Реферат по предмету "Медицина"


Антитіла молока і сироватки крові людини характеристика каталітичної активності та вплив на ріст

--PAGE_BREAK--Публікації. За темою дисертації опубліковано 38 наукових робіт, із них 25 статей у фахових вітчизняних і міжнародних журналах, 1 огляд та тези 12 доповідей на наукових конференціях.
Зміст та обсяг роботи. Дисертація включає вступ, огляд літератури, матеріали і методи, результати власних досліджень, що складаються із 9 розділів, аналіз та узагальнення результатів досліджень, висновки, список використаної літератури, який нараховує 300 найменувань. Текст дисертації викладено на 290 сторінках машинописного тексту і проілюстровано 118 рисунками і 5 таблицями.
ОСНОВНИЙ ЗМІСТ РОБОТИ Матеріали і методи дослідженя. Отримання електрофоретично гомогенних препаратів антитіл є однією із найбільш важливих умов дослідження їхньої функціональної активності. У першу чергу, це стосується каталітично активних антитіл, які володіють аналогічною із ензимами каталітичною активністю. Виділення та очистка абзимів є досить складним завданням. Це зумовлено сукупністю факторів. Відомо, що сумарні препарати імуноглобулінів є поліклональними, складаються із різноманітних за ізотипом антитіл, які мають спорідненість до великої кількості різноманітних антигенів, серед яких є й ензими. Останні можуть знаходитися у комплексі із антитілами, що може бути причиною артефактів при дослідженні їхньої каталітичної активності. Тому на перших стадіях очистки ауто-АТ необхідно відділити антитіла від різноманітних антигенів, у першу чергу від білків. Наступним кроком повинно бути виділення фракції антитіл, яка володіє спорідненістю до антигену – потенційного субстрату каталітичної реакції.
На рис.1 наведено узагальнену схему очистки ауто-АТ із сироватки крові та молока людини, яка дозволяє отримати препарати антитіл із заданою антигенною специфічністю, збагачені каталітично активними антитілами.
На першій стадії очистки імуноглобуліни осаджували 50% сульфатом амонію. Це дозволяє відділити фракцію імуноглобулінів від основної маси білків сироватки крові чи молока. Наступна стадія включає афінну хроматографію на колонці, яка містить протеїн A — або протеїн G — агарозу (або сефарозу). Для видалення домішок колонки промивали розчинами із підвищеною концентрацією NaCl (0,3–0,5 М) у присутності неіонних детергентів (NP-40, тритон Х-100). Елюцію імуноглобулінів із колонки проводили буфером із низьким значенням рН (1 M оцтова кислота або 0,1 М гліцин-HCl, рН 2,6). Використання цих сорбентів дозволяє уже на перших стадіях очистки отримати препарати, які на 90-95% складаються із імуноглобулінів. Для подальшої очистки антитіл або їхнього розділення на субкласи (наприклад, sIgA та IgG молозива) використовували іонообмінну хроматографію або напівпрепаративну гель-фільтрацію (Невинский та ін., 2000). Препарати антитіл, очищені таким методом, є електрофоретично гомогенними (рис.1А, Б) і придатні для виділення антитіл зі спорідненістю до певних антигенів чи субстратів каталітичної реакції.
Отримані препарати імуноглобулінів у подальшому слугували для виділення моноспецифічних поліклональних антитіл із сироватки крові і молока людини афінною хроматографією на колонках, які містять сорбенти із ковалентно зв’язаними лігандами. Сорбентами слугували: АТР-сефароза, ДНК-целюлоза, гістон Н1-сефароза. Залежно від спорідненості до сорбентів, антитіла елюювали градієнтом концентрації 0–1 М NaCl (анти-АТР IgG сироватки крові хворих на системний червоний вовчак), 3,5 M MgCl2 (анти-АТР sIgA молозива породіль), 50 мМ NaOH (анти-ДНК sIgA молозива породіль), 0,1 М гліцин-HCl, рН 2,6 (антигістонові АТ субкласів IgG та sIgA сироватки крові хворих на розсіяний склероз і молозива породіль).
Визначення протеїнкіназної активності. Для аналізу протеїнкіназної активності АТ і rsCD4 донором фосфату був [g-32P] ATP (5000 Ki/ммоль, “Изотоп”, Російська Федерація). Реакційне середовище містило 0,3 – 3 мкг білка,20 мМ трис-HCl, рН 7,4, 5-10 мМ MgCl2, 25 мкКі [g-32P] ATP. У деяких випадках, у реакційне середовище додатково додавали АТР, казеїн коров’ячого або людського молока. Реакцію фосфорилювання проводили впродовж 30 хв при 37 °С і зупиняли додаванням денатуруючого розчину (65 мМ трис-HCl, рН 6,8, 1% Ds-Na, 2% 2-меркаптоетанол, 10% гліцерин) або 10% ТХО. Білки розділяли електрофорезом у 12% ПААГ, або у градієнті 6-16,5% ПААГ у присутності 0,1% DS-Na. Гелі фарбували Coomassie R-250, висушували і піддавали авторадіографії протягом 20 год.
Визначення ліпідкіназної активності. Для аналізу використовували препарати IgG і sIgA різного ступеня очистки. Реакцію фосфорилювання проводили у середовищі, яке містило 20 мM трис-HCl, pH 7,5, 3 мМ MgCl2 і 20 мкКі [SYMBOL 103 \f «Symbol» \s 12g-32P] ATP.32Р-мічені ліпіди екстрагували розчином хлороформ: метанол (2: 1) і розділяли на пластині Kieselgel 60 у системі хлороформ: метанол: 7М NH40H (60: 35: 5). Пластину висушивали і піддавали авторадіографії.
Визначення нуклеазної активності. Нуклеазну активність імуноглобулінів визначали згідно раніше описаної методики (Shuster et al., 1992). Як субстрат використовували надспіралізовану та лінійну форми плазмідної ДНК, тотальну РНК E. coli або рибосомну РНК клітин аденокарциноми людини лінії A549. Для аналізу зразки, які містили 1-5 мкг білка, інкубували із 3-5 мкг нуклеїнових кислот у 20 мМ трис-HCl, 75 мМ NaCl, 10 мМ MgCl2 протягом 1 год при 37 °С. Ефекторами реакції слугували 0,1-3 мМ АТР або 1 мМ GTP, СТР, TTP, dATP, dGTP, dCTP, dTTP. Продукти реакції розділяли електрофорезом у 1% агарозі у трис-борат-ЕДТА буфері, рН 8,3 у присутності 0,001% бромистого етидію. Гель фотографували при ультрафіолетовому освітленні.
Визначення протеазної активності. Для аналізу протеазної активності АТ субстратами слугували гістони тимусу теляти і цитохром С („Fermentas”, Литовська Республіка). Реакцію гідролізу проводили у буфері, який містив 20 мМ трис-HCl, pH 7,5 у присутності 3 мг/мл білка і 0,05 – 0,3 мг/мл АТ упродовж 1-3 год при 37 °С. Реакцію зупиняли додаванням у реакційне середовище 4-кратного денатуруючого буферу (0,2 М трис-HCl, рН 6,8, 4% Ds-Na, 8% 2-меркаптоетанол, 40% гліцерин) і білки розділяли електрофорезом у 12% ПААГ у присутності 0,1% Ds-Na. Гелі фарбували Coomassie G-250.
