевой аудиометрии, это строгий аппаратурный метод, и результат он дает в точных физических единицах: плотность спектральных пиков выражается в их количестве на 1кГц или как отношение частоты к интервалу между пиками, а контраст решетки — в процентах отклонения ее пиков и провалов от среднего уровня.

Во-вторых, для тестирования используются сигналы со сложным спектральным составом (т.е. сходные с естественными звуками), поэтому результат отражает реальную разрешающую способность слуха.

В-третьих, это одноточечный метод: чтобы получить одно значение разрешающей способности, достаточно найти лишь один порог восприятия изменения спектральной «решетки», а не много порогов маскировки.

В-четвертых, процедура измерения предельно проста для испытуемого. От него не требуется как-то оценивать характер слышимых звуков, надо лишь ответить на простой и понятный вопрос: заметил ли он хоть какие-то изменения в предъявляемых сигналах? Несомненно, этот достаточно простой и быстрый метод захотелось сразу использовать в практических целях для индивидуальной диагностики. Однако предстояло еще во многом разобраться.

Результат

Основная идея метода была опубликована еще в 1984 г., но, чтобы довести ее «до ума», надо было сделать многое: разработать методы синтеза звуковых сигналов, которые имели бы именно такие частотные спектры, какие нужны для нашей задачи; испробовать разные варианты сигналов, чтобы установить, какие из них наиболее пригодны для тестирования; выяснить, могут ли быть в сигналах посторонние «подсказки», которые исказят результаты измерения; наконец, установить, какова же на самом деле разрешающая способность человеческого слуха в норме. И главное — понять, какие физиологические механизмы определяют разрешающую способность слуха: только ли острота частотной настройки слуховых фильтров или более сложные процессы. Ведь пытаться создать метод диагностики без понимания фундаментальных основ тестируемых процессов — дело бесперспективное.

Все это стало возможным в течение последних лет благодаря выполнению проектов, поддержанных РФФИ. Наконец, впервые были получены данные о частотной разрешающей способности слуха. Если обратиться к результатам, их можно свести к нескольким простым графикам, но именно они характеризуют разрешающую способность нормального слуха. Один из них (рис.5) служит иллюстрацией того, как способность различать контраст между высотой пиков и глубиной провалов зависит от плотности пиков на частотной шкале, т.е. их числа в интервале частот 1 кГц. Если плотность спектральных пиков невелика, человек на слух способен различить спектральный рисунок с отклонениями по громкости от среднего уровня не менее 15-20%; менее контрастные спектральные рисунки слуху недоступны. Но и этот 15-20%-й порог доступен только при низкой плотности спектральной решетки — не более 10 пиков на 1 кГц интервала. По мере того как плотность решетки увеличивается, контрастный порог растет. Например, при плотности решетки 15 пиков на 1кГц спектральный рисунок будет различим только при контрасте перепадов высоты пиков не меньше 50%. А если плотность решетки увеличить до 20-25 пиков на 1кГц, то спектральный рисунок даже при 100%-м контрасте едва-едва различим. Дальше увеличивать контраст некуда; стало быть, 20-25 пиков на 1кГц — это предел частотной разрешающей способности слуха нормального человека. Более дробный спектральный рисунок не различается ни при каких иных параметрах сигнала: все сливается в сплошной, равномерный спектр.
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.