Аналіз каталітичної активності АТ після розділення гель-фільтрацією за умов дисоціації імунних комплексів (рН-шок). Препарати АТ піддавали гель-фільтрації на колонці розміром 180 x 5 мм, яка містила Toyopearl TSK HW-55 („Toyo Soda”, Японія). Білки препаратів АТ попередньо осаджували 50% сульфатом амонію й осад розчиняли в 0,1 М гліцин-HCl, рН 2,6 або 50 мМ NaOH. Елюцію білків проводили цими ж розчинами. Хроматографічні фракції (300 мкл) збирали, нейтралізували і діалізували проти буферу, що містив 20 мМ трис-HCl, pH 7,5, 0,1 М NaCl протягом 18 год. Вміст білків аналізували електрофорезом у градієнті ПААГ (7 – 18,5%) у присутності 0,1% Ds-Na. Для аналізу каталітичної активності від хроматографічних фракцій відбирали аліквоти (30 мкл), додавали 6 мкг субстрату (плазмідна ДНК, гістон Н1) й інкубували 2 год при 37 °С. Продукти реакції розділяли електрофорезом залежно від природи субстрату.
Афінна модифікація білків реакційно здатними аналогами АТР і олігонуклеотидів. Для виявлення АТР — і ДНК-зв’язувальних ділянок на молекулах білків використовували реакційно здатні похідні АТР(ClR-Р-ppA) і [g-32P] ATP(ClR-32Р-ppA), а також 32Р-мічений 14-мірний дезоксириботимідилат (ClRCH2NHp(T) 14), які були синтезовані к. б. н. Якубовим Л.А. (Інститут хімічної біології і фундаментальної медицини, Новосибірськ, Російська Федерація). Реакційною групою слугувала алкілуюча сполука 4- [(N-2-хлоретил-N-метил) аміно] бензиламін, приєднана до 5'-кінцевої фосфатної групи олігонуклеотиду або g-фосфату [g-32P] ATP (рис.2).
Афінну модифікацію білків (sIgA, rsCD4) проводили у забуференому фізіологічному розчині (ЗФР: 0,14 М NaCl, 10 мМ NaН2РО4, рН 7,5) у присутності 10 мкМ алкілуючого реагенту протягом 45 хв при 37 °С. Конкурентами у реакції слугували: ДНК тимусу теляти, сумарна РНК E. coli і гепарин у концентрації 1 мг/мл або 30 мкМ d(T) 14. Після завершення інкубації до реакційного середовища додавали денатуруючий буфер (2% Ds-Na, 50 мМ трис-НCl, рН 6,8, 4% 2-меркаптоетанол, 20% гліцерин) і білки розділяли електрофорезом у 10% ПААГ у присутності 0,1% Ds-Na. Гелі висушували і проводили їхню авторадіографію.
Імуноензимний аналіз (ІЕА). ІЕА проводили згідно описаної нижче методики. Для сорбції антигенів у лунки 96-лункового планшету для імунологічних аналізів вносили 30 мкл розчину, який містив 2 мкг гістонів або дволанцюгову ДНК у 0,1 М K2CO3/KHCO3, pH 8,6, й інкубували протягом 18 год при 4 °С. Лунки промивали (3 рази) 200 мкл буферу А (1% БСА у ЗФР), додавали 15 мкг антитіл у 200 мкл буферу А й інкубували протягом 2 год при 37 °С. Лунки тричі промивали 200 мкл буферу А, додавали 50 мкл розчину кон’югату білок А – пероксидаза хрону («Sigma», США) у розведенні 1: 500 й інкубували протягом 1 год при 37 °С. Лунки планшету тричі промивали 200 мкл ЗФР у присутності 0,05% Twin-20 і фарбували розчином діамінобензидин/Н2О2 протягом 30 хв при 37 °С. Реакцію зупиняли 1 М ортофосфорною кислотою. Оптичну густину розчину визначали при довжині хвилі 492 нм на спектрофотометрі NanoDrop ND 1000 („NanoDrop Technologies”, США). Рівень ауто-АТ у лунках вираховували за величиною оптичного поглинання розчину забарвлених продуктів пероксидазної реакції. Визначення проводили у трьох паралельних дослідах.
Клітини та їхнє культивування. У роботі використовували клітинні лінії, одержані з колекції Інституту експериментальної патології, онкології та радіобіології НАН України: Jurkat – лейкемічні Т-лімфоцити периферичної крові людини, Namalwa – В-лімфоцити людини (лімфома Беркіта); L1210 – лейкемічні В-лімфоцити миші, L929 – трансформовані фібробласти миші. Клітини культивували у середовищі RPMI-1640 або DMEM („Sigma”, США) у присутності 10% сироватки крові ембріонів ВРХ („Sigma”, США) і 50 мкг/мл гентаміцину.
Аналіз цитотоксичної активності препаратів антитіл. Клітини інкубували із препаратами АТ (кінцева концентрація 0,7 мг/мл) протягом 24, 48 або 72 год. Фарбування клітин проводили 0,1% водним розчином трипанового синього. Кількість незабарвлених живих і забарвлених мертвих клітин підраховували у гемоцитометричній камері під світловим мікроскопом Биолам Р (ЛОМО, Російська Федерація). Індекс життєздатності (IЖ) визначали за формулою: IЖ = O/C x 100, де О – кількість живих клітин у культурі під впливом АТ, С – кількість живих клітин у культурі у відсутності АТ.
Аналіз субклітинної локалізації антигенів ауто-АТ. Клітини відмивали ЗФР від культурального середовища, готували цитологічні мазки, фіксували їх метанолом протягом 90 сек і висушували при кімнатній температурі. Після цього мазки інкубували з препаратами Ig (розведення 1: 75) при 4 °C протягом ночі. Після інкубації мазки промивали ЗФР двічі по 10 хв та інкубували із FITC-міченими IgG кози, специфічними до Н-ланцюгів IgA людини, або кон’югованими із пероксидазою хрону IgG кролика, специфічними до Н-ланцюгів IgG людини („Sigma”, США), у розведенні 1: 50 протягом 1,5 год при 37 °С. Мазки промивали ЗФР, фарбували флуоресцентним барвником DAPI (1 мкг/мл) протягом 1 хв, знову промивали ЗФР, дистильованою водою і фотографували під мікроскопом Микмед К-2-12 („ЛОМО”, Росія) при відповідних довжинах хвилі збудження та емісії для виявлення флуоресценції. У випадку, коли для детекції використовували кон’югати АТ із пероксидазою хрону, комплекси антиген-АТ фарбували розчином діамінобензидин/Н2О2 у присутності 100 мМ NiCl2 протягом 30 хв при 37 °С і виявляли мікроскопією у видимій області спектру.
Виділення фрагментованої ДНК та її електрофорез у гелі агарози. Клітини після культивування із препаратами АТ осаджували центрифугуванням при 2000 об/хв протягом 5 хв. До осаду клітин додавали 0,5 мл холодного ЗФР та фіксували, поступово додаючи до суспензії клітин 5 мл холодного розчину 70% етанолу. Клітини залишали на 12 год при — 20 °С (деякі зразки зберігали при даній температурі протягом 3-4 тижнів). Після цього клітини центрифугували при 2000 об/хв протягом 5 хв. Осад клітин (2-3 млн. клітин) ресуспендовували у 40 мкл фосфат-цитратного буферу, який містив 192 частини 0,2 М Na2HPO4 та 8 частин 0,1 М лимонної кислоти, рН 7,8, та залишали при кімнатній температурі на 30 хв. Після центрифугування при 3000 об/хв протягом 5 хв надосадову рідину переносили у свіжу пробірку типу Еппендорф та додавали 3 мкл 0,25% водного розчину NP-40 („Sigma”, США) та 2 мкл РНК-ази А (розчин 10 мг/мл у воді). Після 1-годинної інкубації при 37 °С до суспензії додавали 5 мкл протеїнази К („Merck”, Німеччина) (розчин 1 мг/мл у воді) та інкубували 1 год при 37 °С. Після інкубації до препарату ДНК додавали 12 мкл буферу, який містив 0,25% бромфенолового синього, 50 мМ трис-HCl, рН 7,5, 50% гліцерину і розділяли в 1% гелі агарози у присутності 0,005% етидію броміду при напрузі 4 В/см протягом 2 год. Фрагменти ДНК виявляли при ультрафіолетовому освітленні і фотографували цифровою камерою Nikon Coolpix 4200.
Мікроелектрофорез ДНК окремих клітин у гелі агарози (метод ДНК-комет). Аналіз здійснювали, як описано (Камінський та ін., 2005). Для формування гелю, предметні скельця покривали плівкою агарози шляхом нанесення 2 мл 1% тугоплавкої агарози („Serva”, Німеччина) і висушування у термостаті при 37 °С.40 мкл суспензії клітин вносили у пробірку типу Еппендорф і поміщали у водяну баню при 40 °С, змішували із 120 мкл розчину легкоплавкої агарози („Serva”, Німеччина) (кінцева концентрація агарози становила 0,75%), швидко наносили на теплі предметні скельця 150 мкл такої суміші і покривали теплим покривним скельцем. Після застигання агарози обережно знімали покривне скельце і вносили у лізувальний буфер (2% лаурил саркозинат, 0,5 М ЕДТА, рН 7,5, 0,3 мг/мл протеїнази К). Гелі інкубували при 4о С упродовж 1 год, а потім 20 год при 37 °С. Гелі витримували тричі по 20 хв у буфері ТБЕ (90 мМ трис, 90 мМ борної кислоти та 2 мМ ЕДТА, рН 8,5), після чого вносили в електрофоретичну камеру і заливали цим же буфером (2-3 мм буферу над скельцем). Електрофорез здійснювали при напрузі 0,6 В/см протягом 25 хв, причому електричне поле скеровували поперек предметного скельця. Після лужного електрофорезу препарати нейтралізували у 0,4 М трис-HCl, рН 7,5. Гелі висушували і фарбували водним розчином етидію броміду у концентрації 2 мкг/мл.
Комп’ютерний аналіз рівня гомології послідовностей амінокислот імуноглобулінів і рецептора СD4 та протеїнкіназ. Амінокислотну послідовність рецептора СD4 та Fc-фрагментів імуноглобулінів було отримано із бази даних Swiss-Prot. Для аналізу рівня гомології використовували банк генів протеїнкіназ KinBase та програми порівняння Kinom Blast Server (www. kinase. com). Аналіз доменної організації рецептора СD4 проводили, використовуючи базу даних SMART (smart. embl-heidelberg. de) та Pfam (pfam. wustl. edu). Пошук функціональних мотивів молекули СD4 здійснювали, застосовуючи базу даних Scansite та програму порівняння Motif Scan (scansite. mit. edu).
Статистична обробка отриманих результатів досліджень. Усі досліди повторювали 3-5 разів. У роботі наведено середні значення величин і стандартні похибки (M±m). Статистичний аналіз проводили, користуючись критерієм Ст’юдента (t). Вірогідними вважали дані у випадку, коли р≤0,05. Побудову графіків та статистичну обробку даних здійснювали за допомогою комп’ютерних програм Origin 4.0 та Excel 97.
РЕЗУЛЬТАТИ ДОСЛІДЖЕНЬ ТА ЇХ ОБГОВОРЕННЯ Вплив препаратів антитіл сироватки крові та молока людини на ріст і виживання Т-клітин лінії Jurkat. Аналіз впливу препаратів сумарних імуноглобулінів (Ig), отриманих із сироватки крові 22 хворих на розсіяний склероз (РС), і 25 зразків молозива клінічно здорових породіль, отриманих осадженням 50% cульфатом амонію, показав, що залежно від донорів, ці препарати можуть як пригнічувати, так і стимулювати ріст Т-клітин лінії Jurkat in vitro (рис.3). На відміну від Ig хворих на розсіяний склероз, препарати Ig, отримані із сироватки крові здорових донорів, у більшості випадків пригнічували ріст клітин in vitro. Рівень гальмування приросту Т-клітин лінії Jurkat під дією Ig здорових донорів був близьким до рівня гальмування приросту цих клітин під впливом Ig хворих на розсіяний склероз. При цьому жоден із 25 препаратів Ig здорових донорів не володів промітогенною активністю щодо Т-клітин лінії Jurkat. Співвідношення кількості живих і мертвих клітин у цьому досліді вказує на те, що деякі препарати Ig молозива породіль володіють цитотоксичною активністю щодо Т — клітин лінії Jurkat.
    продолжение
--PAGE_BREAK--Гель-електрофорезом індивідуальних клітин (аналіз ДНК-комет), а також електрофоретичним аналізом міжнуклеосомної фрагментації ядерної ДНК встановлено, що загибель Т-клітин лінії Jurkat під впливом цитотоксичних препаратів Ig молозива породіль відбувається шляхом апоптозу (рис.4).
Наступне дослідження показало, що подібно до Ig молозива породіль, окремі препарати Ig, очищені із сироватки крові хворих на розсіяний склероз і здорових донорів, також індукують апоптоз цих Т-клітин.
Отримані результати вказують на особливості впливу препаратів імуноглобулінів на ріст і виживання Т-клітин лінії Jurkat, що може відображати індивідуальний стан гуморального імунітету донорів. Відмінності у дії препаратів Ig щодо клітин можуть бути пов’язані із присутністю в їхньому складі ауто-АТ певної антигенної специфічності і каталітичної активності. Особливої уваги заслуговує той факт, що досліджені препарати сумарних АТ сироватки крові хворих на розсіяний склероз і АТ молозива пророділь володіли як цитотоксичною, так і промітогенною активністю щодо Т-клітин лінії Jurkat. Ці дані вказують на те, що у молозиві людини можуть бути присутні ауто-АТ, які за своєю антигенною специфічністю і біологічною активністю подібні до ауто-АТ сироватки крові хворих на аутоімунні захворювання.
Ауто-АТ молозива клінічно здорових породіль. Характерною ознакою аутоімунних порушень в організмі людини є поява високоспецифічних ауто-АТ до ядерних антигенів – дволанцюгової ДНК та гістонів. За допомогою ІЕА було проаналізовано 25 препаратів Ig молозива породіль на наявність у них анти-ДНК АТ та анти-гістонових АТ. Як позитивний контроль застосовували препарати IgG сироватки крові хворих на розсіяний склероз, а як негативний – препарати IgG сироватки крові здорових донорів. Встановлено, що вміст анти-ДНК АТ в усіх препаратах Ig молозива породіль, окрім препарату Ig № 4, суттєво не відрізнявся від вмісту анти-ДНК АТ у препаратах IgG, виділених із сироватки крові здорових донорів (рис.5). Вміст анти-ДНК АТ у препараті № 4 був достовірно вищим, ніж в інших препаратах АТ, хоча у цілому, він був нижчим, ніж у препаратах IgG, виділених із сироватки крові хворих на розсіяний склероз.
Анти-гістонові АТ було виявлено у складі 12-ти препаратів Ig молозива породіль (Рис.5). При цьому у 6-ти препаратах їхній рівень був близьким або перевищував рівень анти-гістонових АТ, виявлених у препаратах IgG сироватки крові хворих на розсіяний склероз. Найвищим вмістом анти-гістонових АТ характеризувався препарат № 4, де рівень анти-гістонових АТ у 2,5 рази перевищував їхній рівень у препаратах IgG сироватки крові хворих на розсіяний склероз.
Додатковим підтвердженням наявності ауто-АТ у молозиві породіль можуть слугувати дані аналізу субклітинної локалізації антигенів секреторних імуноглобулінів А (sIgA) у фіксованих препаратах клітин. За допомогою FITC-мічених АТ, специфічних до IgA людини, було виявлено, що препарати сумарних імуноглобулінів молока містять sIgA-антитіла зі спорідненістю до антигенів Т-клітин лінії Jurkat. На Рис.6 представлено узагальнені результати
аналізу, які вказують, що за спорідненістю до антигенів клітин і місцем їхньої локалізації sIgA-антитіла можна розділити на три типи: ауто-АТ із високою спорідненістю до ядерних антигенів (ряд 1), ауто-АТ із низькою спорідненістю до антигенів клітин (ряд 2) і ауто-АТ із високою спорідненістю до компонентів цитоплазми і плазматичної мембрани цих клітин (ряд 3).
У цілому, аналіз отриманих даних свідчить про те, що у молозиві клінічно здорових породіль, як і у сироватці крові хворих на деякі аутоімунні захворювання, можуть бути присутні ауто-АТ. Це дозволяє припустити, що у молозиві жінок-породіль, подібно до сироватки крові хворих на аутоімунні захворювання, можуть бути присутні ауто-АТ із цитотоксичною і промітогенною активністю щодо клітин ссавців. Для перевірки цього припущення із молозива породіль виділяли анти-ДНК sIgA і досліджували їхні функціональні властивості.
Характеристика функціональної активності анти-ДНК АТ молока породіль. Анти-ДНК sIgA виділяли хроматографією на ДНК-целюлозі (рис.7А) з електрофоретично гомогенних препаратів sIgA, очищених із молока клінічно здорових породіль афінною та іонобмінною хроматографіями, як вказано на схемі, представленій на рис.1. Наявність sIgA у фракції білків, очищених на
ДНК-целюлозі було підтверджено Ds-Na-eлектрофорезом у градієнті ПААГ і імуноблотингом із використанням специфічних антитіл до IgA людини (рис.7Б).
Нуклеазна активність анти-ДНК sIgA молока людини. Характерною ознакою анти-ДНК АТ сироватки крові хворих на СЧВ (Shuster et al., 1990) і розсіяний склероз (Nevinsky et al., 2002) є їхня гідролізуюча активність щодо плазмідної ДНК. Під час аналізу нуклеазної активності анти-ДНК sIgA субстратами реакції слугували: рибосомна РНК клітин аденокарциноми лінії L929, надспіралізована і лінійна форми ДНК плазміди. Виявлено, що анти-ДНК sIgA, очищені із жіночого молозива, подібно до анти-ДНК АТ сироватки крові хворих на аутоімунні захворювання, володіють РНКазною, топоізомеразною та ендонуклеазною активністю (рис.8). Нуклеазна активність анти-ДНК sIgA, отриманих із молока жінок у такий же спосіб, була незалежно від нас виявлена іншими дослідниками (Nevinsky, 2000).
На наступному етапі дослідження проведено пошук чинників, які можуть впливати на нуклеазну активність анти-ДНК sIgA. Встановлено, що 10 мкМ АТР суттєво інгібує гідроліз рРНК клітин аденокарциноми людини А549 і одноланцюгове розщеплення надспіралізованої форми ДНК плазміди. dATP у такій же концентрації не виявляв помітного впливу на РНКазну і топоізомеразну активність sIgA-абзимів. Іншу картину спостерігали при дослідженні впливу рибонуклеотидтрифосфатів (NTP) і дезоксирибонуклеотидтрифосфатів (dNTP) на ендонуклеазну активність анти-ДНК sIgA. На відміну від РНКазної і топоізомеразної активності, ендонуклеазна активність анти-ДНК sIgA-абзимів, крім АТР, повністю інгібувалася і dATP. При цьому GTP, CTP, TTP також суттєво інгібували реакцію гідролізу лінійної форми плазмідної ДНК. Часткове інгібування ендонуклеазної активності анти-ДНК sIgA молока людини спостерігалося у присутності dGTP, хоча dCTP dTTP не впливали на швидкість розщеплення ДНК плазміди.
Вибірковість дії нуклеотидтрифосфатів на РНКазну, топоізомеразну й ендонуклеазну активність sIgA-абзимів вказує на те, що в основу регуляції їхньої активності можуть бути задіяні, щонайменше, два незалежних механізми. За першим механізмом, регуляція нуклеазної активності може відбуватися шляхом фосфорилювання поліпептидів sIgA за участю sIgA-абзимів, які володіють протеїнкіназною активністю (Kit et al., 1991, 1995). Можливо, що фосфорилювання певних ділянок цих антитіл призводить до втрати їхньої спорідненості до нуклеїнових кислот, зокрема до рРНК. За другим механізмом, інгібування ендонуклеазної активності ДНК-гідролізуючих sIgA може відбуватися через зміну конформації каталітичного центру абзимів при зв’язуванні АТР і dATP із певними ділянками поліпептидів цих антитіл, задіяних в алостеричній регуляції їхньої нуклеазної активності.
Про можливе існування цих ділянок у sIgA-абзимів свідчать результати аналізу спорідненості щодо олігонуклеотидів і АТР електрофоретично гомогенних препаратів sIgA, отриманих із молока людини послідовними хроматографіями на протеїн А-сефарозі і ДЕАЕ-фрактогелі (рис.9). Очищені у такий спосіб sIgA слугували основою для подальшої очистки АТ, які володіють фосфотрансферазною і нуклеазною активністю.
За допомогою афінної модифікації sIgA-антитіл 32Р-міченими алкілуючими похідними олігонуклеотидів і АТР у присутності конкурентів (dT14 і АТР) встановлено, що секреторний компонент sIgA виявляє спорідненість до дезоксирибоолігонуклеотидів (рис.9, доріжки 3, 4), тоді як важкі і легкі ланцюги цих антитіл, головним чином, зв’язуються із АТР (рис.9, доріжки 5, 6).
На основі цього аналізу було зроблено припущення про те, що подібно до інгібувальної дії АТР на нуклеазну активність sIgA-абзимів, олігонуклеотиди можуть бути залучені до регуляції протеїнкіназної активності sIgA-абзимів молозива породіль. Підтвердженням цього припущення слугувало дослідження впливу олігонуклеотидів на протеїнкіназну активністю анти-ДНК sIgA молозива породіль.
Протеїнкіназна активність анти-ДНК sIgA молока людини. При інкубації sIgA, очищених на ДНК-целюлозі, із [g-32P] ATP було виявлено включення радіоактивного фосфату у поліпептиди цих імуноглобулінів (рис.10А, доріжка 1), що свідчить про можливу протеїнкіназну активність анти-ДНК sIgA-антитіл. Незначний рівень протеїнкіназої активності цих АТ спостерігали, коли субстратом фосфорилювання слугував казеїн молока людини (рис.10Б, доріжка 6). Отримані результати показали, що подібно до sIgA-антитіл, очищених із молока людини хроматографією на АТР-сефарозі (Kit et al., 1996), анти-ДНК sIgA також можуть володіти протеїнкіназною активністю. У присутності мікромолярних кількостей дезоксирибоолігонуклеотиду d(A) 12 спостерігається значне зростання фосфорилювання важких ланцюгів sIgA (рис.10А, доріжки 5–8) і казеїну (рис.10Б, доріжки 1–5). При цьому рибоолігонуклеотид r(A) 12 помітно не впливав на протеїнкіназну активність цих антитіл (рис.10Б, доріжки 7–11). Таким чином, нами було з’ясовано, що sIgA, очищені із молока людини афінною хроматографією на ДНК-целюлозі, крім нуклеотид-залежної нуклеазної активності, також володіють олігонуклеотид-залежною протеїнкіназною активністю.
Цитотоксична активність анти-ДНК sIgA молока людини клітин ссавців in vitro. Важливою властивістю анти-ДНК АТ, виділених із сироватки крові хворих на СЧВ і розсіяний склероз, є їхня здатність індукувати загибель клітин шляхом апоптозу (Kozyr et al., 2000; Nevinsky et al., 2002). Подібну цитотоксичну активність також було виявлено в анти-ДНК IgG, очищених із молока клінічно здорових жінок (Nevinsky et al., 2002).
Аналіз спорідненості FITC-мічених sIgA, очищених на ДНК-целюлозі, виявив їхню здатність зв’язуватися із фіксованими Т-клітинами лінії Jurkat (рис.11). Розподіл флуоресцентної мітки показав, що мішенню дії анти-ДНК sIgA можуть бути структури, локалізовані на плазматичній мембрані, або в цитоплазмі цих клітин (рис.11, картинки 1, 3). Це дозволило припустити, що анти-ДНК sIgA можуть впливати на ріст і виживання клітин.
Ми вивчили дію препаратів анти-ДНК sIgA молозива породіль на життєздатність трансформованих фібробластів лінії L929 миші, клітин лейкемії людини (лінії Namalwa, Jurkat) та клітин лінії L1210 лейкемії миші. Вплив АТ на ріст і виживання клітин in vitro визначали за індексом життєздатності (ІЖ), який вираховували за формулою, наведеною у розділі “Матеріали і методи досліджень”. Аналіз отриманих даних свідчить про те, що використані нами лінії клітин суттєво відрізняються між собою за чутливістю до дії препаратів анти-ДНК sIgA (рис.12). Найбільш чутливими були фібробласти лінії L929 (ІЖ ≤ 20). Значно меншою цитотоксичною дією ці імуноглобуліни володіли щодо T-клітин ліній Jurkat (ІЖ ≥ 40) та В-клітин лінії L1210 (ІЖ ≥ 30). В-клітини лінії Namalwa були найменш чутливими до дії анти-ДНК sIgA (ІЖ ≥ 60).
На підставі отриманих даних можна зробити висновок, що препарати sIgA зі спорідненістю до ДНК тимусу теляти, які містять абзими з нуклеазною і фосфотрансферазною активністю, можуть із різною ефективністю індукувати загибель ракових та трансформованих клітин in vitro. Доведено, що цитотоксична дія анти-ДНК IgG сироватки крові хворих на системний червоний вовчак і на розсіяний склероз безпосередньо пов’язана із їхньою ДНКазною активністю АТ (Kozyr et al., 2002). Тому можна припустити, що загибель клітин під дією анти-ДНК sIgA молозива людини відбувається за подібним механізмом.
Інший механізм біологічної дії каталітично активних sIgA молока людини може бути пов'язаний із особливістю транспортування секреторних АТ в організмі людини. В основі запропонованої моделі (рис.13) лежить механізм трансцитозу sIgA-антитіл через шар епітеліальних клітин слизових оболонок до секреторних рідин (жовч, слина, молоко і т.п.). Встановлено, що в процесі трансцитозу, sIgA-антитіла можуть бути залучені до внутрішньоклітинної нейтралізації вірусів (Lamm et al., 1998; Masteski et al, 1997).
Базуючись на цих даних, можна припустити, що sIgA-абзими із нуклеазною активністю, здатні гідролізувати нуклеїнові кислоти вірусів у цитоплазмі епітеліоцитів і, таким чином, можуть бути задіяні у захисті епітеліальних клітин слизових оболонок людини від вірусних інфекцій. Наведені аргументи дозволяють припустити, що sIgA-абзими функціонують як фактори гуморального імунного захисту епітеліальних клітин від вірусних інфекцій.
Характеристика функціональної активності антигістонових антитіл сироватки крові хворих на розсіяний склероз і молока людини. Антитіла, каталітично активні щодо гідролізу гістону Н1, було вперше виявлено нами під час дослідження протеазної активності препаратів IgG сироватки крові хворих на розсіяний склероз. Основою для проведення таких досліджень слугували дані про те, що при цьому аутоімунному захворюванні у спинномозковій рідині і сироватці крові хворих можуть бути присутні абзими із гідролізуючою активністю щодо основного білка мієліну (ОБМ) [Polosukhina et al., 2005; Gabibov et al., 2006]. Важливою особливістю білків цієї родини є їхній високий позитивний заряд (рI=12-13). Це дозволило нам припустити, що у сироватці крові хворих на розсіяний склероз присутні абзими, які здатні гідролізувати, крім ОБМ, також інші позитивно заряджені білки. Для перевірки цього припущення як субстрати протеолітично активних антитіл було використано лінкерний та корові гістони хроматину тимусу теляти і лізоцим курячого яйця. Аналіз протеолітичної активності 20-ти препаратів IgG, очищених із сироватки крові хворих на розсіяний склероз хроматографією на протеїн А-сефарозі, виявив у зразках 3-х пацієнтів здатність каталізувати гідроліз гістону Н1. Аналіз 16-ти препаратів IgG сироватки крові здорових донорів не виявив у жодного з них гідролізуючої активності щодо цього білка. Дослідження протеолітичної активності 25-ти препаратів sIgA молозива породіль показало, що два з цих препаратів АТ виявляють гідролізуючу активність щодо гістону Н1.
На рис.14 наведено результати аналізу субстратної специфічності протеолітичної активності препаратів IgG сироватки крові хворих на розсіяний склероз (рис.14А) і sIgA молозива клінічно здорових породіль (рис.14Б).
Встановлено, що IgG — і sIgA-антитіла ефективно розщеплюють гістон Н1 (доріжки 2) і не гідролізують лізоцим курячого яйця (доріжки 6). У той же час препарати IgG і sIgA відрізнялися між собою за здатністю гідролізувати корові гістони тимусу теляти. Із рис.14А видно, що у присутності IgG сироватки крові хворого на розсіяний склероз відбувається суттєве зменшення кількості деяких гістонів із паралельним зростанням вмісту низькомолекулярних продуктів їхнього гідролізу (доріжка 4). Присутність sIgA молозива у реакційному середовищі не впливала на рівень цих гістонів (рис.14. Б, доріжка 4), хоча певний приріст кількості низькомолекулярних поліпептидів на електрофоретичній доріжіці 4 вказує на те, що деякі із корових гістонів також можуть руйнуватися цими антитілами.
Щоб переконатися, що протеолітична активність препаратів імуноглобулінів дійсно належить АТ, а не домішкам ензимів, які можуть знаходитися у комплексі із АТ, каталітично активні препарати IgG сироватки крові хворих на розсіяний склероз і sIgA молозива породіль піддавали гель-фільтрації за умов дисоціації імунних комплексів (рН-шок-аналізу) (рис.15а). Виявлено, що гістон Н1-гідролізуюча активність хроматографічних фракцій каталітично активних препаратів IgG (рис.15А) і sIgA (рис.15Б) відповідає фракціям, які містять поліпептиди цих імуноглобулінів. Відсутність протеолітичної активності в інших хроматографічних фракціях свідчить про те, що гідроліз гістону Н1 відбувається саме за участю IgG і sIgA, а не під дією домішків протеаз сироватки крові чи молозива породіль у препаратах цих імуноглобулінів.
Присутність значного рівня антигістонових-АТ, виявлених нами у препаратах Ig молозива породіль і сироватки крові хворих на розсіяний склероз (рис.5), дозволяє припустити, що саме цим антитілам властива протеолітична активність щодо гістону Н1.
Для перевірки цієї гіпотези із каталітично активних препаратів IgG і sIgA хроматографією на гістон Н1-сефарозі виділили антигістонові антитіла (рис.16А) і проаналізували їхню протеолітичну активність. Електрофоретичний аналіз хроматографічних фракцій (рис.16Б) показав, що у складі препаратів IgG і sIgA присутні антитіла зі спорідненістю до гістону Н1 (антигістонові-АТ), які володіють гідролізуючою активністю щодо цього білка (рис.16В).
    продолжение
--PAGE_BREAK--Отже, нами вперше встановлено, що у сироватці крові хворих на розсіяний склероз і в молозиві клінічно здорових породіль містяться абзими, здатні гідролізувати гістон Н1. Показано, що IgG — і sIgA-абзими різняться між собою за чутливістю до дії інгібіторів відомих протеаз.
Вплив антигістонових АТ на ріст і виживання клітин in vitro. Оскільки анти-гістон Н1 антитіла, очищені із сироватки крові хворих на розсіяний склероз та із молока людини за антигенною специфічністю можна віднести до ауто-АТ, важливо було визначити їхній вплив на ріст і виживання клітин in vitro. Мішенями тут слугували Т-клітини лінії Jurkat. Встановлено, що анти-гістонові sIgA-антитіла молозива породіль і анти-гістонові IgG-антитіла сироватки крові хворих на розсіяний склероз відрізняються між собою за дією щодо цих клітин. Із рис.17 видно, що дія анти-гістонових sIgA-антитіл упродовж 72 год суттєво не вливає на ріст Т-клітин лінії Jurkat. У той же час, під впливом антигістонових IgG-антитіл спостерігався помітний приріст кількості цих клітин.  
Отримані нами дані вказують на те, що анти-гістонові IgG-антитіла сироватки крові хворих на розсіяний склероз можуть володіти промітогенною активністю щодо Т-клітин лінії Jurkat. Тому було припущено, що відмінність у дії антигістонових АТ сироватки крові хворих на розсіяний склероз та антигістонових АТ молозива породіль на Т-клітини лінії Jurkat може бути пов’язана із їхньою здатністю до інтерналізації. Підставою для цього припущення слугували дані про те, що IgG-антитіла, специфічні до деяких ядерних антигенів, можуть не лише проникати у клітини ссавців, але й транспортуватися в ядро цих клітин (Ma et al., 1993; Avrameas et al., 1998).
Щоб перевірити цю гіпотезу, анти-гістонові-АТ обох ізотипів інкубували із Т-клітинами лінії Jurkat і визначали їхню субклітинну локалізацію за допомогою анти-IgG і анти-IgA антитіл, кон’югованих із пероксидазою хрону. Результати мікроскопії фіксованих препаратів клітин показали (рис.18), що після 2-годинної інкубації значна кількість анти-гістонових IgG сироватки крові хворих на розсіяний склероз потрапляє у цитоплазму клітин-мішеней
У той же час, присутність анти-гістонових sIgA-антитіл у клітинах була незначною. Здатність анти-гістонових IgG-антитіл інтерналізуватися у клітини ссавців було також підтверджено при використанні трансформованих фібробластів лінії L929 (рис. 19).
Отримані результати свідчать про те, що на відміну від анти-гістонових sIgA-антитіл молозива породіль, антигістонові IgG–антитіла сироватки крові хворих на розсіяний склероз можуть інтерналізуватися клітинами ссавців.
Зв'язок між стимулюючим ефектом анти-гістонових IgG на ріст лейкемічних лімфоцитів людини лінії Jurkat in vitro, їхньою протеолітичною активністю щодо гістону Н1 та здатністю до інтерналізації цих АТ дозволяє запропонувати гіпотезу про механізм активації проліферації клітин під дією цих антитіл. В основі цього механізму може лежати деконденсація хроматину, викликана гідролізом лінкерного гістону Н1 під впливом IgG-абзимів, які за певного функціонального стану клітин-мішеней можуть проникати в їхнє ядро.
Характеристика фосфотрансферазної активності АТ молозива породіль і сироватки крові хворих на СЧВ. Фосфорилювання білків і ліпідів є ключовими реакціями, задіяними у регуляції життєдіяльності клітин. Раніше нами було встановлено, що sIgA молока жінок володіють спорідненістю до АТР і казеїнкіназною активністю (Kit et al., 1995). У наступних дослідженнях ми показали, що sIgA молока жінок також можуть володіти ліпідкіназною активністю. Ліпідкіназну активність антитіл було виявлено при аналізі продуктів фосфорилювання хроматографічних фракцій, отриманих гель-фільтрацією препаратів sIgA, очищених із молока жінок послідовними хроматографіями на протеїн А-агарозі і ДЕАЕ-фрактогелі (рис.7А).
Для дисоціації можливих імунних комплексів у препаратах sIgA гель-фільтрацію проводили у присутності 50 мМ NaOH (рис. 20А). Хроматографічний пік було розділено на 2 фракції і після нейтралізації рН було проаналізовано їхню протеїнкіназну активність. У sIgA–антитіл фракції 2 виявлено фосфорилювання секреторного компоненту (SC) і важких ланцюгів (Н) цих імуноглобулінів (рис. 20В, доріжка 2). На відміну від фракції 2, у sIgA фракції 1, при низькому рівні фосфорилювання поліпептидів імуноглобулінів, спостерігали також утворення низькомолекулярного 32P-міченого продукту (рис. 20В, доріжка 1), який не фарбувався Coomassie (рис. 20Б, доріжка 1).
На підставі даних було зроблено припущення, що виявлені нами фосфорильовані продукти належать до фосфоліпідів. Це припущення було підтверджене після екстракції цих продуктів розчином хлороформ-метанол (2: 1) і їхнім розділенням ТШХ у буферній системі, яку використовують для аналізу фосфоліпідів (рис. 20Г). Отже, sIgA-антитіла молока породіль можуть володіти як протеїнкіназною, так і ліпідкіназною активністю. При цьому ліпіди знаходяться у комплексі із імуноглобулінами і не дисоціюють при високих значеннях рН. На основі комбінованого аналізу цих сполук із застосуванням методів ензиматичної та хімічної деградації було зроблено висновок (Gorbunov et al., 2000, 2005), що субстратами каталізу sIgA-абзимів молока є 2 гліколіпіди, до складу яких входить один залишок сіалової кислоти та 4–5 залишків жирних кислот.
Результати наших досліджень показали, що ліпідкіназна активність властива також IgG-антитілам сироватки крові хворих на СЧВ (рис.21).
При електрофоретичному аналізі продуктів фосфорилювання препаратів IgG, очищених із сироватки крові хворих на СЧВ хроматографією на протеїн А-сефарозі (рис.21Б, доріжка 1), як і у випадку sIgA-антитіл молока людини, спостерігали утворення низькомолекулярних 32Р-мічених сполук небілкової природи (рис.21В, доріжка 1), які також екстрагувалися із реакційного середовища розчином хлороформ-метанол (2: 1) і розділялися ТШХ на три фракції (рис.21Г, доріжка 1). Радіоактивно мічені продукти ліпідної природи було також виявлено при фосфорилюванні препаратів IgG (рис.21Г, доріжка 2), очищених на колонці із АТР-сефарозою (рис.21А). При цьому фосфорилювання ліпідів не спостерігалося у випадку, коли із [g-32P] ATP інкубували IgG, які не володіли спорідненістю до АТР (рис.21В, доріжка 2).
Отримані дані дозволяють припустити, що у сироватці крові хворих на СЧВ, подібно як у молоці людини, можуть бути присутні IgG-абзими, які володіють фосфотрансферазною активністю. Ми також припустили, що ліпіди можуть впливати на протеїнкіназну активність IgG-антитіл. Для перевірки цього припущення IgG піддавали гель-фільтрації у буферній системі, яка містила 5% діоксану (рис.22). При інкубації IgG, очищених у такий спосіб від ліпідів, із [g-32P] ATP було виявлено включення 32Р у важкі (Н) і легкі (L) ланцюги IgG. При цьому рівень фосфорилювання їхніх поліпептидів значно зростав у випадку, коли до реакційної суміші додавали 1 мкМ нерадіоактивного АТР.
Нами також проаналізовано, як впливає видалення ліпідів на рівень фосфорилювання АТ, очищених із молозива породіль і сироватки крові хворих на склеродермію. Встановлено, що руйнування комплексів ліпід-АТ гель-фільтрацією у присутності іонного розчинника діоксана стимулює фосфорилювання, не тільки IgG сироватки крові хворих на СЧВ, але й sIgA-антитіл молозива породіль і IgG-антитіл сироватки крові хворих на склеродермію. Очищені у такий спосіб від ліпідів препарати IgG здорових донорів не виявляли протеїнкіназної активності.
Отже у молоці клінічно здорових жінок і у сироватці крові хворих на СЧВ присутні абзими із фосфотрансферазною активністю. Характерною ознакою цих каталітично активних антитіл є їхня спорідненість до АТР і ліпідів. Висока спорідненість АТ до ліпідів дозволяє класифікувати виявлені абзими як антифосфоліпідні IgG. Підтвердженням цього можуть слугувати дані про те, що АТ із спорідненістю до фосфоліпідів можуть перехресно реагувати із АТР (Wasef et al., 1993; Chapman et al., 2005). Можна припустити, що за рахунок конкуренції цих сполук за антиген-зв’язувальні ділянки молекул АТ відбувається перенос макроергічного гамма-фосфату молекули АТР на акцепторні групи ліпідів, і, можливо, білків. Крім того, не виключено, що фосфотрансферазна активність властива деяким ізотипам імуноглобулінів сироватки крові. На це вказують дані про те, що афінно-очищені IgA сироватки крові клінічно здорових донорів можуть фосфорилювати казеїн у присутності [g-32P] ATP. Для виявлення ділянок АТ, які залучені у фосфотрансферазну реакцію, ми використали комп’ютерний аналіз рівня гомології первинних структур білків імуноглобулінової надродини і відомих протеїнкіназ. За допомогою цього підходу було встановлено, що Fc-фрагменти імуноглобулінів містять послідовності, гомологічні до деяких протеїнкіназ. Отримані результати слугували поштовхом для дослідження протеїнкіназної активності рецептора Т-гелперних клітин СD4.
Протеїнкіназна активність rsCD4. Рецептор СD4 – це глікопротеїн, який розташований на зовнішній поверхні плазматичної мембрани Т-гелперів, задіяний в активації внутрішньоклітинних процесів у цих клітинах, і, крім того, спільно із рецептором (TCR) /CD3 бере участь у різних міжклітинних взаємодіях [Gay et al., 1987; Doyle and Strominger, 1987]. За своєю будовою рецептор СD4 належить до надродини імуноглобулінових білків і тому деякі властивості цього білка можуть бути спільними з ознаками ауто-АТ та абзимів (рис.23А).
Спочатку нами було проведено пошук амінокислотних послідовностей СD4 із найвищим рівнем гомології щодо відомих протеїнкіназ. Для такого аналізу використано банк генів протеїнкіназ KinBase та програму порівняння Kinom Blast Server (www. kinase. com). Встановлено, що найвищим рівнем гомології до протеїнкіназ володіє послідовність довжиною 100 амінокислотних залишків, яка входить до структури двох імуноглобулінових доменів позаклітинної ділянки рецептора СD4. Отримані дані дозволили припустити, що позаклітинний фрагмент СD4 володіє протеїнкіназною активністю. Для перевірки цієї гіпотези було використано рекомбінантний розчинний рецептор rsCD4 (“Genentech”, США), послідовність якого гомологічна позаклітинному фрагменту СD4 (рис.23А). Аналіз протеїнкіназної активності rsCD4 показав (рис.23Б), що у присутності [g-32P] ATP відбувається фосфорилювання рецептора (доріжка 1). Фосфорилювання rsCD4 не відбувалося, коли білок попередньо прогрівали при 65 0С (доріжка 2) або коли до реакційної суміші додавали 3 мМ АТР (доріжка 3). Інкубація rsCD4 із [-32P] ATP також не призводила до його фосфорилювання (доріжка 4). Отримані дані вказують на те, що рецептор rsCD4 володіє протеїнкіназною активністю. Додатковим аргументом на користь цього можуть слугувати дані фосфорилювання казеїну коров’ячого молока у присутності rsCD4 та [g-32P] ATP (рис.23Б, доріжки 5, 6). Наступними дослідами було показано, що подібно до класичних протеїнкіназ, для фосфорилювання рецептора rsCD4 необхідною є наявність двовалентних катіонів. Їхній вплив на протеїнкіназну активність rsCD4 у порядку зростання виглядає наступним чином: Ca2+ > Zn2+> Mn2+> Ni2+> Mg2+ > Cu2+ >Co2+. Реакція фосфорилювання також інгібувалась діетилпірокарбонатом, що вказує на участь у каталізі залишків гістидину. Визначення амінокислотної специфічності фосфорилювання показало, що фосфорилювання казеїну за участю rsCD4 відбувається за залишками серину.
Встановлено, що інкубація rsCD4 із плазмою крові людини призводить до фосфорилювання двох білків із мол. масою 62 і 12 кДа. Це вказує на те, що у плазмі крові можуть бути присутні ендогенні субстрати протеїнкіназної активності цього рецептора.
Отже нами встановлено, що рекомбінантний аналог білка, який належить до надродини імуноглобулінів, а саме рецептора Т-гелперних клітин СD4 володіє протеїнкіназною активністю.
Біологічна роль протеїнкіназної активності рецептора СD4 залишається невідомою. Оскільки у протеїнкіназній активності задіяний позаклітинний фрагмент рецептора, за місцем локалізації ензиму в клітині СD4 можна віднести до ектопротеїнкіназ плазматичної мембрани лімфоїдних клітин. Очевидно, протеїнкіназна активність рецептора CD4 може бути направлена як на регуляцію біологічної активності Т-гелперних лімфоцитів, так і на регуляцію взаємодії білків плазми крові і лімфи із Т-лімфоцитами і лімфоїдними клітини, які також продукують цей рецептор. Той факт, що присутність АТР є необхідною умовою активації Т-лімфоцитів (Filippini et al., 1990; Redegelt et al., 1991), може також слугувати на користь цього припущення.

ВИСНОВКИ У дисертаційній роботі вперше проведено комплексне дослідження з метою виявлення, очистки та функціональної характеристики аутологічних антитіл сироватки крові та молока людини у нормі та при деяких аутоімунних захворюваннях. Отримані дані свідчать про те, що у сироватці крові і молоці людини присутні аутологічні антитіла із антигенною специфічністю щодо клітин ссавців, здатні каталізувати деякі біохімічні реакції. Встановлено, що ці антитіла впливають на ріст і виживання клітин in vitro, причому деякі з них можуть зв’язуватися з клітинами та інтерналізуватися ними. У молозиві деяких клінічно здорових жінок-породіль присутні аутоантитіла, які за антигенною специфічністю, каталітичною активністю і за впливом на клітини ссавців подібні до аутоантитіл сироватки крові хворих на розсіяний склероз і системний червоний вовчак. Це робить їх привабливими для подальшого дослідження з огляду на можливість їхнього використання як діагностичних та прогностичних маркерів аутоімунних порушень у породіль.
1. Імуноглобуліни сироватки крові хворих на розсіяний склероз і молозива здорових жінок-породіль здатні індукувати апоптоз T-клітин лінії Jurkat або стимулювати проліферацію цих клітин in vitro. Значну цитотоксичну активність імуноглобулінів виявлено у 36% обстежених хворих на розсіяний склероз і 44% клінічно здорових породіль, тоді як промітогенну активність антитіл виявлено у 13,6% хворих на розсіяний склероз і 8% здорових породіль.
2. У молозиві 8% обстежених жінок-породіль встановлено підвищений рівень антитіл, які володіють спорідненістю до дволанцюгової ДНК (анти-ДНК АТ), а у 48% породіль, виявлено антитіла зі спорідненістю до гістонів ссавців (анти-гістонові АТ).
3. Розроблено комплексний підхід для виділення та аналізу антигенної специфічності та каталітичної активності аутологічних антитіл сироватки крові і молока людини. Він полягає у використанні афінної та іонообмінної хроматографії, а також гель-фільтрації за умов дисоціації імунних комплексів, і дозволяє отримати високоочищені препарати аутоантитіл певної каталітичної активності.
4. Анти-ДНК sIgA молока людини володіють рибонуклеазою активністю щодо рибосомної РНК, топоізомеразною та ендонуклеазною активністю щодо надспіралізованої і лінійної форм ДНК плазміди, а також протеїнкіназною активністю щодо власних поліпептидів і казеїну молока людини. АТР і dАТР інгібують нуклеазну активність цих sIgA-абзимів, а синтетичні дезоксирибоолігонуклеотиди стимулють протеїнкіназну активність цих антитіл.
5. Анти-ДНК sIgA молозива породіль із різною ефективністю індукують загибель імунокомпетентних клітин (лінії Namalwa, Jurkat і L1210), а також трансформованих фібробластів миші (лінія L929). За чутливістю до цитотоксичної дії цих антитіл, досліджувані лінії клітин розподіляються наступним чином: L929 > Jurkat > L1210 > Namalwa.
6. У молоці клінічно здорових жінок-породіль і сироватці крові хворих на системний червоний вовчак уперше виявлено антитіла класів sIgA і IgG, які володіють ліпідкіназною і протеїнкіназною активністю. Ліпіди співвиділяються з цими антитілами під час їхньої очистки на протеїн А-сефарозі, ДЕАЕ-фрактогелі, АТР-сефарозі і фосфорилюються у складі імунних комплексів у присутності [g-32P] ATP. Гель-фільтрація даних антитіл у буфері, який містить 5% діоксан, призводить до дисоціації імунних комплексів і стимуляції протеїнкіназної активності антитіл.
7. У молоці клінічно здорових жінок-породіль і у сироватці крові хворих на розсіяний склероз вперше виявлено анти-гістонові sIgA — і IgG-антитіла, які каталізують гідроліз гістону Н1. Анти-гістонові антитіла обох ізотипів гідролізують корові гістони із значно нижчою ефективністю, ніж лінкерний гістон Н1, і не гідролізують альбумін сироватки крові бика і лізоцим курячого яйця.
8. Анти-гістонові IgG-антитіла сироватки крові хворих на розсіяний склероз стимулюють проліферацію Т-лімфоцитів лінії Jurkat. Приріст кількості цих клітин порівняно з контролем складав 37% при дії 70 мкг/мл антитіл упродовж 72 год. У той же час, анти-гістонові sIgA-антитіла молозива породіль не впливають на проліферацію Т-клітин лінії Jurkat.
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Taxable Bond Market Outperformed The U.S. Stock
Реферат Ангарский нефтехимический комбинат
Реферат Психология преступника
Реферат Внешняя политика Германии 1870 1898 гг
Реферат Общественно-экономическое и политическое развитие Украины в 50-60-х гг. ХХ в.
Реферат Why Pancho Villa Attacked The Us Essay
Реферат Перспективы рекреационного освоения Российского Севера
Реферат Сочинение по картине В.В. Мешкова Золотая осень в Карелии
Реферат Mercantilism Shaping Nations Essay Research Paper How
Реферат Готический стиль в сакральной архитектуре Англии и Франции
Реферат Реферат з інформатиткии Програма Провідник
Реферат Роль образа Ольги в романе Евгений Онегин
Реферат Основні напрями державної політики України у галузі охорони довкілля, використання природних ресурсів та забезпечення екологічної безпеки
Реферат Авраам Линкольн, великий человек, сохранивший союз
Реферат TV Violence Essay Research Paper What would